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A new four-dimensional hyperchaotic financial model is introduced. )e novelties come from the fractional-order derivative and
the use of the quadric function x4 in modeling accurately the financial market. )e existence and uniqueness of its solutions have
been investigated to justify the physical adequacy of the model and the numerical scheme proposed in the resolution. We offer a
numerical scheme of the new four-dimensional fractional hyperchaotic financial model. We have used the Caputo–Liouville
fractional derivative. )e problems addressed in this paper have much importance to approach the interest rate, the investment
demand, the price exponent, and the average profit margin. )e validation of the chaotic, hyperchaotic, and periodic behaviors of
the proposed model, the bifurcation diagrams, the Lyapunov exponents, and the stability analysis has been analyzed in detail. )e
proposed numerical scheme for the hyperchaotic financial model is destined to help the agents decide in the financial market. )e
solutions of the 4D fractional hyperchaotic financial model have been analyzed, interpreted theoretically, and represented
graphically in different contexts.)e present paper is mathematical modeling and is a new tool in economics and finance. We also
confirm, as announced in the literature, there exist hyperchaotic systems in the fractional context, which admit one positive
Lyapunov exponent.

1. Introduction

Many behaviors of the dynamical systems are deterministic.
)e systems’ future behaviors follow the same evolutions
and are explained by the initial conditions and the past of the
systems. Chaos theory is one of the mathematical domain
which studies these types of dynamical systems and has
received many investigations [1, 2]. Lorenz [2] was the first
author to propose the chaotic system in three-dimensional
space, namely, chaotic attractor. Lorenz’s work can probably
be considered as the beginning of this discipline. It is well
known the chaotic systems are nonlinear dynamical systems
and are sensitive to their initial conditions. )at is, when the
initial conditions of the considered system have small dif-
ferences or changes, it becomes complicated to predict the
behaviors of the system [1]. )is field of mathematics is
strongly in relation to the control theory. )is reason ex-
plains the many investigations related to chaos control. In

general, the controllers try to eliminate the chaotic behaviors
using synchronization methods or other techniques. Many
studies also focus on the stability analysis of the chaotic
systems [1, 3]. Chaotic behaviors are observed in many real-
world problems, in fluid flows, in weather and climate [2], in
the stock market, in road traffics, and others. Chaos theory
has many applications, too, in anthropology, computer
science, economic [1], biology, physics [1], meteorology, and
others. After Lorenz’s proposition, many other types of
chaotic systems appear in the literature. Recent investiga-
tions focus on the chaotic and hyperchaotic systems in
economics; we have the chaotic financial system with three-
dimensional space (see in [4, 5]); we have the four-di-
mensional hyperchaotic financial model.

Chaotic and hyperchaotic systems have many applica-
tions in finance and economics. )ere exist many nonlinear
dynamical systems in finance markets that use chaotic
systems to predict the markets’ behavior. In [1], Xin et al.
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presented the 3D chaotic financial model and introduced a
new four-dimensional fractional chaotic financial system.
)e numerical investigation to approximate the financial
model’s solutions and the stability analysis have been pro-
posed too in this paper. In [6], Chen et al. investigated the 4D
hyperchaotic financial model using the Lyapunov direct
method; the authors have found suitable control to stabilize
the considered financial model. )ey also give the numerical
simulation of their results. In [4], Gao and Ma investigated
the complex dynamical behaviors of a finance system as the
chaos andHopf bifurcation. In [7], Yu et al. proposed a novel
four-dimensional chaotic financial model based on the
classical chaotic financial model with three dimension. )e
authors in [7] added the average profit margin to the classical
financial model with three dimension to obtain a new
chaotic model. )ey also presented the new model, the
stability analysis, and provided the numerical simulation of
their new model. In [8], Kumar et al. constructed a new
finance model too, namely, the four-dimensional chaotic
financial model and used the Lyapunov direct method to
study the stability of the equilibrium points and also pro-
posed the numerical simulations of the newmodel. For more
investigations, like the works proposed by He in [9, 10],
Yichen and others authors in [11, 12], Pham in [13, 14], and
Shirkavand in [15], see also in [3, 5].

As previously observed, the stability and numerical
simulations are the main interests in the three- and four-
dimensional chaotic financial models. )ey are many
methods for solving the fractional differential equations as
the homotopy analysis, the homotopy perturbation, the
domain decomposition, the numerical schemes as
Adams–Bashforth numerical discretization, and others. In
many contexts, the stability and the convergence of the
previous cited methods are not trivial, and the effectiveness
of the method can be discussed. For example, with homo-
topy methods, what is the good number of iterations to be
considered under which we have good approximations for
the solutions of the model. For the numerical schemes,
including the numerical schemes of the fractional operators,
the implementations of the methods are not easy, and the
unconditional stability does not include the Lipschitz con-
tinuous of the functions constituting the model. Lipschitz
continuous is known as indispensable for the existence of the
solutions for a particular model. Many inconveniences exist
in these previous cited methods. In this paper, we introduce
a new hyperchaotic financial model; we propose a new
procedure for getting the solutions of the four-dimensional
hyperchaotic financial model by using implicit numerical
discretization. Before investigating the solutions of the
considered model, we propose qualitative properties. It is to
justify the physical adequacy of the financial model. Our
motivations are to introduce a new hyperchaotic financial
model and introduce the fractional-order derivative [16–18]
in modeling the financial equations. )e fractional-order
derivative well describes the memory effect. )us, our
second motivation is the use of the Caputo derivative into
mathematical modeling.)emain novelty in our study is the
introduction of a numerical scheme to obtain the phases
portraits of the considered system, which include the

discretization of the Riemann–Liouville fractional integral
and use the Lipschitz continuous conditions for the stability
and the convergence of the numerical scheme. In other
words, the existence of the model’s solutions is sufficient for
the stability and convergence of the used numerical scheme.
It is essential to mention in our numerical discretization that
we do not use the discretization of the fractional derivative
but we have used the discretization of the fractional integral,
which is more useful and uses the analytical solutions dis-
creetly. Our novelty in terms of the financial model intro-
duces the quadric function x4 to measure the variations of
the interest rate. We manipulate very sensitive chaos sys-
tems. )us, the introduction of this new function in the
model will generate many changes in the stability of the
equilibrium points and influence the chaos generated by the
variation of the model’s parameters. )e significant impact
generated by the quadric function will be focused on this
present paper. )e bifurcation and the Lyapunov exponents
in terms of the fractional derivative are also among the main
novelties of this paper. )is paper shows how to use the
bifurcation and the Lyapunov exponents in the fractional
context to analyze the chaos theory. In terms of the char-
acterization of the chaos, we will provide the existence of two
positive Lyapunov exponents that are sufficient for the
hyperchaotic behaviors in the integer version, but in the
context of fractional-order derivative, the numbers of
positive Lyapunov exponents are not an adequate definition
to characterize the hyperchaotic dynamics because there
exist systems which are hyperchaotic with the bifurcation
diagrams but admits one positive Lyapunov exponent.
)erefore, fractional calculus must find theory on Lyapunov
exponents to characterize chaotic behaviors and hyper-
chaotic behaviors. Our investigation will confirm the work
on the Lyapunov exponent proposed by Danca in [19] who
found hyperchaotic systems with one positive Lyapunov
exponent. In the literature of the fractional calculus, the
financial models, or chaotic systems are addressed in the
papers [20–23]. For applications of the fractional derivatives
in real-world problems, see in [17, 18, 24–31, 42–44].

