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.e problem of finite-time tracking control is discussed for a class of uncertain nonstrict-feedback time-varying state delay
nonlinear systems with full-state constraints and unmodeled dynamics. Different from traditional finite-control methods, a C1

smooth finite-time adaptive control framework is introduced by employing a smooth switch between the fractional and cubic
form state feedback, so that the desired fast finite-time control performance can be guaranteed. By constructing appropriate
Lyapunov-Krasovskii functionals, the uncertain terms produced by time-varying state delays are compensated for and unmodeled
dynamics is coped with by introducing a dynamical signal. In order to avoid the inherent problem of “complexity of explosion” in
the backstepping-design process, the DSC technology with a novel nonlinear filter is introduced to simplify the structure of the
controller. Furthermore, the results show that all the internal error signals are driven to converge into small regions in a finite time,
and the full-state constraints are not violated. Simulation results verify the effectiveness of the proposed method.

1. Introduction

During the past few decades, great achievements have been
proposed for uncertain nonlinear systems based on adaptive
control technique, especially for pure-feedback systems (e.g.,
see [1–5]) and strict-feedback systems (e.g., see [6–9]) with
the lower-triangular structure. Lately, the authors in [10]
introduced a more general nonlinear system named non-
strict-feedback nonlinear systems. By employing the variable
separation method, the tracking control problem has been
well solved. Since then, many control techniques for non-
strict-feedback systems and extensions to other fields were
achieved (e.g., see [11–17]).

It is known to all that many practical systems encounter
the effect of the constraints, such as the temperature of
chemical reactor and physical stoppages. .us, the research
about the systems with state constraints is very meaningful
and necessary on account of the existence of state constraints
which may undermine the stability of the system. In order to

tackle the problem of state constraints, some effective
control techniques (e.g., model predictive control (MPC)
[18, 19], reference governors (RGs) [20], one-to-one non-
linear mapping (NM) [21–23], and barrier Lyapunov
functions (BLFs) [24–28]) have been presented. Due to the
fact that MPC and RGs require strong online computing
capability to guarantee constraints, this requirement re-
stricts their applications in engineering design. .erefore,
one-to-one NM and the BLFs-based methods become the
main methods to deal with the constrained nonlinear sys-
tems. .ere exist many significant results which focus on
lower-triangular structure nonlinear systems with different
constraints (e.g., input constraints [3], output constraints
[24], partial-state constraints [25], and full-state constraints
[21–23, 26, 27]). In addition, the rate of convergence is also
an essential consideration for most practical systems. .e
works mentioned above only obtain asymptotic or expo-
nential stability with infinite time, which cannot meet the
requirement of finite-time control in most practical control
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systems. As a consequence, a considerable number of
meaningful researches (e.g., see [28–33]) have been pro-
posed on finite-time control for nonlinear systems. How-
ever, most of the works are to present C0 finite-time
controller by using a backstepping technique together with a
nonsmooth fractional feedback design method. In order to
achieve a faster convergence rate, the authors in [34]
originally proposed a C1 smooth finite-time adaptive NN
controller by using a smooth switch between the fractional
and cubic form state feedback. Moreover, there are other
significant results presented in [35–41], such that two
globally stable adaptive controllers were proposed in
[35, 36]. To obtain the tracking accuracy, a practical adaptive
fuzzy tracking controller for a class of perturbed nonlinear
systems with backlash nonlinearity has been designed in
[37]. An adaptive fuzzy output-feedback tracking control
technique for switched stochastic pure-feedback nonlinear
systems has been presented in [38]. .e authors in [39]
proposed an observed-based adaptive finite-time tracking
control technique for a class of nonstrict-feedback nonlinear
systems with input saturation. An adaptive finite-time
output-feedback controller for switched pure-feedback
nonlinear systems with average dwell time has been given in
[40]. A decentralized event-triggered controller for inter-
connected systems with unknown disturbances has been
proposed in [41].

Furthermore, due to the fact that unmodeled dynamics
can severely degrade the closed-loop system performance,
dealing with the effects of unmodeled dynamics is essential
for practical nonlinear control systems. .erefore, several
results were proposed by employing backstepping or DSC in
[4, 21–23, 42–47]. Generally, unmodeled dynamics was
disposed by introducing a dynamic signal in
[4, 21–23, 42–46] or a Lyapunov function description in [47].

In addition, time delays frequently occur in some
practical engineering systems. As stated in [48], their ex-
istence can deteriorate the transient performance and even
can destroy the stability of the control systems. .us, the
research on nonlinear time-delay systems has become one of
the hot topics and some meaningful results have been
achieved during the past decades [49–53]. For uncertain
nonlinear time-delay systems, the effective controller was
developed originally in [50] by combining the backstepping
technique with Lyapunov-Krasovskii functionals. Soon af-
terward, this method was extended to nonlinear strict-
feedback time-delay system with unknown control gain
functions [51] and uncertain multi-input/multi-output
nonlinear systems with time delays [52]. Later, some im-
proved control schemes based on [50] were proposed (e.g.,
see [35, 53, 54]).

Although many significant research results on adaptive
neural network control for uncertain nonstrict-feedback
systems have been obtained in [11–17], their considered
systems did not include unmodeled dynamics or full-state
constraints. In [21–28], the effective controllers have been
designed for the lower-triangular structure nonlinear sys-
tems with state constraints and unmodeled dynamics, but
their considered systems did not include state delay and their
control methods may be invalid to nonstrict-feedback

systems on account of subsystem function which contains
the whole state variables. Furthermore, the above-men-
tioned control methods only obtain asymptotic or expo-
nential stability with infinite time. To the best knowledge of
the authors, finite-time tracking control for a class of un-
certain nonstrict-feedback time-varying state-delayed non-
linear systems with full-state constraints and unmodeled
dynamics has not been fully discussed in the literature,
which is still open and remains unsolved. In this paper, we
are committed to solving the problemmentioned above..e
main contributions of the paper are summarized as follows:

(i) In contrast to the existing results reported in
[21–28, 47] where the control methods have been
proposed for nonlinear strict-feedback or pure-
feedback systems with state or output constraints
and unmodeled dynamics, a generalization of the
results is proposed for a class of nonstrict-feedback
state delay systems with state constraints and
unmodeled dynamics of which the subsystem
function contains the whole state variables. To the
best of authors’ knowledge, it is the first time to
develop an adaptive DSC method for uncertain
nonstrict-feedback state delay systems with state
constraints and unmodeled dynamics.

(ii) Different from the finite-control methods in [31–33],
a C1 smooth finite-time adaptive control framework
is introduced by employing a smooth switch between
the fractional and cubic form state feedback reported
in [34], so that the desired fast finite-time control
performance can be guaranteed. Moreover,
unmodeled dynamics is coped with by introducing a
dynamical signal and the uncertain terms produced
by time-varying state delays are compensated for by
constructing appropriate Lyapunov-Krasovskii
functionals..e results show that all the error signals
are driven to converge into small regions in a finite
time, and the full-state constraints are never violated.

.e remainder of this paper is organized as follows. In
Section 2, the problem formulation and preliminaries are
presented. Adaptive DSC design and stability analysis are
given in Section 3. Simulation results verify the effectiveness
of the proposed control approach in Section 4, followed by
Section 5, which concludes this paper.

Notation. In this paper, R denotes a set of real numbers, R+

denotes a set of nonnegative real numbers, Rm×n denotes a
set of m × n real matrices, Rn denotes a set of n-dimensional
real vectors, sup(·) denotes the least upper bound, ‖·‖ de-
notes 2-norm of a vector or matrix, |·| denotes an absolute
value of a real number ·, exp(·) denotes an exponential
function of ·, and log(·) denotes the natural logarithm of ·.

2. Problem Formulation and Preliminaries

2.1. Problem Statement. Consider a class of uncertain
nonstrict-feedback state-delayed nonlinear systems with
unmodeled dynamics for i � 1, 2, . . . , n − 1 in the following
form:
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_ξ � q(ξ, x, t),

_xi � fi(x) + gi �xi xi+1 + δi(ξ, x, t) + di �xi t − Ti(t)(  ,

_xn � fn(x) + gn �xn u + δn(ξ, x, t) + dn �xn t − Tn(t)(  ,

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where x � [x1, x2, . . . , xn]T ∈ Rn is the state vector, ξ ∈ Rn0

is the unmodeled dynamics, and u, y, Ti(t) denote the
system input, the system output, and the unknown time-
varying delays, respectively. fi(x), gi(�xi), and
di(�xi(t − Ti(t))) are the unknown smooth functions. Let
�xi � [x1, x2, . . . , xi]

T and δi(ξ, x, t) be the unknown un-
certain disturbances. All the states xi are required to remain
in the sets Ωxi

� xi: |xi|< kci
 , where kci

are positive
constants.

Remark 1. System (1) is called a nonstrict-feedback form in
which the system function fi(·) and its bounding function
contain all the state variables [10]. Apparently, strict-feed-
back and pure-feedback structures are the special cases of
system (1). .e methods proposed in [21–28, 31–33, 47]
cannot be directly applied to system (1) on account of its
nonstrict-feedback structure.

.e control objective of this paper is to construct an
adaptive NN controller u(t) to make sure that the output y

follows the desired trajectory yr in a finite time, while every
state xi ∈ Ωxi

is never violated.

2.2. RBFNN Approximation. In this paper, for i � 1, . . . , n,
the unknown smooth nonlinear functions �Fi(Zi): Rm⟶ R

will be approximated on a compact set Ωi ⊂ Rm by the
following RBFNN:

�Fi Zi(  � W
T
i Si Zi(  + εi Zi( , (2)

where Zi, Wi, l denote input vectors, weight vectors, and NN
node number, respectively. εi(Zi) are the NN inherent
approximation errors which are bounded over the compact
sets; that is, εi(Zi)≤ εi, where ϵi are unknown constants and
Si(Zi) � [s1(Zi), . . . , sl(Zi)]

T: Ωi⟶ Rl are known
smooth vector functions with sq(Zi) being chosen as the
commonly used Gaussian functions, which have the form

sq Zi(  � exp
− Zi − μq 

T
Zi − μq 

η2q
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, q � 1, . . . , l, (3)

where μq � [μq1, . . . , μqm]T is the center vector and ηq is the
spreads of the Gaussian function. .e optimal weight vector
Wi is defined as

Wi � argmin
Wi∈Rl

sup
Zi∈Ωi

F Zi(  − W
T

i S(Z)



⎧⎨

⎩

⎫⎬

⎭, (4)

where Wi is the estimate of Wi.

2.3. Key Definition and Lemmas

Definition 1 (see [21]). .e unmodeled dynamics ξ is said to
be exponentially input-state-practically stable (exp-ISpS),
that is, for system _ξ � q(ξ, x, t), if there exist functions �α1, �α2
of class K∞ and a Lyapunov function V(ξ), such that

�α1(‖ξ‖)≤V(ξ)≤ �α2(‖ξ‖), (5)

and there exist two constants c> 0, d≥ 0 and a class K∞
function c, such that

zV(ξ)

zξ
q(ξ, x, t)≤ − cV(ξ) + c x1


  + d, ∀t≥ 0, (6)

where c and d are known positive constants and c(·) is a
known function of class K∞.

Lemma 1 (see [21]). If V is an exp-ISpS Lyapunov function
for a system _ξ � q(ξ, x, t), that is, (5) and (6) hold, then, for
any constant �c ∈ (0, c), any initial instant t0 > 0, any initial
condition ξ0 � ξ(t0), r0 > 0, and any continuous function �c,
such that �c(|x1|)≥ c(|x1|), there exist a finite
T0 � max 0, log[(V(ξ0)/r0)/(c − �c)] ≥ 0, a nonnegative
function D(t0, t) defined for all t≥ t0, and a signal described
by

_r � − �cr + �c x1
����

����  + d, r t0(  � r0, (7)

such that D(t0, t) � 0 for t≥ t0 + T0 and
V(ξ)≤ r(t) + D(t0, t) with
D(t0, t) � max 0, e− c(t− t0)V(z0) − e− �c(t− t0)r0) .

Lemma 2 (see [11]). Let S(Z) be the basis function vector of
an RBFNN and Z be the input vector, where
S(Z) � [s1(Z), . . . , sl(Z)]T and Z � [z1, . . . zn]T. For any
positive integer m≤ n, let Zm � [z1, . . . , zm]T, and the fol-
lowing inequality holds:

‖S(Z)‖
2 ≤ S Zm( 

����
����
2
. (8)

Lemma 3 (see [55]). For any real numbers ζ1 > 0, ζ2 > 0 and
0< h< 1, an extended Lyapunov condition of finite-time
stability can be given in the form of fast terminal sliding mode
as _V(x) + ζ1V(x) + ζ2Vh(x)≤ 0; then, V(x) is in fast finite-
time convergent with a finite settling time T∗ ≤ (1/ζ1(1−

h))log((ζ1V1− h(x0) + ζ2)/ζ2).

Lemma 4 (see [56]). For x, y ∈ R, if 0< h � h2/h1 < 1, where
h1, h2 > 0 are odd integers, then xyh ≤ − ς1x1+h + ς2(x+

y)1+h, where ς1 � (1/(1 + h))(2h− 1 − 2(h− 1)(h+1)) and ς2 �

(1/(1 + h))(1 + (2h/(1 + h)) + (2− (h− 1)2(h+1)/(1 + h))2h− 1).
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Lemma 5 (see [34]). Consider the dynamic system

_ϕ(t) � − l1ϕ(t) − l2ϕ
h
(t) + ϱ(t), (9)

where ϕ(t) ∈ R, 0< h � (h2/h1)< 1 (h1 and h2 are positive
odd integers), l1 and l2 are positive constants, and ϱ(t) is a
positive function. Ben, for any given bounded initial con-
dition ϕ(0)≥ 0, one has that ϕ(t)≥ 0, ∀t≥ 0.

Lemma 6 (see [57]). For xi ∈ R, i � 1, 2, . . . , n, and 0< h≤ 1,
then (

n
i�1 |xi|)

h ≤ 
n
i�1 |xi|

h ≤ n1− h(
n
i�1 |xi|)

h.

To obtain the control objective, the following assump-
tions are needed.

Assumption 1. .e unmodeled dynamics ξ is exp-ISpS.

Assumption 2. .ere exist unknown nonnegative continu-
ous functions φi1 and nondecreasing continuous functions
φi2 such that

δi(ξ, x, t)


≤φi1 �xi

����
����  + φi2(‖ξ‖), ∀(ξ, x, t) ∈ R

n0 × R
n

× R
+
,

(10)

where φi2(0) � 0, i � 1, . . . , n.

Remark 2. From Definition 1 and Assumption 1, we have
‖ξ‖≤ �α− 1

1 (V(ξ)). According to Lemma 1, there exists a
positive constant D0 such that ‖ξ‖≤ �α− 1

1 (r + D0), ∀t≥ 0..is
inequality will be used to cope with the uncertain terms in
the following controller design.

Assumption 3. .e sign of gi(�xi) is known, and there exist
some unknown positive constants ai and bi such that
0< bi ≤ |gi(�xi)|≤ ai. Without loss of generality, this paper
assumes that gi(�xi)> 0.

Assumption 4. .e reference trajectory yr(t) and its de-
rivatives about time _yr and €yr are in a bounded region Ωd,
and there exists a known constant A0, such that
|yr|≤A0 < kc1.

Assumption 5. .e unknown continuous functions
di(�xi(t − Ti(t))) satisfy the following inequality:

di �xi t − Ti(t)(  ≤
i

j�1
ρij xj t − Tj(t)  , (11)

and the time-varying state delays Ti(t) satisfy the in-
equalities 0≤Ti(t)≤Tmax and _Ti(t)≤ �Tmax < 1, where

ρij(xj(t − Tj(t))) are unknown positive smooth functions
and Tmax and �Tmax are unknown constants.

3. Adaptive DSC Design and Stability Analysis

3.1. Adaptive DSC Design. Similar to traditional back-
stepping, the backstepping-design procedure with n steps is
developed to construct the adaptive neural controller in this
part.