In Section 2, we introduce the definitions and the tools
necessary for our investigations. In Section 3, we present the
4D hyperchaotic financial model in the context of the
fractional-order derivative and consider the memory effect.
In Section 4, we focus on the qualitative properties of the
proposed model. In Section 5, we describe the procedure of
the solutions for the model. In Section 6, we represent the
solutions graphically in different contexts. In Section 7, we
analyze the characterizations of the chaos using the bifur-
cation diagrams and the Lyapunov exponents. In Section 8,
we provide stability analysis in the context of fractional
calculus. In Section 9, we give the future directions of re-
search and final remarks.

2. Basic Definitions and Lemmas

)is section is consecrated to the definitions of fractional
derivatives and integrals. We will utilize them in our in-
vestigations. We work with fractional derivatives with sin-
gular kernels. In other words, we use the Caputo–Liouville

2 Complexity



fractional derivative, the Riemann–Liouville fractional de-
rivative, and their associated generalizations.It is not hard to
see when the order α � 1, we recover the classical integral. It
proves the Liouville–Riemann integral is a generalization of
the classical integral to the arbitrary noninteger order. Its
associated derivative is called the Riemann–Liouville frac-
tional derivative.

Definition 1 (see [35, 36]). )e Liouville–Riemann frac-
tional integral is described as the following form for the
function x: [0, +∞[⟶ R:

I
α
x( (t) �

1
Γ(α)


t

0
(t − s)

α− 1
x(s)ds, (1)

where the function Γ(.) represents the Gamma Euler
function and with the order α> 0.

Definition 2 (see [35, 36]). )e Liouville–Riemann frac-
tional derivative of order α ∈ (0.1) is described as the fol-
lowing form for the function x: [0, +∞[⟶ R:

D
α
x(t) �

1
Γ(1 − α)

d

dt


t

0
(t − s)

− α
x(s)ds, (2)

where the function Γ(.) represents the Gamma Euler
function.

Another fractional derivative proposed in the literature
is called the Caputo–Liouville fractional derivative due to the
inconvenience of the Riemann–Liouville derivative.

Definition 3 (see [35, 36]). )e Caputo fractional derivative
of order α ∈ (0.1) is described as the following form for the
function x: [0, +∞[⟶ R:

D
α
c x(t) �

1
Γ(1 − α)


t

0
(t − s)

− α
x′(s)ds, (3)

where the function Γ(.) represents the Gamma Euler
function.

)e generalization of two above fractional derivatives
and integrals is represented in the following lines.

Definition 4 (see [28, 37–39]). )e generalized Rie-
mann–Liouville integral is described as the following form
for the function x: [0, +∞[⟶ R:

I
α,ρ

x(t) �
1
Γ(α)


t

0

tρ − sρ

ρ
 

α− 1

x(s)
ds

s
1− ρ, (4)

with the orders α, ρ satisfying the relation α, ρ> 0, the
function gamma is Γ(.), and for all t> 0.

Definition 5 (see [28, 37–39]). )e generalized Liou-
ville–Riemann fractional derivative of order α ∈ (0.1) is
described as the following form for the function
x: [0, +∞[⟶ R:

D
α,ρ

x(t) �
1
Γ(1 − α)

d
dt


t

0

tρ − sρ

ρ
 

− α

x(s)
ds

s
1− ρ, (5)

with the orders α, ρ satisfying the relation α, ρ> 0, the
function gamma is Γ(.), and for all t> 0.

Definition 6 (see [26, 28, 40, 41]). )e generalized Caputo
fractional derivative of order α ∈ (0.1) is described as the
following form for the function x: [0, +∞[⟶ R:

D
α,ρ

x(t) �
1
Γ(1 − α)


t

0

tρ − sρ

ρ
 

− α

x′(s)ds, (6)

with the orders α, ρ satisfying the relation α, ρ> 0, the
function gamma is Γ(.), and for all t> 0.

We continue the rest of the paper with the Capu-
to–Liouville fractional derivatives. )at is, we recall the
Laplace transform of the Caputo–Liouville derivative; we
have the relation

L D
α
c x( (t)  � s

α
L x(t){ } − s

α− k− 1
x(0). (7)

with the order α respecting the condition α ∈ (0.1).

3. Fractional Four-Dimensional Hyperchaotic
Financial Model

In this section, we present the fractional model considered in
our investigations. Yu, Cai, and Li proposed the integer-
order version of the 4D hyperchaotic financial model in [7].
)e fractional version of their model is described with the
Caputo–Liouville derivative by the following equations:

D
α
c x � z + yx − ax + u, (8)

D
α
c y � 1 − by − x

2
, (9)

D
α
c z � − x − cz, (10)

D
α
c u � − dxy − ku. (11)

Wemake the following assumptions related to the initial
conditions:

x(0) � 1,

y(0) � 2,

z(0) � 0.5,

u(0) � 0.5.

(12)

In equations (8)–(11), the variable x represents the in-
terest rate, the variable y represents the investment demand,
the variable z represents the price exponent, and the variable
u is an additional variable that represents the average profit
margin. )e parameter a denotes the saving rate, the pa-
rameter b represents the per investment cost, the parameter c

indicates the elasticity of demands, and the parameter k is
the average profit margin influence.

Complexity 3



In our new modeling, we suppose, due to the external
phenomena, the fluctuations of the interest rate into the
financial market cannot be measured adequately by the
quadratic function x2 (in equation (9)) all times. )erefore,
we consider more accurately quadric function x4, which can
correct all the errors in the measurement of the real data.
)us, the new four-dimensional hyperchaotic financial
model can be modeled as the following form:

D
α
c x � z + yx − ax + u, (13)

D
α
c y � 1 − by − x

4
, (14)

D
α
c z � − x − cz, (15)

D
α
c u � − dx y − ku. (16)

)e strange actuator is obtained with the following
values:

a � 0.5,

b � 0.2,

c � 1.2,

d � 0.2,

k � 0.15.

(17)

Our motivations for the use of the fractional-order
derivative are to extend the four-dimensional hyperchaotic
financial model described by integer-order derivative to the
fractional-order derivative. First, the fractional-order de-
rivative takes into account the memory effect; that is, the
past behaviors of the model explain the next behaviors of
the model. )e second is to adapt the answer given to
Leibniz’s question to the financial model. Note that, it is
proved in the literature that we can calculate the derivative
of the function dnf/dtn when n is noninteger. In the lit-
erature, all the models, including the derivatives, are de-
scribed by the integer-order derivatives; the question is
now what will happen with these models when the order of
the derivative is noninteger. It is also proved in the liter-
ature the fractional-order derivative is more realistic in
modeling physical and economics models. For example,
many diffusion processes as the subdiffusion, the ballistic
diffusion process, the superdiffusion process, and the
superdiffusion process which exist in real-world problems
cannot be obtained with the integer derivative but with
fractional-order derivatives. All these reasons have moti-
vated us in this present works.