By using the backstepping technique, the proposed
adaptive DSC scheme contains n steps as follows.

Step 1. Define the first surface error z1 � x1 − yr; the time
derivative of z1 is defined as

_z1 � f1(x) + g1 �x1 x2 + δ1(ξ, x, t) + d1 �x1 t − T1(t)(   − _yr.

(12)

.e virtual control law α1 and the update law for _ϖ1 are
designed as

α1 � − c1z1 − μ1
z1

k
2
b1 − z

2
1

−
z1 ϖ1S

T
1 Ξ1( S1 Ξ1( 

2l1 k
2
b1 − z

2
1 

− κ1β1 z1( ,

(13)

_ϖ1 � ρ1 − σ11 ϖ1 − σ12 ϖh

1 +
z
2
1S

T
1 Ξ1( S1 Ξ1( 

2l1 k
2
b1 − z

2
1 

2
⎛⎜⎝ ⎞⎟⎠, (14)

where c1, μ1, kb1, κ1, ρ1, σ11, σ12, l1 are positive design pa-
rameters, ϖ1 is an estimate of ϖ1, ϖ1 � ϖ1 − b1 ϖ1,
ϖ1 � ‖W1‖

2, b1 is defined in Assumption 3. β1(z1) is defined
as

β1 z1(  �
z

h
1 k

2
b1 − z

2
1 

(1− h/2)
, if z1


≥ τ1,

ι11z1 + ι12z
3
1, if z1


< τ1,

⎧⎪⎨

⎪⎩
(15)

where 0< h � (h1/h2)< 1, h1 and h2 are the positive odd
integers, ι11 � τh− 1

1 (k2
b1 − τ21)

(1− (h/2)) − ι12τ21, ι12 � (1/2τ31)
(h − 1)τh

1[(k2
b1 − τ21)

(1− (h/2)) + τ21((k2
b1 − τ21)

− (1+(h/2))], and
τ1 < kb1 is a small positive constant.

Consider the BLF candidate Vz1
as

Vz1
�
1
2
log

k
2
b1

k
2
b1 − z

2
1

+
1

2b1ρ1
ϖ21. (16)

Obviously, Vz1
is positive definite and continuously

differentiable. Based on Assumptions 2 and 5 and Young’s
inequality, we obtain the time derivative of Vz1

as follows:
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_Vz1
�

z1

k
2
b1 − z

2
1

f1(x) + g1 �x1 x2 + δ1(ξ, x, t) + d1 �x1 t − T1(t)(   − _yr  −
1
ρ1

ϖ1 _ϖ1,

≤
z1

k
2
b1 − z

2
1

f1(x) + g1 �x1 x2 − _yr  +
z1




k
2
b1 − z

2
1

φ11 �x1
����

����  + φ12 �α− 1
1 r + D0(    + ρ11 x1 t − T1(t)( (   −

1
ρ1

ϖ1 _ϖ1,

≤
z1

k
2
b1 − z

2
1

f1(x) + g1 �x1 x2 − _yr  +
z
2
1

k
2
b1 − z

2
1 

2 φ11 �x1
����

����  + φ12 �α− 1
1 r + D0(   

2
+
1
4
,

+
z
2
1

2 k
2
b1 − z

2
1 

2 +
1
2
ρ211 x1 t − T1(t)( (  −

1
ρ1

ϖ1 _ϖ1,

≤
z1

k
2
b1 − z

2
1

f1(x) + g1 �x1 x2 +
z1

k
2
b1 − z

2
1
φ11 �x1

����
����  + φ12 �α− 1

1 r + D0(   
2

+
z1

2 k
2
b1 − z

2
1 

− _yr
⎡⎢⎣ ⎤⎥⎦,

+
1
4

+
1
2
ρ211 x1 t − T1(t)( (  −

1
ρ1

ϖ1 _ϖ1,

≤
z1

k
2
b1 − z

2
1

�F1 Z1(  + g1 �x1 x2  +
1
4

+
1
2
ρ211 x1 t − T1(t)( (  −

1
ρ1

ϖ1 _ϖ1,

�
z1

k
2
b1 − z

2
1

�F1 Z1(  + g1 �x1  z2 + y2 + α1(   +
1
4

+
1
2
ρ211 x1 t − T1(t)( (  −

1
ρ1

ϖ1 _ϖ1,

(17)

where

�F1 Z1(  � f1(x) +
z1

k
2
b1 − z

2
1
φ11 �x1

����
����  + φ12 �α− 1

1 r + D0(   
2

+
z1

2 k
2
b1 − z

2
1  − _yr

.

(18)

Note that �F1(Z1) is an unknown continuous function
and RBFNN can be used to approximate it. Hence, from (2),
the following equation holds:

�F1 Z1(  � W
T
1 S1 Z1(  + ε1 Z1( , (19)

where WT
1 S1(Z1) is an NN,

|ε1(Z1)|≤ ε1, Z1 � [�xn, z1, r, _yr]
T, and ε1 > 0 is any given.

By using Young’s inequality and Lemma 2, one has

z1

k
2
b1 − z

2
1

�F1 Z1(  �
z1

k
2
b1 − z

2
1

W
T
1 S1 Z1(  + ε1 Z1(  ,

≤
z1




k
2
b1 − z

2
1

W1
����

���� S1 Z1( 
����

���� +
ε1 Z1( z1

k
2
b1 − z

2
1

,

≤
z1




k
2
b1 − z

2
1

W1
����

���� S1 Ξ1( 
����

���� +
ε1 Z1( z1

k
2
b1 − z

2
1

,

≤
1
2l1

z
2
1

k
2
b1 − z

2
1 

2 W1|
����

����
2

S1 Ξ1( 
����

����
2

+
l1

2

+
ε1z1

k
2
b1 − z

2
1
,

�
1
2l1

z
2
1

k
2
b1 − z

2
1 

2ϖ1 S1 Ξ1( 
����

����
2

+
l1

2
+

ε1z1

k
2
b1 − z

2
1
,

(20)
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where Ξ1 � [x1, z1, r, _yr]
T. Substituting (13), (14), and (20) into (17), we can obtain

_Vz1
≤

g1 �x1 z1z2

k
2
b1 − z

2
1

+
g1 �x1 z1y2

k
2
b1 − z

2
1

−
c1g1 �x1 z

2
1

k
2
b1 − z

2
1

−
μ1g1 �x1 z

2
1

k
2
b1 − z

2
1 

2 −
g1 �x1 z

2
1 ϖ1 S1 Ξ1( 

����
����
2

2l1 k
2
b1 − z

2
1 

2 +
l1

2
,

−
κ1g1 �x1 z1β1 z1( 

k
2
b1 − z

2
1

+
z
2
1ϖ1 S1 Ξ1( 

����
����
2

2l1 k
2
b1 − z

2
1 

2 +
1
4

+
ε1z1

k
2
b1 − z

2
1

+
1
2
ρ211 x1 t − T1(t)( ( ,

−
1
ρ1

ϖ1 ρ1 − σ11 ϖ1 − σ12 ϖh

1 +
z
2
1S

T
1 Ξ1( S1 Ξ1( 

2l1 k
2
b1 − z

2
1 

2
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

≤
g1 �x1 z1z2

k
2
b1 − z

2
1

+
g1 �x1 z1y2

k
2
b1 − z

2
1

−
b1c1z

2
1

k
2
b1 − z

2
1

−
μ1b1z

2
1

k
2
b1 − z

2
1 

2 −
z
2
1ϖ1 S1 Ξ1( 

����
����
2

− z
2
1 ϖ1 S1 Ξ1( 

����
����
2

2l1 k
2
b1 − z

2
1 

2 ,

+
l1

2
−
κ1g1 �x1 z1β1 z1( 

k
2
b1 − z

2
1

+
z
2
1ϖ1 S1 Ξ1( 

����
����
2

2l1 k
2
b1 − z

2
1 

2 +
1
4

+
ε1z1

k
2
b1 − z

2
1

+
1
2
ρ211 x1 t − T1(t)( ( ,

+ σ11 ϖ1 ϖ1 + σ12 ϖ1 ϖh

1 −
z
2
1 ϖ1S

T
1 Ξ1( S1 Ξ1( 

2l1 k
2
b1 − z

2
1 

2 ,

≤
g1 �x1 z1z2

k
2
b1 − z

2
1

+
g1 �x1 z1y2

k
2
b1 − z

2
1

−
b1c1z

2
1

k
2
b1 − z

2
1

−
μ1b1z

2
1

k
2
b1 − z

2
1 

2 +
l1

2
−
κ1g1 �x1 z1β1 z1( 

k
2
b1 − z

2
1

+
1
4
,

+
ε1z1

k
2
b1 − z

2
1

+
1
2
ρ211 x1 t − T1(t)( (  + σ11 ϖ1 ϖ1 + σ12 ϖ1 ϖh

1.