Note that the 3D financial chaotic model proposed in the
literature is given by the following equation:

ztx � z + yx − ax, (18)

zty � 1 − by − x
2
, (19)

ztz � − x − cz. (20)

We can observe the average profit margin is added in the
initial model equations (18)–(20) to obtain the 4D hyper-
chaotic financial model. Note that the average profit margin
captures more perfectly the behaviors in the market [7]
because it depends on the interest rate and the investment
demand. We will analyze in detail the impact of the interest
rate and the investment demand in the average profit
margin. It is not hard to observe the 4D hyperchaotic fi-
nancial model is another representation of the 3D chaotic
financial equation because the average profit margin impacts
the interest rate. In addition, the price exponent and the
average profit margin are independent indirectly. )e first
objective of this paper is to prove the physical adequacy of
the fractional model by establishing the solution of the
fractional model described by equations (13)–(16) exist and
is unique. )e Banach fixed theorem will be used.

4. Existence and Uniqueness of the Model

In this section, we prove the fractional equation defined by
equations (13)–(16) has at least one solution. )e technique
of proof uses the Banach fixed theorem procedure. )is
section is important for proving the physical adequacy of the
fractional differential equations. In mathematical views, it is
not important to study a model when the solution does not
exist. )e previous reasons are the motivations of this
section.

We consider the first differential equation (13), and we
suppose the function defined by

H(x, t) � z + yx − ax + u. (21)

)e function H needs to be Lipschitz continuous. We
have the following procedure of demonstration:

H x1, t(  − H x2, t( 
����

���� � z + yx1 − ax1 + u − z − yx2 + ax2 − u
����

����

� y x1 − x2(  − a x1 − x2( 
����

����

≤ ‖y‖ x1 − x2
����

���� + a x1 − x2
����

����

≤ (a +‖y‖) x1 − x2
����

����.

(22)

Under the assumption, the state variable y is bounded,
that is, ‖y‖≤ ϵ1, and we get the condition of the Lipschitz
continuous given by

H x1, t(  − H x2, t( 
����

����≤ ϵ x1 − x2
����

����, (23)

with the Lipschitz constant expressed as the form ϵ � a + ϵ1.
)e second step of the application of the Banach fixed
theorem consists of constructing Picard’s operator. It is clear
that the solution of the fractional differential equation
represented by equation (13) is given by the following
expression:

x(t) − x(0) � I
α
H(x, t). (24)

Based on the form of the solution, we define the fol-
lowing Picard’s operator:
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Zx(t) � x(0) + I
α
H(x, t). (25)

Before using this expression, it is important to prove the
operator Z is well-bounded. We have the following
procedure:

‖Z((t) − x(0)‖ � I
α
H(x, t)

����
����,

≤ I
α
‖H(x, t)‖.

(26)

From the assumption that the function H is Lipschitz
continuous, there exists k such that ‖H(x, t)‖≤ k and
equation (26) becomes

‖Zx(t) − x(0)‖≤ I
α
‖H(x, t)‖,

≤ kI
α
(1)≤ k

1
Γ(1 + α)

a
α
,

(27)

with the condition t≤ a. )at is, the operator Z is well-
bounded. In other words, it is well definite, and now we
should prove the operator Z is also a contraction. We have
the following reasoning:

‖Zu(t) − Zv(t)‖≤ I
α
‖H(u, t) − H(v, t)‖,

≤ ‖H(u, t) − H(v, t)‖I
α
(1).

(28)

Using the Lipschitz continuous condition established in
equation (23), we have the following relationship:

‖Zu(t) − Zv(t)‖≤ I
α,ρ

‖H(u, t) − H(v, t)‖,

≤ ‖H(u, t) − H(v, t)‖I
α,ρ

(1),

≤ ϵ‖u(t) − v(t)‖I
α,ρ

(1),

≤ ϵ
1
Γ(1 + α)

a
α
‖u(t) − v(t)‖.

(29)

)at is, the operator Z is a contraction when the following
condition is held:

1
Γ(α + 1)

a
α ≤

1
ϵ
. (30)

We conclude that the solution of the fractional differ-
ential equation represented in equation (13) exists after
application of the Banach fixed point theorem. After exis-
tence, we will try to show the uniqueness of the solution. We
first consider two different solutions expressed as x1 and x2
for our considered equation (13). We have in particular the
relations given by

x1(t) � x1(0) + I
α
H t, x1( , (31)

x2(t) � x2(0) + I
α
H t, x1( . (32)

We evaluate the difference between equation (31) and
equation (32), and we obtain the relation defined by

x1(t) − x2(t) � I
α

H t, x1(  − H t, x2(  . (33)

After the application of the Euclidean norm to equation
(33), we obtain the equations

x1 − x2
����

���� � I
α

H t, x1(  − H t, x2(  
����

����,

≤ I
α

H t, x1(  − H t, x2( 
����

����,

≤ H t, x1(  − H t, x2( 
����

����I
α
(1),

≤
a
α

Γ(α + 1)
 ϵ x1 − x2

����
����.

(34)

We have the following relation after calculations:

x1 − x2
����

���� 1 −
a
α

Γ(α + 1)
 ϵ ≤ 0, (35)

from which we get that ‖x1 − x2‖≤ 0. By definition, Eu-
clidean norm satisfies the condition ‖x1 − x2‖≥ 0. We
conclude that after combining the previous relationships, the
following result:

x1 � x2. (36)

)e unicity of the solution of equation (13) of our
hyperchaotic model follows from equation (33). And then,
we get the existence and the uniqueness of the solution of the
first equation (13).

We repeat the previous reasoning by utilizing the second
fractional differential equation (14), and we suppose a new
function defined by

D(y, t) � 1 − by − x
4
. (37)

)e function D needs to be Lipschitz continuous. We
have the following procedure of demonstration:

D y1, t(  − D y2, t( 
����

���� � 1 − by1 − x
4

− 1 + by2 + x
4����
����,

� b y1 − y2( 
����

����,

≤ b y1 − y2
����

����.

(38)

We have the Lipschitzian continuous condition given by
the following condition:

D y1, t(  − D y2, t( 
����

����≤ b y1 − y2
����

����, (39)

with the Lipschitz constant expressed as the form b. )e
second step of the application of the Banach fixed theorem
consists of constructing Picard’s operator. It is clear that
the solution of the fractional differential equation repre-
sented by equation (14) is given by the following
expression:

y(t) − y0 � I
α
D(y, t). (40)

Based on the form of the solution, we define the fol-
lowing Picard’s operator:

Ty(t) � y(0) + I
α
D(y, t). (41)

Before using this expression, it is important to prove the
operator T is well-bounded. We have the following
procedure:

‖T(y(t) − y(0)‖ � I
α
D(y, t)

����
����, ≤ I

α
‖D(y, t)‖. (42)
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Form the assumption the function T is Lipschitz con-
tinuous, there exists k such that ‖D(x, t)‖≤ k, and equation
(42) becomes

‖Ty(t) − y(0)‖≤ I
α
‖D(y, t)‖, ≤ kI

α
(1)≤ k

1
Γ(α + 1)

a
α
, (43)

with the condition t≤ r. )at is, the operator T is well-
bounded. In other words, it is well definite, and now we
should prove the operator T is also a contraction. We have
the following reasoning:

‖Tu(t) − Tv(t)‖≤ I
α
‖D(u, t) − D(v, t)‖,

≤ ‖D(u, t) − D(v, t)‖I
α
(1).

(44)

Using the Lipschitz continuous condition established in
equation (38), we have the following relationship:

‖Tu(t) − Tv(t)‖≤ I
α
‖D(u, t) − D(v, t)‖,

≤ ‖D(u, t) − D(v, t)‖I
α
(1),

≤ b‖u(t) − v(t)‖I
α
(1),

≤ b
1
Γ(α + 1)

a
α
‖u(t) − v(t)‖.

(45)

)at is, the operator Z is a contraction when the fol-
lowing condition is held:

1
Γ(α + 1)

a
α ≤

1
b
. (46)

We conclude that the solution of the fractional differ-
ential equation represented in equation (14) exists after
application of the Banach fixed point theorem. After exis-
tence, we will try to show the uniqueness of the solution. We
first consider two different solutions expressed as y1 and y2
for our considered equation (14). We have in particular the
relations given by

y1(t) � y1(0) + I
α
D t, y1( , (47)

y2(t) � y2(0) + I
α
D t, y1( . (48)

We evaluate the difference between equation (47) and
equation (48), and we obtain the relation defined by

y1(t) − y2(t) � I
α

D t, y1(  − D t, y2(  . (49)

After the application of the Euclidean norm to equation
(49), we have the equations

y1 − y2
����

���� � I
α

D t, y1(  − D t, y2(  
����

����,

≤ I
α

D t, y1(  − D t, y2( 
����

����,

≤ D t, y1(  − D t, y2( 
����

����I
α
(1),

≤
a
α

Γ(α + 1)
 b y1 − y2

����
����.

(50)

We obtain the following relation after calculations:

y1 − y2
����

���� 1 −
a
α

Γ(α + 1)
 b ≤ 0, (51)

from which we get that ‖y1 − y2‖≤ 0. By definition, Eu-
clidean norm satisfies the condition ‖y1 − y2‖≥ 0. We
conclude that, after combining the previous relationships,
the following relationship:

y1 � y2. (52)

)e unicity of the solution of equation (14) of our
hyperchaotic model follows from equation (52). And then,
we get the existence and the uniqueness of the solution of the
second equation in our model.

We continue with the third fractional differential
equation (15), and we utilize the following function:

A(z, t) � − x − cz. (53)

)e function A needs to be Lipschitz continuous. We
have the following procedure of the proof:

A z1, t(  − A z2, t( 
����

���� � − x − cz1 + x + cz2
����

����,

� c z1 − z2( 
����

����,

≤ c z1 − z2
����

����.

(54)

We have the Lipschitzian continuous condition given by
the following condition:

A z1, t(  − A z2, t( 
����

����≤ c z1 − z2
����

����, (55)

with the Lipschitz constant expressed as the form c. )e
second step of the application of the Banach theorem
consists of constructing Picard’s operator. It is clear that the
solution of the fractional differential equation represented
by equation (15) is given by the following expression:

z(t) − z0 � I
α
A(z, t). (56)

Based on the form of the solution, we define the fol-
lowing Picard’s operator:

Bz(t) � z(0) + I
α
A(z, t). (57)

Before using this expression, it is important to prove the
operator T is well-bounded. We have the following
procedure:

‖B(z(t) − z(0)‖ � I
α
A(z, t)

����
����,

≤ I
α
‖A(z, t)‖.

(58)

From the assumption the function B is Lipschitz con-
tinuous, there exists k such that ‖A(z, t)‖≤ k and equation
(58) becomes

‖Bz(t) − z(0)‖≤ I
α,ρ

‖A(z, t)‖,

≤ kI
α
(1)≤ k

1
Γ(α + 1)

a
α
,

(59)

with the condition t≤ a. )at is, the operator B is well-
bounded. In other words, it is well definite, and now we
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should prove the operator T is also a contraction. We have
the following reasoning:

‖Bu(t) − Bv(t)‖ ≤ I
α
‖A(u, t) − A(v, t)‖,

≤ ‖A(u, t) − A(v, t)‖I
α
(1).

(60)

Using the Lipschitz continuous condition established in
equation (55), we have the following relationship:

‖Bu(t) − Bv(t)‖≤ I
α
‖A(u, t) − A(v, t)‖,

≤ ‖A(u, t) − A(v, t)‖I
α
(1),

≤ c‖u(t) − v(t)‖I
α
(1),

≤ c
1
Γ(α + 1)

a
α
‖u(t) − v(t)‖,

(61)

)at is, the operator B is a contraction when the following
condition is held:

1
Γ(α + 1)

a
α ≤

1
c
. (62)

We conclude that the solution of the fractional differ-
ential equation represented in equation (15) exists after
application of the Banach fixed point theorem. Now, we will
try to show the uniqueness of the solution. We first consider
two different solutions expressed as z1 and z2 for our
considered equation (15). We have in particular the relations
given by

z1(t) � z1(0) + I
α
A t, z1( , (63)

z2(t) � z2(0) + I
α
A t, z1( . (64)

We evaluate the difference between equation (63) and
equation (64), and we obtain the relation defined by

z1(t) − z2(t) � I
α

A t, z1(  − A t, z2(  . (65)

After the application of the Euclidean norm to equation
(65), we obtain the following equations:

z1 − z2
����

���� � I
α

A t, z1(  − A t, z2(  
����

����,

≤ I
α

A t, z1(  − A t, z2( 
����

����,

≤ A t, z1(  − A t, z2( 
����

����I
α
(1),

≤
a
α

Γ(α + 1)
 c z1 − z2

����
����.

(66)

We obtain the following relation after calculations:

z1 − z2
����

���� 1 −
a
α

Γ(α + 1)
 c ≤ 0, (67)

from which we get that ‖z1 − z2‖≤ 0. By definition, Eu-
clidean norm satisfies the condition ‖z1 − z2‖≥ 0. We
conclude that after combining the previous relationships,

z1 � z2. (68)

)e unicity of the solution of equation (15) of our
hyperchaotic model follows from equation (68). And then,
we get the existence and the uniqueness of the solution of the
third equation in our considered model.

We finish with the fourth fractional differential equation
(16), and we use the following function:

Q(u, t) � − dxy − ku. (69)

)e function Q needs to be Lipschitz continuous. We
have the following procedure of the proof:

Q u1, t(  − Q u2, t( 
����

���� � − dxy − ku1 + dxy + ku2
����

����,

� k u1 − u2( 
����

����,

≤ k u1 − u2
����

����.