(21)

By utilizing Young’s inequality, the following inequal-
ities can be obtained:

g1 �x1 z1y2

k
2
b1 − z

2
1

−
μ1b1z

2
1

2 k
2
b1 − z

2
1 

2 ≤
g
2
1 �x1 y

2
2

2μ1b1
≤

a
2
1y

2
2

2μ1b1
,

ε1z1

k
2
b1 − z

2
1

−
μ1b1z

2
1

2 k
2
b1 − z

2
1 

2 ≤
ε21

2μ1b1
.

(22)

.erefore, we have

_Vz1
≤

g1 �x1 z1z2

k
2
b1 − z

2
1

+
a
2
1y

2
2

2μ1b1
+

ε21
2μ1b1

−
b1c1z

2
1

k
2
b1 − z

2
1

+
l1

2

−
κ1g1 �x1 z1β1 z1( 

k
2
b1 − z

2
1

+
1
4
,

+
1
2
ρ211 x1 t − T1(t)( (  + σ11 ϖ1 ϖ1 + σ12 ϖ1 ϖh

1.

(23)

According to the inequality 2b1 ϖ1 ϖ1 ≤ϖ21 − ϖ21 and
Lemma 4, one as

_Vz1
≤

g1 �x1 z1z2

k
2
b1 − z

2
1

+
a
2
1y

2
2

2μ1b1
+

ε21
2μ1b1

−
b1c1z

2
1

k
2
b1 − z

2
1

+
l1

2

−
κ1g1 �x1 z1β1 z1( 

k
2
b1 − z

2
1

+
1
4
,

+
1
2
ρ211 x1 t − T1(t)( (  +

σ11
2b1
ϖ21 −

σ11
2b1

ϖ21

−
σ12ζ1

b
h
1

ϖ1+h
1 +

σ12ζ2
b

h
1

ϖ1+h
1 ,

(24)

where ζ1 and ζ2 are defined in Lemma 4.
To deal with the time delay in equation (24), define the

Lyapunov-Krasovskii functional as follows:

VU1
�

e
− c t− Tmax( )

2 1 − �Tmax 


t

t− T1(t)
e

csρ211 x1(s)( ds, (25)

where c> 0 is a positive constant. Using Assumption 5, we
obtain that the derivative of VU1

is
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_VU1
�

e
− c t− Tmax( )

2 1 − �Tmax 
e

ctρ211 x1(t)(  − e
c t− T1(t)( )ρ211

· x1 t − T1(t)( (  1 − _T1(t)  − cVU1
,

≤
e

cTmax

2 1 − �Tmax 
ρ211 x1(t)(  −

1
2
ρ211 x1 t − T1(t)( (  − cVU1

.

(26)

From equations (24) and (26), we have

_Vz1
+ _VU1
≤

g1 �x1 z1z2

k
2
b1 − z

2
1

+
a
2
1y

2
2

2μ1b1
+

ε21
2μ1b1

−
b1c1z

2
1

k
2
b1 − z

2
1

+
l1

2

−
κ1g1 �x1 z1β1 z1( 

k
2
b1 − z

2
1

+
1
4
,

+
σ11
2b1
ϖ21 −

σ11
2b1

ϖ21 −
σ12ζ1

b
h
1

ϖ1+h

1 +
σ12ζ2

b
h
1

ϖ1+h
1

+Φ1 − cVU1
,

(27)

where Φ1 � (ecTmax /2(1 − �Tmax))ρ211(x1(t)).
To move on, introduce the coordinate transformation

zi � xi − wi,

yi � wi − αi− 1,
(28)

where zi, αi− 1, and yi denote the tracking error, the virtual
control input, and the boundary layer error for
i � 2, 3, . . . , n, respectively. wi is the output of the following
first-order filter:

_wi � − τi1yi − τi2y
h
i , (29)

where τi1 and τi2 are the positive design constants and h is
defined in (15).

Remark 3. From (29), it can be seen that the proposed filter
involves both the linear and fractional terms. In particular,
when τi1 � 0 or τi2 � 0, filter (29) degrades into the frac-
tional filter used in [58] and the linear filter as widely used in
the literature [21–23], respectively. It is the key to ensure the
fast finite-time stability of the closed-loop system, which will
be detailed in the following analysis.

Remark 4. As mentioned in [34], by designing ι11 and ι12
properly, both the virtual control input α1 and its derivative
_α1 are ensured to be inherently continuous in the set Ωxi

. It
means that the virtual control input α1 defined in (13) is C1

continuous in the setΩxi
. From (13), it is not hard to see that

α1 and its derivative _α1 are the functions of the variables
z1, ϖ1, yr

.
and z1, z2,

_ϖ1, y2, _yr, €yr, respectively. Combining
the continuity of _α1 and (28) and (29), it can be seen that
there exists a continuous function λ2(z1, z2,

_ϖ1, y2, _yr, €yr)

which satisfies

_y2 ≤ − τ21y2 − τ22y
h
2 + λ2 z1, z2,

_ϖ1, y2, _yr, €yr . (30)

Step 2. (i � 2, 3, . . . , n − 1) Define the ith surface error
zi � xi − wi; the time derivative of zi is defined as

_zi � fi(x) + gi �xi xi+1 + δi(ξ, x, t) + di �xi t − Ti(t)(   − _wi,

� fi(x) + gi �xi  zi+1 + yi+1 + αi(  + δi(ξ, x, t)

+ di �xi t − Ti(t)(   − _wi.

(31)

.e virtual control law αi and the update law _ϖi are
designed as

αi � − cizi − μi

zi

k
2
bi − z

2
i

−
zi

ϖiS
T
i Ξi( Si Ξi( 

2li k
2
bi − z

2
i 

− κiβi zi( ,

(32)

_ϖi � ρi − σi1 ϖi − σi2 ϖh

i +
z
2
i S

T
i Ξi( Si Ξi( 

2li k
2
bi − z

2
i 

2
⎛⎜⎝ ⎞⎟⎠,

(33)

where ci, μi, kbi, κi, ρi, σi1, σi2, li are positive design parame-
ters, ϖi is an estimate of ϖi, ϖi � ϖi − bi

ϖi,ϖi � ‖Wi‖
2, βi(zi)

is defined as

βi zi(  �
z

h
i k

2
bi − z

2
i 

(1− h/2)
, if zi


≥ τi,

ιi1zi + ιi2z
3
i , if zi


< τi,

⎧⎪⎨

⎪⎩
(34)

where h is defined in (15), ιi1 � τh− 1
i (k2

bi − τ2i )1− h/2 − ιi2τ2i ,

ιi2 � (1/2τ3i )(h − 1)τh
i [(k2

bi − τ2i )(1− h/2) +τ2i ((k2
bi − τ2i )− (1+h/2))],

and τi<kbi is a small positive constant.
Consider the BLF candidate Vzi

as

Vzi
�
1
2
log

k
2
bi

k
2
bi − z

2
i

+
1

2biρi

ϖ2i , (35)

where Vzi
is also positive definite and continuously differ-

entiable in the set |zi|< kbi. Similar to (17), the time de-
rivative of Vzi

is

_Vzi
≤

zi

k
2
bi − z

2
i

�Fi Zi(  + gi �xi  zi+1 + yi+1 + αi(  

+
1
4

−
1
ρi

ϖi
_̂ϖi,

+
1
2



i

j�1
ρ2ij xj t − Tj(t)   −

gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

,

(36)

where

�Fi Zi(  � fi(x) +
zi

k
2
bi − z

2
i

φi1 �xi

����
����  + φi2 �α− 1

i r + D0(   
2

− _wi +
gi− 1 �xi− 1  k

2
bi − z

2
i zi− 1

k
2
b(i− 1) − z

2
i− 1

+
izi

2 k
2
bi − z

2
i 

.