(70)

We have the Lipschitz continuous condition given by the
following condition:

Q u1, t(  − Q u2, t( 
����

����≤ k u1 − u2
����

����, (71)

with the Lipschitz constant expressed as the form c. )e
second step of the application of the Banach fixed theorem
consists of constructing Picard’s operator. It is clear that the
solution of the fractional differential equation represented
by equation (16) is given by the following expression:

u(t) − u0 � I
α
Q(u, t). (72)

Based on the form of the solution, we define the fol-
lowing Picard’s operator:

Ku(t) � u(0) + I
α
Q(u, t). (73)

Before using this expression, it is important to prove the
operator K is well-bounded. We have the following
procedure:

‖K(u(t) − u(0)‖ � I
α,ρ

Q(u, t)
����

����, ≤ I
α
‖Q(u, t)‖. (74)

From the assumption that the function K is Lipschitz
continuous, there exists m such that ‖Q(u, t)‖≤m and
equation (74) becomes

‖Ku(t) − u(0)‖≤ I
α
‖Q(u, t)‖,

≤mI
α
(1)≤m

1
Γ(α + 1)

a
α
,

(75)

with the condition t≤ a. )at is, the operator K is well-
bounded. In other words, it is well definite, and now we
should prove the operator K is also a contraction. We have
the following reasoning:

‖Kv(t) − Kw(t)‖ ≤ I
α
‖Q(v, t) − Q(w, t)‖,

≤ ‖Q(v, t) − Q(w, t)‖I
α
(1).

(76)

Using the Lipschitz continuous condition established in
equation (71), we have the following relationship:
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‖Kv(t) − Kw(t)‖ ≤ I
α
‖Q(v, t) − Q(w, t)‖,

≤ ‖Q(v, t) − Q(w, t)‖I
α
(1),

≤ k‖v(t) − w(t)‖I
α
(1),

≤ k
1
Γ(α + 1)

a
α
‖v(t) − w(t)‖.

(77)

)at is, the operator K is a contraction when the fol-
lowing condition is held:

1
Γ(α + 1)

a
α ≤

1
k

. (78)

We conclude that the solution of the fractional differ-
ential equation represented in equation (16) exists after
application of the Banach fixed point theorem. After exis-
tence, we will try to show the uniqueness of the solution. We
first consider two different solutions expressed as u1 and u2
for our considered equation (16). We have in particular the
relations given by

u1(t) � u1(0) + I
α
Q t, u1( , (79)

u2(t) � u2(0) + I
α
Q t, u1( . (80)

We evaluate the difference between equation (79) and
equation (80), and we obtain the relation defined by

u1(t) − u2(t) � I
α

Q t, u1(  − Q t, u2(  . (81)

After the application of the Euclidean norm to equation
(81), we obtain the equations

u1 − u2
����

���� � I
α

Q t, u1(  − Q t, u2(  
����

����,

≤ I
α

Q t, u1(  − Q t, u2( 
����

����,

≤ Q t, u1(  − Q t, u2( 
����

����I
α
(1),

≤
a
α

Γ(α + 1)
 k u1 − u2

����
����.

(82)

We obtain the following relation after calculations:

u1 − u2
����

���� 1 −
a
α

Γ(α + 1)
 k ≤ 0, (83)

from which we get that ‖u1 − u2‖≤ 0. By definition of the
euclidean norm satisfies the condition ‖u1 − u2‖≥ 0, we
conclude that after combining the previous relationships,

u1 � u2. (84)

)e unicity of the solution of equation (16) of our
hyperchaotic model follows from equation (84). And then,
we get the existence and the uniqueness of the solution of the
last equation in our considered model. We conclude that our
financial hyperchaotic model has a solution, and this so-
lution is unique. Finally, our general conclusion is our model
is physically well defined. )e research studies related to the
solutions of our model are now well justified; we are sure the

solution exists and is unique. )e existence and uniqueness
of the problem are very important in our context because it
will justify the stability of the numerical schemes proposed
in this paper. )e solutions obtained with Picard’s operator
will play an important role in the discretization of the
hyperchaotic model in context of fractional calculus.

5. Solution Procedures of the Hyperchaotic
Financial Model

In this section, we address the numerical schemes of the
equations in the proposed model. As we have mentioned early
in the introduction, there are many methods for solving the
differential equations: the Adams–Bashforth numerical
method, the homotopy method, the Fourier methods, the
Laplace transform method, and others. All the previous
methods cannot be applied in all problems; for example, the
Laplace transform application is not all-time possible due to the
nonlinearities of some equations. With the homotopy method,
the number of iterations after the method converges is the
literature’s main problem. Many of them consider between
three or five iterations, but it do not ensures the convergence of
the method. )e Fourier transform has limitations because all
functions have not their Fourier transforms. All the numerical
schemes as the implicit or explicit numerical scheme can be
used. Many numerical schemes are utilized to obtain the ap-
proximate solutions, but the existence and the uniqueness of
the solutions of the models are not proved. In case the con-
dition of existence is provided, the unconditional stability and
the convergence of the methods are not trivial, and the applied
methods to prove them can fail. Some of the considered nu-
merical methods like homotopy can diverge because the
number of iteration considered is small. Regarding the previous
problem, we apply a numerical scheme to take into account the
fractional integral, the analytical solution, and where the sta-
bility and the convergence can be obtained using the existence
and the uniqueness of the solution of the proposed model. Our
numerical scheme is similar to Adams Basfoth procedure in the
context of integer order derivative. In our context, we use a
similar procedure, but the difference is the discretization of the
fractional integral instead of the classical integral. )e nu-
merical scheme comes from the Garrappa paper [42]. )e
innovation of this section is the use of the analytical solution
and the numerical approximation of the Riemann–Liouville
fractional integral. )e present numerical scheme has many
advantages regarding the classical Adams–Bashforth method
and homotopy. )e first advantage is with our method; we
begin with the exact analytical solution of the model. )e
second advantage is the stability analysis and convergence. )e
convergence of our numerical scheme is ensured by the Lip-
schitz continuous of themodel’s drift functions, which are used
to prove the existence and uniqueness. )e third advantage is
the use of the numerical schemes of the fractional integral,
which is more useful than the numerical schemes of the
fractional derivatives. )e utilization of the Newton method to
study the unconditional stability of the implicit or explicit
numerical schemes is a severe inconvenience of classical nu-
merical schemes; with our numerical scheme, the verification
of the Lipschitz continuous solves this problem. Based on the
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fractional Riemann–Liouville integral and the fact the solution
exists, the exact analytical solutions of the 4D hyperchaotic
financialmodel (13)–(16) is represented by the following forms:

x(t) � x(0) + I
α
H(x, t), (85)

y(t) � y(0) + I
α
D(y, t), (86)

z(t) � z(0) + I
α
A(z, t), (87)

u(t) � u(0) + I
α
Q(u, t). (88)

In the context of the Adams Basford method, the order α
is 1. In our context, the order α is noninteger and belongs
into the interval (0, 1). In difference with classical ap-
proximation proposed by Adams and Basford for the in-
tegral part, we discretize the integral part using the
numerical approximation of the fractional integral. Now, we
evaluate equations (85)–(88) at the point (tn), and we obtain
the following equations with Riemann–Liouville fractional
integral:

x tn(  � x(0) + I
α
H x, tn( ,

y tn(  � y(0) + I
α
D y, tn( ,

z tn(  � z(0) + I
α
A z, tn( ,

u(t) � u(0) + I
α
Q u, tn( .

(89)

Using the explicit form of the Riemann–Liouville frac-
tional integral, we get the following equations:

x tn(  � x(0) +
1
Γ(α)



n

j�0


tj+1

tj

tn − s( 
α− 1

H(x(s), s),

y tn(  � y(0) +
1
Γ(α)



n− 1

j�0


tj+1

tj

tn − s( 
α− 1

D(y(s), s),

z tn(  � z(0) +
1
Γ(α)



n− 1

j�0


tj+1

tj

tn − s( 
α− 1

A(z(s), s),

u tn(  � u(0) +
1
Γ(α)



n− 1

j�0


tj+1

tj

tn − s( 
α− 1

Q(z(s), s).

(90)

Let the grid tn � nh, where h denotes a constant step
size, and the schemes of the fractional integral parts are
given by

I
α
H tn, x(  � h

α


n

j�1
μn− jH tj, zj , (91)

I
α
D tn, y(  � h

α


n

j�1
μn− jD tj, zj , (92)

I
α
A tn, z(  � h

α


n

j�1
μn− jA tj, zj , (93)

I
α
Q tn, z(  � h

α


n

j�1
μn− jQ tj, zj , (94)

where the parameter is given by
μn− j � ((n − j + 1)α − (n − j)α)/(1/Γ(1 + α)). We use the
first-order interpolant polynomial of the functions H, D, A,
and Q which are in the following forms:

H(τ, x(τ)) � H tj+1, zj+1  +
τ − tj+1

h
H tj+1, zj+1 

− H tj, zj ,

(95)

D(τ, y(τ)) � D tj+1, zj+1  +
τ − tj+1

h
D tj+1, zj+1 

− D tj, zj ,

(96)

A(τ, z(τ)) � A tj+1, zj+1  +
τ − tj+1

h
A tj+1, zj+1 

− A tj, zj ,

(97)

Q(τ, z(τ)) � Q tj+1, zj+1  +
τ − tj+1

h
Q tj+1, zj+1 

− Q tj, zj .

(98)

We replace equations (95)–(98) into equations
(91)–(94), and the numerical discretization of the fractional
integral is given by the following expressions:

I
α
H tn, x(  � h

α μ(α)
n H(0) + 

n

j�1
μ(α)

n− jH tj, xj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

I
α
Di tn, y(  � h

α μ(α)
n D(0) + 

n

j�1
μ(α)

n− jD tj, yj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

I
α
A tn, z(  � h

α μ(α)
n A(0) + 

n

j�1
μ(α)

n− jA tj, zj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

I
α
Q tn, z(  � h

α μ(α)
n Q(0) + 

n

j�1
μ(α)

n− jQ tj, zj ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(99)

)e implicit schemes of equations (13)–(16) are given the
following discretizations:

x tn(  � x(0) + h
α μ(α)

n φ(0) + 
n

j�0
μ(α)

n− jH xj, tj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

y tn(  � y(0) + h
α μ(α)

n φ(0) + 
n

j�0
μ(α)

n− jD yj, tj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

z tn(  � z(0) + h
α μ(α)

n φ(0) + 
n

j�0
μ(α)

n− jA zj, tj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

u tn(  � u(0) + h
α μ(α)

n φ(0) + 
n

j�0
μ(α)

n− jQ uj, tj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(100)

where the parameters used above are represented as follows:
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μ(α)
n �

(n − 1)
α

− n
α
(n − α − 1)

Γ(2 + α)
, (101)

and furthermore, for n � 1, 2, . . . ,

μ(α)
0 �

1
Γ(2 + α)

,

μ(α)
n �

(n − 1)
α+1

− 2n
α+1

+(n + 1)
α+1

Γ(2 + α)
.

(102)

We consider the approximate solutions
x(tn), y(tn), z(tn), and u(tn) of equations (13)–(16). We
assume xn, yn, zn, and un the exact solutions of equations
(13)–(16). )en, the residual functions for the implicit
discretization are given by the functions:

x tn(  − xn


 � O h

min α+1,2{ }
 ,

y tn(  − yn


 � O h

min α+1,2{ }
 ,

z tn(  − zn


 � O h

min α+1,2{ }
 ,

u tn(  − un


 � O h

min α+1,2{ }
 .

(103)

)e convergence of the implicit schemes of equations
(13)–(16) is obtained when the parameter h converges to 0.)e
stability of our numerical discretizations in this paper is ob-
tained when the functions H, D, A, and Q are the Lipschitz
continuous, which are proved in the section related to the
existence and the uniqueness.)e following equations represent
the numerical discretizations of the functions H, D, A, and Q:

H xj, tj  � z
j

+ y
j
x

j
− ax

j
,

D yj, tj  � 1 − by
j

− x
j

 
4
,

A zj, tj  � − x
j

− cz
j
,

Q uj, tj  � − dx
j
y

j
− ku

j
.

(104)

6. Behavior of the Solutions with
Fractional Orders

In this section, we represent graphically the interest rate, the
investment demand, the price exponent, and the average
profit margin obtained after solving the fractional 4D
hyperchaotic financial model (13)–(16) with our numerical
scheme described in the previous section. We analyze and
also interpret the different behaviors. In this section, we
make the following assumptions related to the different
parameters: the saving rate a � 0.5, the per investment cost
b � 0.2, the elasticity of demands c � 1.2, d � 0.2, and the
average profit margin influence k � 0.15. )e initial con-
ditions are given, respectively, as follows:

x(0) � 0.5,

y(0) � 0.5,

z(0) � 0.5,

u(0) � 0.5.

(105)

To see the fractional order’s influence in the hyper-
chaotic dynamics, we consider four values of the Caputo
fractional-order derivative: α � 0.95, α � 0.90, α � 0.88, and
α � 0.45. In our first case, we consider the order α � 0.95. In
Figures 1–4, we consider the interest rate, the investment
demand, and the price exponent and with order α � 0.95, in
different angles.

In Figures 5–7, we consider the interest rate, the in-
vestment demand, and the average profit margin and with
order α � 0.95, in different context.

In our third case, in terms of comparison with the
previous considered orders, we consider the order α � 0.90.
In Figures 8–11, we consider the interest rate, the investment
demand, and the price exponent and with order α � 0.90, in
different angles.

In Figures 12–14, we consider the interest rate, the in-
vestment demand, and the average profit margin and with
order α � 0.90, in different context.

In our third case, in terms of comparison with the
previous considered order, we consider the order α � 0.88.
In Figures 15–18, we consider the interest rate, the invest-
ment demand, and the price exponent and with order
α � 0.88, in different angles.