(37)
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Note that �Fi(Zi) is an unknown continuous function
and RBFNN can be used to approximate it. Hence, from (2),
the following equation holds:

�Fi Zi(  � W
T
i Si Zi(  + εi Zi( , (38)

where WT
i Si(Zi) is an NN, |εi(Zi)|≤ εi, Zi �

[�xn, zi− 1, zi, r, wi− 1, _wi]
T, and εi > 0 is any given.

By using Young’s inequality and Lemma 2, one has

zi

k
2
bi − z

2
i

�Fi Zi(  �
zi

k
2
bi − z

2
i

W
T
i Si Zi(  + εi Zi(  ,

≤
zi




k
2
bi − z

2
i

Wi

����
���� Si Zi( 
����

���� +
εi Zi( zi

k
2
bi − z

2
i

,

≤
zi




k
2
bi − z

2
i

Wi

����
���� Si Ξi( 
����

���� +
εi Zi( zi

k
2
bi − z

2
i

,

≤
1
2li

z
2
i

k
2
bi − z

2
i 

2 Wi

����
����
2

Si Ξi( 
����

����
2

+
li

2
+
εi Zi( zi

k
2
bi − z

2
i

.

(39)

Substituting (32), (33), and (39) into (36), we can obtain

_Vzi
≤

gi �xi zizi+1

k
2
bi − z

2
i

+
gi �xi ziyi+1

k
2
bi − z

2
i

−
cigi �xi z

2
i

k
2
bi − z

2
i

−
μigi �xi z

2
i

k
2
bi − z

2
i 

2 −
gi �xi z

2
i
ϖi Si Ξi( 

����
����
2

2li k
2
bi − z

2
i 

2 +
li

2
+
1
4
,

−
κigi �xi ziβi zi( 

k
2
bi − z

2
i

+
z
2
iϖi Si Ξi( 

����
����
2

2li k
2
bi − z

2
i 

2 +
εi Zi( zi

k
2
bi − z

2
i

+
1
2



i

j�1
ρ2ij xj t − Tj(t)  ,

−
gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

−
1
ρi

ϖi ρi − σi1 ϖi − σi2 ϖh

i +
z
2
i S

T
i Ξi( Si Ξi( 

2li k
2
bi − z

2
i 

2
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

≤
gi �xi zizi+1

k
2
bi − z

2
i

+
gi �xi ziyi+1

k
2
bi − z

2
i

−
biciz

2
i

k
2
bi − z

2
i

−
μibiz

2
i

k
2
bi − z

2
i 

2 −
z
2
iϖi Si Ξi( 

����
����
2

− z
2
i
ϖi Si Ξi( 

����
����
2

2li k
2
bi − z

2
i 

2 ,

+
li

2
+
1
4

−
κigi �xi ziβi zi( 

k
2
bi − z

2
i

+
z
2
iϖi Si Ξi( 

����
����
2

2li k
2
bi − z

2
i 

2 +
εi Zi( zi

k
2
bi − z

2
i

+
1
2



i

j�1
ρ2ij xj t − Tj(t)  ,

+ σi1 ϖi
ϖi + σi2 ϖi

ϖh

i −
z
2
i
ϖiS

T
i Ξi( Si Ξi( 

2li k
2
bi − z

2
i 

2
⎞⎟⎠ −

gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

,

≤
gi �xi zizi+1

k
2
bi − z

2
i

+
gi �xi ziyi+1

k
2
bi − z

2
i

−
biciz

2
i

k
2
bi − z

2
i

−
μibiz

2
i

k
2
bi − z

2
i 

2 +
li
2

+
1
4

−
κigi �xi ziβi zi( 

k
2
bi − z

2
i

+
εi Zi( zi

k
2
bi − z

2
i

,

+
1
2



i

j�1
ρ2ij xj t − Tj(t)   + σi1 ϖi

ϖi + σi2 ϖi
ϖh

i −
gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

.

(40)
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By utilizing Young’s inequality, the following inequal-
ities can be obtained:

gi �xi ziyi+1

k
2
bi − z

2
i

−
μibiz

2
i

2 k
2
bi − z

2
i 

2 ≤
g
2
i �xi y

2
i+1

2μibi

≤
a
2
i y

2
i+1

2μibi

,

εi Zi( zi

k
2
bi − z

2
i

−
μibiz

2
i

2 k
2
bi − z

2
i 

2 ≤
ε2i Zi( 

2μibi

≤
ε2i

2μibi

.

(41)

.erefore, we have

_Vzi
≤

gi �xi zizi+1

k
2
bi − z

2
i

+
a
2
i y

2
i+1

2μibi

+
ε2i

2μibi

−
biciz

2
i

k
2
bi − z

2
i

−
κigi �xi ziβi zi( 

k
2
bi − z

2
i

,

+
1
2



i

j�1
ρ2ij xj t − Tj(t)   +

li

2
+
1
4

+ σi1 ϖi
ϖi + σi2 ϖi

ϖh

i

−
gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

.

(42)

According to the inequality 2bi
ϖi

ϖi ≤ϖ2i − ϖ2i and
Lemma 4, one has

_Vzi
≤

gi �xi zizi+1

k
2
bi − z

2
i

+
a
2
i y

2
i+1

2μibi

+
ε2i

2μibi

−
biciz

2
i

k
2
bi − z

2
i

−
κigi �xi ziβ zi( 

k
2
bi − z

2
i

,

+
1
2



i

j�1
ρ2ij xj t − Tj(t)   +

li

2
+
1
4

+
σi1

2bi

ϖ2i −
σi1

2bi

ϖ2i

−
σi2ζ1

b
h
i

ϖ1+h
i +

σi2ζ2
b

h
i

ϖ1+h
i −

gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

,

(43)

where ζ1 and ζ2 are defined in Lemma 4.
To handle the time delay, define the Lyapunov-Kra-

sovskii functional as follows:

VUi
�

e
− c t− Tmax( )

2 1 − �Tmax 


i

j�1


t

t− Tj(t)
e

csρ2ij xj(s) ds, (44)

where c> 0 is a positive constant. By using Assumption 5, we
obtain that the derivative of VUi is

_VUi
�

e
− c t− Tmax( )

2 1 − �Tmax 


i

j�1
e

ctρ2ij xj(t)  − e
c t− Tj(t)( ρ2ij

· xj t − Tj(t)   1 − _Tj(t)  − cVUi
,

≤

i

j�1

e
cTmax

2 1 − �Tmax 
ρ2ij xj(t)  −

1
2



i

j�1
ρ2ij xj t − Tj(t)   − cVUi

.

(45)

From in equations (43) and (45), we have

_Vzi
+ _VUi
≤

gi �xi zizi+1

k
2
bi − z

2
i

+
a
2
i y

2
i+1

2μibi

+
ε2i

2μibi

−
biciz

2
i

k
2
bi − z

2
i

−
κigi �xi ziβi zi( 

k
2
bi − z

2
i

+
li

2
+
1
4

+
σi1

2bi

ϖ2i ,

−
σi1

2bi

ϖ2i −
σi2ζ1

b
h
i

ϖ1+h

i +
σi2ζ2

b
h
i

ϖ1+h
i

−
gi− 1 �xi− 1 zi− 1zi

k
2
b(i− 1) − z

2
i− 1

+Φi − cVUi
,

(46)

where Φi � 
i
j�1(ecTmax /(2(1 − �Tmax)))ρ2ij(xj(t)).