In Figures 19–21, we consider the interest rate, the in-
vestment demand, and the average profit margin and with
order α � 0.88, in different context.

In our last case, in terms of comparison with the previous
considered orders, we consider the order α � 0.45. In
Figures 22–25, we consider the interest rate, the investment
demand, and the price exponent and with order α � 0.45, in
different angles.

In Figures 26 and 27, we consider the interest rate, the
investment demand, and the average profit margin and with
order α � 0.45, in different context.

We notice the fractional-order derivative has a signifi-
cant impact on the hyperchaotic behaviors of the considered
model. We observe when the order α of the fractional de-
rivative is into the interval (0.85, 1), we detect hyperchaotic
behaviors. )e hyperchaotic behaviors are immediately
removed when the order approaches α � 0.45 as we can
observe in the previous figures. With the above figures, we
note strange actuators when the order is small and converge
to α � 0.90 that means the agents will have many difficulties
to predict the values of the interest rate, the investment
demand, the price exponent, and the average profit margin
in the financial market. In conclusion, the hyperchaotic
systems are very sensitive to the order of fractional
derivatives.

7. Bifurcation and Lyapunov Exponent

In this section, we have a newmodel; it is essential to analyze
the impact due to the variation of all the parameters of the
model using the bifurcation diagrams. In chaos theory, the
small change in the initial condition and the parameters of
the model can generate many consequences: we can recover
chaotic dynamics, we can lose chaotic dynamics, we can
recover hyperchaotic behavior, we can lose hyperchaotic
behavior, we can get periodic orbit, and we can enter with
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period-doubling bifurcation, the primary system which the
equilibrium point is not stable can become stable and many
other properties which can be determined with bifurcation

diagrams and the Lyapunov exponents. We also confirm the
previous investigations by proving the existence of chaotic
behaviors and hyperchaotic behaviors at the chosen

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x

z

Figure 2: Interest rate and price exponent and with order α � 0.95.
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Figure 1: Interest rate, investment demand, and price exponent
and with order α � 0.95.
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Figure 3: Interest rate and investment demand and with order
α � 0.95.
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Figure 4: Investment demand and price exponent and with order
α � 0.95.
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Figure 5: Interest rate, investment demand, and average profit
margin and with order α � 0.95.
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Figure 6: Investment demand and average profit margin and with
order α � 0.95.
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fractional order α � 0.95. In this section, the analysis of the
bifurcation diagrams and the Lyapunov exponents will be
done according to the following investigations [9–15]. It is
essential to mention that except for the last bifurcation

diagram, the considered step size to describe the variation of
the parameters of the model is 0.001.
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Figure 9: Interest rate and price exponent and with order α � 0.90.
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Figure 7: Interest rate and average profit margin and with order
α � 0.95.
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Figure 8: Interest rate, investment demand, and price exponent
and with order α � 0.90.
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Figure 10: Interest rate and investment demand and with order
α � 0.90.
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Figure 11: Investment demand and price exponent and with order
α � 0.90.
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Figure 12: Interest rate, investment demand, and average profit
margin and with order α � 0.90.
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Figure 13: Investment demand and average profit margin and with
order α � 0.90.

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
x

1

0.5

0

–0.5

u

Figure 14: Interest rate and average profit margin and with order
α � 0.90.
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Figure 15: Interest rate, investment demand, and price exponent
and with order α � 0.88.
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Figure 16: Interest rate and price exponent and with order
α � 0.88.
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Figure 17: Interest rate and investment demand and with order
α � 0.88.
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Figure 18: Investment demand and price exponent and with order
α � 0.88.
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Figure 19: Interest rate, investment demand, and average profit
margin and with order α � 0.88.
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Figure 20: Investment demand and average profit margin and with
order α � 0.88.
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Figure 21: Interest rate and average profit margin and with order
α � 0.88.
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Figure 22: Interest rate, investment demand, and price exponent
and with order α � 0.45.
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Figure 23: Interest rate and price exponent and with order
α � 0.45.
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Figure 24: Interest rate and investment demand and with order
α � 0.45.

14 Complexity



We begin by the variation of the saving rate a; we
suppose the other parameters do not vary and are given by

the per investment cost b � 0.2, the elasticity of demands
c � 1.2, d � 0.2, and the average profit margin influence
k � 0.15. In Figure 28, we give the bifurcation diagram
associated with the variation of the saving rate a into the
interval (0, 1). )e motivations of the consideration of this
interval are because, in practice, the saving rate can not
belong outside of the interval (0, 1). When this case happens,
the problem becomes irrealistic financial and economic
viewpoints. For more visibility, we consider in our simu-
lation the step size h � 0.001. In Figure 28, the bifurcation
diagram indicates for the order α � 0.95; when the saving
rate increases, the system begins with hyperchaotic behav-
iors and continues with this dynamics behaviors as soon as
the saving rate is into the interval (0, 0.775). But, in
(0.775, 0.998), the system lost its hyperchaotic behaviors and
became chaotic, and new hyperchaotic behaviors born in the
neighborhood of 1. For pieces of information which are not
reported here, the system lost the hyperchaotic behaviors
when the saving rate exceeds 1 and continues with period-
doubling bifurcation.

We continue with the variation of the per investment
cost b into (0, 1). )emotivation of the choice of the interval
involving the per investment cost is because this value in
practice does not belong outside (0, 1). We fix the saving rate
a � 0.5, the elasticity of demands c � 1.2, d � 0.2, and the
average profit margin influence k � 0.15. We depict the
bifurcation diagram according to the variation of per in-
vestment cost in Figure 29. We notice the system begins and
continues with the hyperchaotic behaviors when the per
investment cost b is into (0, 0.3). When the per investment
cost exceeds 0.3, the system removes the hyperchaotic be-
haviors, and the system undergoes periodic orbit. We notice
the behaviors such as the hyperchaotic, the chaotic, and the
periodic orbit in our context depend on the choice of the per
investment cost.

In the third step, the elasticity of demands c varies into
(1, 3). We fix saving rate a � 0.5, the per investment cost
b � 0.2, d � 0.2, and the average profit margin influence
k � 0.15. We depict the bifurcation diagram related to the
variation of the elasticity of demands in Figure 30. )e
observations are summarized as follows. When the elasticity
of demand is into (1,2), the system generates hyperchaotic
dynamics. In particular, in the interval (1.5, 2), we notice
moderate hyperchaotic behaviors. In (2, 2.8), the system lost
hyperchaotic behaviors, and the solutions of the system
probably converge to the equilibrium points. Note that into
this interval, the analysis is not trivial. Finally, when the
elasticity of demands c varies into (2.8, 3), new hyperchaotic
behaviors start again.

In the last step, the average profit margin influence k

varies into (0, 1). In general, the presence of hyperchaotic
behaviors is detected when k varies into (0, 0.25) and
(0.7, 1).