Similar to the analysis in Remark 4, there exists a
continuous function λi+1(�zi+1,

�ϖi, y2, y3, \\ . . . , yi+1, _yr, €yr)

which satisfies

_yi+1 ≤ − τ(i+1)1yi+1 − τ(i+1)2y
h
i+1 + λi+1

· �zi+1,
�ϖi, y2, y3, . . . , yi+1, _yr, €yr .

(47)

Step 3. Define the nth surface error zn � xn − wn; the time
derivative of zn is defined as

_zn � fn(x) + gn �xn u + δn(ξ, x, t) + dn �xn t − Tn(t)(   − _wn.

(48)

.e actual control law u and the update law _ϖn are
designed as

u � − cnzn − μn

zn

2 k
2
bn − z

2
n 

−
zn

ϖnS
T
n Ξn( Sn Ξn( 

2ln k
2
bn − z

2
n 

− κnβn zn( ,

(49)

_ϖn � ρn − σn1 ϖn − σn2 ϖh

n +
z
2
nS

T
n Ξn( Sn Ξn( 

2ln k
2
bn − z

2
n 

2
⎛⎜⎝ ⎞⎟⎠, (50)

where cn, μn, kbn, κn, ρn, σn1, σn2, ln are positive design pa-
rameters, ϖn is an estimate of ϖn, ϖn � ϖn − bn

ϖn, ϖn �

‖Wn‖2, βn(zn) is defined as

βn zn(  �
z

h
n k

2
bn − z

2
n 

(1− h/2)
, if zn


≥ τn,

ιn1zn + ιn2z
3
n, if zn


< τn,

⎧⎪⎨

⎪⎩
(51)
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where h is defined in (15), ιn1 �τh− 1
n (k2

bn − τ2n)1− h/2 − ιn2τ2n, ιn2 �

(1/2τ3n)(h − 1)τh
n[(k2

bn − τ2n)1− h/2+τ2n((k2
bn − τ2n)− (1+h/2))], and

τn<kbn is a small positive constant.
Consider the BLF candidate Vzn

as

Vzn
�
1
2
log

k
2
bn

k
2
bn − z

2
n

+
1

2bnρn

ϖ2n. (52)

Similar to (17) and (36), we can obtain the time de-
rivative of Vzn

as follows:

_Vzn
≤

zn

k
2
bn − z

2
n

�Fn Zn(  + gn �xn u  +
1
4

+
1
2



n

j�1
ρ2nj

· xj t − Tj(t)   −
1
ρn

ϖn
_ϖn −

gn− 1 �xn− 1 zn− 1zn

k
2
b(n− 1) − z

2
n− 1

,

(53)

where

�Fn Zn(  � fn(x) +
zn

k
2
bn − z

2
n

φn1 �xn

����
����  + φn2 �α− 1

n r + D0(   
2

− _wn,

+
gn− 1 �xn− 1  k

2
bn − z

2
n zn− 1

k
2
b(n− 1) − z

2
n− 1

+
nzn

2 k
2
bn − z

2
n 

.

(54)

Note that �Fn(Zn) is an unknown continuous function
and RBFNN can be used to approximate it. Hence, from (2),
the following equation holds:

�Fn Zn(  � W
T
n Sn Zn(  + εn Zn( , (55)

where WT
n Sn(Zn) is an NN, |εn(Zn)|≤ εn, Zn �

[�xn, zn− 1, zn, r, wn− 1, _wn]T, and εn > 0 is any given.
By using Young’s inequality and Lemma 2, one has

zn

k
2
bn − z

2
n

�Fn Zn(  �
zn

k
2
bn − z

2
n

W
T
n Sn Zn(  + εn Zn(  ,

≤
zn




k
2
bn − z

2
n

Wn

����
���� Sn Zn( 
����

���� +
εn Zn( zn

k
2
bn − z

2
n

,

≤
zn




k
2
bn − z

2
n

Wn

����
���� Sn Ξn( 
����

���� +
εn Zn( zn

k
2
bn − z

2
n

,

≤
1
2ln

z
2
n

k
2
bn − z

2
n 

2 Wn

����
����
2

Sn Ξn( 
����

����
2

+
ln

2

+
εn Zn( zn

k
2
bn − z

2
n

,

�
1
2ln

z
2
n

k
2
bn − z

2
n 

2ϖn Sn Ξn( 
����

����
2

+
ln

2
+
εn Zn( zn

k
2
bn − z

2
n

,

(56)

where Ξn � Zn � [�xn, zn− 1, zn, r, wn− 1, _wn]T.
Substituting (49), (50), and (56) into (53), we can obtain

_Vzn
≤ −

bncnz
2
n

k
2
bn − z

2
n

−
μnbnz

2
n

2 k
2
bn − z

2
n 

2 −
κngn �xn znβn zn( 

k
2
bn − z

2
n

+
ln

2
+
1
4

+
εn Zn( zn

k
2
bn − z

2
n

,

+
1
2



n

j�1
ρ2nj xj t − Tj(t)   + σn1 ϖn

ϖn + σn2 ϖn
ϖh

n

−
gn− 1 �xn− 1 zn− 1zn

k
2
b(n− 1) − z

2
n− 1

.

(57)

By utilizing Young’s inequality, the following inequality
can be obtained:

εn Zn( zn

k
2
bn − z

2
n

−
μnbnz

2
n

2 k
2
bn − z

2
n 

2 ≤
ε2n Zn( 

2μnbn

≤
ε2n

2μnbn

. (58)

.erefore, we have

_Vzn
≤ −

bncnz
2
n

k
2
bn − z

2
n

+
ε2n

2μnbn

−
κngn �xn znβn zn( 

k
2
bn − z

2
n

+
ln

2
+
1
4

+
1
2



n

j�1
ρ2nj xj t − Tj(t)  ,

+ σn1 ϖn
ϖn + σn2 ϖn

ϖh

n −
gn− 1 �xn− 1 zn− 1zn

k
2
b(n− 1) − z

2
n− 1

.

(59)

According to the inequality 2bn
ϖn

ϖn ≤ϖ2n − ϖ2n and
Lemma 4, one has

_Vzn
≤ −

bncnz
2
n

k
2
bn − z

2
n

+
ε2n

2μnbn

−
κngn �xn znβn zn( 

k
2
bn − z

2
n

+
ln

2
+
1
4

+
1
2



n

j�1
ρ2nj xj t − Tj(t)  ,

+
σn1

2bn

ϖ2n −
σn1

2bn

ϖ2n −
σn2ζ1

b
h
n

ϖ1+h
n +

σn2ζ2
b

h
n

ϖ1+h
n

−
gn− 1 �xn− 1 zn− 1zn

k
2
b(n− 1) − z

2
n− 1

,

(60)

where ζ1 and ζ2 are defined in Lemma 4.
To handle the time delay, define the Lyapunov-Kra-

sovskii functional as follows:

VUn
�

e
− c t− Tmax( )

2 1 − �Tmax 


n

j�1


t

t− Tj(t)
e

csρ2nj xj(s) ds, (61)
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where c> 0 is a positive constant. By using Assumption 5, we
obtain that the derivative of VUn is

_VUn
�

e
− c t− Tmax( )

2 1 − �Tmax 


n

j�1
e

ctρ2nj xj(t)  − e
c t− Tj(t)( ρ2nj

· xj t − Tj(t)   1 − _Tj(t)  − cVUn
,

≤
n

j�1

e
cTmax

2 1 − �Tmax 
ρ2nj xj(t)  −

1
2



n

j�1
ρ2nj xj t − Tj(t)   − cVUn

.

(62)

From equations (60) and (62), we have

_Vzn
+ _VUn
≤ −

bncnz
2
n

k
2
bn − z

2
n

+
ε2n

2μnbn

−
κngn �xn znβn zn( 

k
2
bn − z

2
n

+
ln

2
+
1
4

+
σn1

2bn

ϖ2n −
σn1

2bn

ϖ2n,

−
σn2ζ1

b
h
n

ϖ1+h

n +
σn2ζ2

b
h
n

ϖ1+h
n −

gn− 1 �xn− 1 zn− 1zn

k
2
b(n− 1) − z

2
n− 1

+Φn − cVUn
,

(63)

where Φn � 
n
j�1(ecTmax /(2(1 − �Tmax)))ρ2nj(xj(t)).

3.2. Stability Analysis. In this subsection, we present the
stability analysis of the resulting closed-loop system. .e
main results are presented by the following theorem.

Theorem 1 Consider the nonlinear system (1) with As-
sumptions 1–5. Let the actual control input and the NN
adaptive law be designed as (49) and (50), respectively. If the
initial conditions satisfy V(0)≤Δ, |zi(0)|≤ kbi, in which
Δ> kbi is any positive constant for i � 1, 2, . . . , n and kbi are
properly chosen, such that kc1 > kb1 + A0 and kci > �wi + kbi

with �wi � sup wi  for i � 2, 3, . . . , n, one has that all internal
signals zi, ϖi and yi+1 in the closed-loop system are semi-
globally uniformly ultimately bounded and the tracking error
will converge into the arbitrarily small regions in a finite time.
Meanwhile, each state xi will remain in the setΩxi

; that is, the
full-state constraints are never violated.

Proof. Construct the overall Lyapunov function candidate

V � 
n

i�1
Vzi

+ 
n

i�1
VUi

+ 
n− 1

i�1
Vyi

, (64)

where Vyi
� (a2

i /2bi)y
2
i+1 and Vzi

, VUi
are defined in (35) and

(44), respectively.
From (28), (29), and (47), the derivative of 

n− 1
i�1 Vyi

is



n− 1

i�1

_Vyi
≤ − 

n− 1

i�1

a
2
i

bi

τ(i+1)1y
2
i+1 + τ(i+1)2y

1+h
i+1 

+ 
n− 1

i�1

a
2
i

bi

yi+1λi+1 �zi+1,
�ϖi, y2, y3, . . . , yi+1, _yr, €yr .

(65)

Define a compact set as
Ωn � (�zn, �ϖn, y2, y3, . . . , yn): V≤Δ  withΔ being a positive
constant. If V≤Δ, together with Assumption 4 and (65), it
can be obtained that there exists a positive constant
Λi+1(i � 1, 2, . . . , n − 1), such that λi+1(·)≤Λi+1 on the
compact set Ωn ×Ωd. .en, applying Young’s inequality to
(65) yields



n− 1

i�1

_Vyi
≤ − 

n− 1

i�1

a
2
i

bi

τ(i+1)1 −
1

2χi+1
 y

2
i+1 − 

n− 1

i�1

a
2
i

bi

τ(i+1)2y
1+h
i+1

+ 

n− 1

i�1

a
2
i

2bi

Λ2i+1χi+1,

(66)

where χi+1 are positive constants.
According to the above analysis, we can obtain the

derivative of the overall Lyapunov function candidate V as

_V≤ − 
n

i�1

biciz
2
i

k
2
bi − z

2
i

− 
n

i�1

κigi �xi ziβi zi( 

k
2
bi − z

2
i

− 
n

i�1

σi1

2bi

ϖ2i

− 
n

i�1

σi2ζ1
b

h
i

ϖ1+h

i − 
n− 1

i�1
τ̂(i+1)1y

2
i+1,

− 
n− 1

i�1

a
2
i

bi

τ(i+1)2y
1+h
i+1 − c 

n

i�1
VUi

+ d0,

(67)

where

τ(i+1)1 �
a
2
i

bi

τ(i+1)1 −
1
2μi

−
1

2χi+1
 ,

d0 � 

n

i�1

ε2i
2μibi

+
li

2
+
1
4

+
σi1

2bi

ϖ2i +
σi2ζ2

b
h
i

ϖ1+h
i +Φi

⎛⎝ ⎞⎠

+ 
n− 1

i�1

a
2
i

2bi

Λ2i+1χi+1 .

(68)

Here, we choose τ(i+1)1 > (1/2μi) + (1/2χi+1), such that
τ(i+1)1 > 0.

From the definition of βi(zi)(i � 1, 2, . . . , n) in (15), (34),
and (51), the following two cases should be considered.

Case 1: When |zi|< τi, i � 1, 2, . . . , n, substituting
βi(zi) � ιi1zi + ιi2z3

i into (67) gives
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_V≤ − 
n

i�1
ci + κiιi1( 

biz
2
i

k
2
bi − z

2
i

− 
n

i�1

κibiιi2z
4
i

k
2
bi − z

2
i

− 
n

i�1

σi1

2bi

ϖ2i

− 
n

i�1

σi2ζ1
b

h
i

ϖ1+h
i ,

− 
n− 1

i�1
τ(i+1)1y

2
i+1 − 

n− 1

i�1

a
2
i

bi

τ(i+1)2y
1+h
i+1 − c

n

i�1
VUi + d0,

≤ − 
n

i�1
ci + κiιi1( 

biz
2
i

k
2
bi − z

2
i

− 
n

i�1

σi1

2bi

ϖ2i

− 

n− 1

i�1
τ(i+1)1y

2
i+1 − c

n

i�1
VUi

+ d0.

(69)

Noting (69), we can have

_V≤ − υV + d0, (70)

with υ�min 2b1(c1 +κ1ι11), . . . ,2bn(cn +κnιn1),ρ1σ11,

. . . ,ρnσn1,c,(2b1τ(2,1)/a2
1), . . . ,(2bn− 1τ(n,1)/a2

n− 1)}, which
further implies that all the internal signals are uni-
formly ultimately bounded.
Case 2: When ‖zi‖≥ τi, i � 1, 2, . . . , n, substituting
βi(zi) � zh

i (k2
bi − z2

i )(1− h/2) into (67) gives

_V≤ − 
n

i�1

biciz
2
i

k
2
bi − z

2
i

− 
n

i�1

κigi �xi z
1+h
i

k
2
bi − z

2
i 

(1+h/2)
− 

n

i�1

σi1

2bi

ϖ2i − 
n

i�1

σi2ζ1
b

h
i

ϖ1+h
i − 

n− 1

i�1
τ(i+1)1y

2
i+1,

− 

n− 1

i�1

a
2
i

bi

τ(i+1)2y
1+h
i+1 −

c

2


n

i�1
VUi −

c

2


n

i�1
VUi

⎡⎣ ⎤⎦
(1+h/2)

+
c

2
1 − h

2
1 + h

2
 

(1+h/1− h)

+ d0,

≤ − 
n

i�1

biciz
2
i

k
2
bi − z

2
i

− 
n

i�1

κigi �xi z
1+h
i

k
2
bi − z

2
i 

(1+h/2)
− 

n

i�1

σi1

2bi

ϖ2i − 
n

i�1

σi2ζ1
b

h
i

ϖ1+h

i − 
n− 1

i�1
τ(i+1)1y

2
i+1,

− 
n− 1

i�1

a
2
i

bi

τ(i+1)2y
1+h
i+1 −

c

2


n

i�1
VUi −

c

2n
(1− h/2)



n

i�1
VUi

⎡⎣ ⎤⎦
(1+h/2)

+
c

2
1 − h

2
1 + h

2
 

(1+h/1− h)

+ d0,

≤ − υ1V − υ2V
(1+h/2)

+ d1,

(71)

where

υ1 � min 2b1c1, . . . , 2bncn, σ11ρ1, . . . , σn1ρn,
c

2
,
2b1τ21

a
2
1

, . . . ,
2bn− 1τn1

a
2
n− 1

 ,

υ2 � min

b1c12
(1+h/2)

, . . . , bncn2
(1+h/2)

,
σ12ζ1

b
h
1

2b1ρ1
σ11

 

(1+h/2)

, . . . ,
σn2ζ1

b
h
n

2bnρn

σn1
 

(1+h/2)

,

c

2n
(1− h/2)

,
a
2
1τ22
b1

2b1

a2
1

 

(1+h/2)

, . . . ,
a
2
n− 1τn2

bn− 1

2bn− 1

a2
n− 1

 

(1+h/2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

d1 � d0 +
c

2
1 − h

2
1 + h

2
 

(1+h/1− h)

.

(72)
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By virtue of [[59], ..5.2], there always exists a finite-
time t∗, such that V≥ (2d1/υ2)

(1+h/2) for all t ∈ [0, t∗]. .us,
for all t ∈ [0, t∗], one has _V≤ − υ1V − (υ2/2)V(1+h/2), and it
then comes from Lemma 3 that the fast finite-time stability
of the closed-loop system can be ensured with a finite settling
time T∗ ≤ (2/(υ1(1 − h)))log((2υ1V(1− h/2)(0) + υ2)/υ2).
Furthermore, it is readily seen that t∗ ≤T∗. .erefore,
∀t>T∗, V≤ (2d1/υ2)

(2/1+h). .en, the internal error signals
zi, ϖi, and yi+1 will converge into the following compact sets:

zi


≤ kbi 1 − e

− 2 2d1/υ2( )
(2/1+h)

 
(1/2)

, i � 1, . . . , n,

ϖi


≤ 2ρibi( 

(1/2) 2d1

υ2
 

(1/1+h)

, i � 1, . . . , n,

yi+1


≤
2bi

a2
i

 

(1/2) 2d1

υ2
 

(1/1+h)

, i � 1, . . . , n − 1,

(73)

in a finite-time T∗ with T∗ ≤ (2/(υ1(1 − h)))log((2υ1
V(1− h/2)(0) + υ2)/υ2). It is readily seen that the regions (73)
can be made as small as possible by adjusting (2d/υ2) with
proper control parameters.

.en, we will prove that the full-state constraints are
never violated. According to [[60], Lemma 1], we can
conclude from (70) and (71) that |zi|≤ kbi, i � 1, . . . , n, for all
t≥ 0. Noting that |yr|≤A0 from Assumption 4 and
z1 � x1 − yr, we have that |x1|≤ kb1 + A0. To get x2 ≤ kc2, we
need to show the boundedness of w2. From (73), one has that
y2 is bounded and b1 ϖ1 � ϖ1 − ϖ1 is also bounded. With the
proper choices of ι1 and ι2, α1 is a continuous function of
ϖ1, x1, and _yr. .en, there exists an upper bound �w2 , such
that w2 � |y2 + α1|≤ �w2. From z2 � x2 − w2 and z2 < kb2, we
get that |x2|≤ |z2| + |w2|≤ kc2. Similarly and iteratively, we
have that αi− 1and yi for i � 3, . . . , n are bounded, which
together with zi < kbi ensures that |xi|≤ kci, i � 3, . . . , n.
.erefore, each state xi, i � 3, . . . , n will remain in the set
Ωxi

. .e proof is completed. □

4. Simulation Results

Example 1. Consider the following nonlinear system:

_ξ � − ξ + 0.5x
2
1 sin x1t( ,

_x1 � x2e
− 0.5x1 + 1 + x

2
1 x2 + δ1 ξ, x1, x2, t(  + 2x

2
1 t − T1(t)( ,

_x2 � x1x
2
2 + 2.5u(t) + δ2 ξ, x1, x2, t(  + 0.2x

2
2 t − T2(t)( ,

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(74)

where δ1(ξ, x1, x2, t) � 0.2ξx1 sin(x2t), δ2(ξ, x1, x2, t) � 0.1ξ
cos(0.5x2t), T1(t) � 0.2(4 + sin t), T2 � 4 + 0.5 sin t, and the
dynamic signal _r � − r + 2.5x4

1 + 0.625. .e desired tracking
trajectory yr � sin(0.5t). u is the control input. .e design
parameters of the controller are taken as kb1 � 0.4,kb2 � 2, c1 �

10, c2 � 15,τ1 � τ2 � 0.01,σ11 � σ12 � 0.01,ρ1 � ρ2 � 50, l1 � l2 �

1, T � 0.001,μ1 � μ2 � 3,κ1 � κ2 � 0.5,h � 0.6. .ere are 68

nodes with the center placed on [− 2,2] × [− 2,2] × [− 2,2] ×

[− 2,2] and the width of Gaussian functions is η1 � 1 in the
first RBF vector. .ere are 85 nodes with the center placed on
[− 2,2] × [− 2,2] × [− 2,2] × [− 2,2] × [− 2,2] and the width of
Gaussian functions is η2 � 1 in the second RBF vector. With
the initial conditions, x1(0) � 0.2,x2(0) � 0.1,w1(0) � 0.1,
ϖ1 � 2, ϖ2 � 0.5, r(0) � 0.1. Simulation results are shown in
Figures 1–6. .e profiles of the system output y and the
desired signal yr are shown in Figure 1, which indicates that
the output y follows the specified desire trajectory yr. From
Figure 2, we know that all state constraints are not violated.

Example 2. A Spring-Mass-Damper system is provided in
this part. .e system model is as follows:

_p � V,

M _V � − KP − CV + F,

⎧⎨

⎩ (75)

where P, V and F are the position, the velocity, and the force
applied to the object, respectively. Let x1 � P, x2 � V, u � F.
Assuming that the controlled system (75) gives unmodeled
dynamics and time delay, let δ1(ξ, x1, x2, t) � 0.2ξx1
sin(x2t), δ2(ξ, x1, x2, t) � 0.1ξ cos(0.5x2t), T1(t) � 0.2(4 +

sin t), T2 � 4 + 0.5 sin t, and the dynamic signal _r � − r+

2.5x4
1 + 0.625. .en, system (75) can be rewritten as

_ξ � − ξ + 0.5x
2
1 sin x1t( ,

_x1 � x2 + δ1 ξ, x1, x2, t(  + 2x
2
1 t − T1(t)( ,

_x2 � −
K

M
x1 −

C

M
x2 +

1
M

u(t) + δ2 ξ, x1, x2, t(  + 0.2x
2
2 t − T2(t)( ,

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

.e desired tracking trajectory yr � sin(0.5t) + 0.5 sin(t).
.e design parameters of the controller are taken as kb1 �

0.4,kb2 � 2, c1 � 10, c2 � 15,τ1 � τ2 � 0.01,σ11 � σ12 � 0.01, ρ1 �

ρ2 � 50, l1 � l2 � 1,T � 0.001,μ1 � μ2 � 3,κ1 � κ2 � 0.5, h � 0.6.
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Figure 1: Output y and desired trajectory yr.
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Figure 3: Profiles of control inputs u and α1.
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Figure 4: Profiles of the tracking errors z1 and z2.
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.ere are 68 nodes with the center placed on [− 2,2] × [− 2,2] ×

[− 2,2] × [− 2,2] and the width of Gaussian functions is η1 � 1
in the first RBF vector. .ere are 85 nodes with the center
placed on [− 2,2] × [− 2,2] × [− 2,2] × [− 2,2] × [− 2,2] and the
width of Gaussian functions is η2 � 1 in the second RBF vector.

With the initial conditions, x1(0) � 0.2,x2(0) � 0.1,w1(0) �

0.1, ϖ1 � 2, ϖ2 � 0.5, r(0) � 0.1. Simulation results are shown in
Figures 7–12.

5. Conclusions

.e problem of finite-time tracking control for a class of
uncertain nonstrict-feedback state-delayed nonlinear
systems with full-state constraints and unmodeled dy-
namics has been proposed in this paper. Unmodeled
dynamics is dealt with by introducing a dynamical signal
and the uncertain terms produced by time-varying state
delays are compensated for by constructing appropriate
Lyapunov-Krasovskii functionals. By utilizing a smooth
switch between the fractional and cubic form state
feedback, novel C1 smooth finite-time NN control laws
have been provided for nonlinear systems with full-state
constraints. Based on a modified DSC method and
adaptive NN control, together with the BLFs, the fast
finite-time control performance of the closed-loop
nonlinear systems can be ensured, while the full-state
constraints are never violated. .eoretical proofs and
experimental simulation show that all the internal signals
in the closed-loop system are uniformly bounded, and
the tracking error signals can converge into compact sets
in a finite time with sufficient accuracy, respectively. To
extend this control scheme to solve the finite-time
tracking control problem for some more complicated
systems, such as MIMO nonlinear systems, switched
nonlinear systems are also the direction of our future
efforts.
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