We finish by characterizing the presence of chaotic and
hyperchaotic behaviors when the fractional order is used.
)e method used to calculate the Lyapunov exponents in
fractional version can be found in [43]. We fix the condi-
tions: the saving rate a � 0.5, the per investment cost b � 0.2,
the elasticity of demands c � 1.2, d � 0.2, and the average
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Figure 25: Investment demand and price exponent and with order
α � 0.45.
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Figure 26: Interest rate, investment demand, and average profit
margin and with order α � 0.45.
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Figure 27: Investment demand and average profit margin and with
order α � 0.65.
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profit margin influence k � 0.15. We maintain the initial
conditions in Section 6. In our first analysis, we calculate the
Lyapunov exponents for the different fractional-orders

considered in the graphical representations. In other words,
we will try to validate the hyperchaotic behaviors observed in
the graphic representation sections. For α � 0.45, the Lya-
punov exponents are given by the following:

LE1 � − 0.0277,

LE2 � − 0.9910,

LE3 � − 0.7651,

LE4 � − 8.2664.

(106)

Our first remark is systems (13)–(16) are dissipative
because the sum of all Lyapunov exponents is negative. )e
absence of chaotic and hyperchaotic behaviors for the order
α � 0.45 can be explained by the fact all the Lyapunov ex-
ponents are negative. )us, for the order α � 0.45, we note
the suppression of the hyperchaotic behaviors, which is
explained by the negativity of all the Lyapunov exponents.

For α � 0.88, the Lyapunov exponents are given by the
following numbers:

LE1 � 0.2246,

LE2 � 0.0284,

LE3 � − 0.3535,

LE4 � − 1.2650.

(107)

)e dissipativity of the system is explained by the fact
that the sum of all Lyapunov exponents is negative. We can
observe two positive Lyapunov exponents; thus, this con-
dition is necessary and sufficient for the detection of
hyperchaotic behaviors. )e fractional-order system
(13)–(16) is hyperchaotic at order α � 0.88. Let mention that
it is established by Danfa in [19]; in fractional-order context,
the existence of two positive Lyapunov exponents is not an
adequate definition. For example, in [19], the authors find
some fractional-order hyperchaotic systems that have one
positive Lyapunov exponent; we confirm this assumption in
our investigations. For example, let the order α � 0.90, the
Lyapunov exponents are as follows:

LE1 � 0.2657,

LE2 � − 0.0145,

LE3 � − 0.2867,

LE4 � − 1.1211.

(108)

We can observe our system is hyperchaotic, but strangely
we get one positive Lyapunov exponent. For more pieces of
information, see in [19]. )e question related to the char-
acterization of the nature of chaos in fractional context born,
and note that the existence of one positive Lyapunov ex-
ponent becomes a necessary condition for the hyperchaotic
behaviors but not sufficient. )e alternative to supporting
the hyperchaotic behaviors with the existence of one positive
Lyapunov exponent is to combine it by the bifurcation
diagrams. )is question is an open problem in fractional
calculus.
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Figure 28: Bifurcation diagram a.
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For α � 0.95, the Lyapunov exponents are given by the
following numbers:

LE1 � 0.2113,

LE2 � 0.0017,

LE3 � − 0.3924,

LE4 � − 0.8526.

(109)

With two positive LE1 and LE2, the hyperchaotic be-
havior is detected at α � 0.95, but the hyperchaotic behavior
for our new hyperchaotic system is more complex at the
order α � 0.88. )e justification is the impact of the term x4,
and LE1 and LE2 are more significant at order α � 0.88.

To support the results in the bifurcation section, we
describe in the following tables, the values of the Lyapunov
exponents versus the small variation of the parameters of the
model. We begin with the variation of the saving rate. Note
that the Lyapunov exponent versus the variation of the
parameter a is represented in Table 1. )e considered order
is α � 0.95.

We analyze with the aid of the bifurcation diagram. We
notice the existence of one or two positive Lyapunov ex-
ponents into the interval (0, 0.7). Still, with the aid of its
associated bifurcation diagram, we conclude the fractional
system is hyperchaotic with a minimum one positive Lya-
punov exponent. )ere exists one positive Lyapunov ex-
ponent when the parameter a is into the interval (0.7, 0.998).
Furthermore, with the bifurcation diagram, we conclude our
system is chaotic. It is indispensable to get the bifurcation
diagram before concluding with one positive Lyapunov
exponent in fractional context because we can find the order
of the fractional derivative under which the presence of the
hyperchaotic behaviors is detected with one positive Lya-
punov exponent.

In Table 2, we consider the variation of the per in-
vestment cost b into (0, 1). )e Lyapunov exponents are
assigned in the following table.

)e results described in Table 2 are in good agreement
with the analysis done in the bifurcation diagram related to
the variation of the per investment cost b. We also notice two
positive Lyapunov exponents into [0, 0.3), which confirm the
hyperchaotic behaviors. Into interval [0.3, 1], when the per
investment cost increases, it generates moderate hyperchaotic
behavior and finish to remove the hyperchaotic behaviors into
the dynamics of the system. All equilibrium points obtained
into this interval for our system become automatically stable.
It is normal because the chaos is removed.

In Table 3, we calculate the Lyapunov exponents
according to the variation of the elasticity of demands c into
(1, 3). )e same procedure, as described in the previous
tables, is adopted. Here, due to the largest interval, we
consider the variation of the elasticity of the demands c into
(1, 1.5).

We can observe two positive Lyapunov exponents at all
line of Table 3, andwe can affirm the fractional-order system
is hyperchaotic. Note that in this Table 3, we have no
hyperchaotic behavior with one positive Lyapunov expo-
nent. )e values of the Lyapunov exponents are confirmed

by the bifurcation diagrams related to the variation of the
parameter c.

)e main contribution of this section shows the sign of
the Lyapunov exponent is not sufficient to characterize the
hyperchaotic dynamics. By our investigation, we can remark
as Danca; there exist hyperchaotic systems with one positive
Lyapunov exponent. In conclusion, to characterize the
hyperchaotic system, it necessaries to confirm the work with
the bifurcations diagrams.)e Lyapunov exponent is known
strong sensible to the initial condition. In the context of
fractional-order derivative, the Lyapunov exponents depend
on the initial conditions and the values of the Caputo
derivative.

8. Stability Analysis

In this section, we study the local stability of the equilibrium
points. We mainly use the so-called Matignon criterion [44]
because, in fractional calculus, the negativity of the real part

Table 1: Lyapunov exponents versus a.

a LE1 LE2 LE3 LE4

0.0 0.0057 − 0.2680 − 0.3072 − 0.8495
0.1 0.0401 − 0.2083 − 0.3305 − 0.8545
0.2 0.0813 − 0.1548 − 0.3520 − 0.8581
0.3 0.1271 − 0.1060 − 0.3701 − 0.8598
0.4 0.1742 − 0.0579 − 0.3842 − 0.8585
0.5 0.2113 0.0017 − 0.3924 − 0.8526
0.6 0.2233 0.0866 − 0.3889 − 0.8404
0.7 0.4597 − 0.0706 − 0.3692 − 0.8184
0.8 0.4788 − 0.1037 − 0.3129 − 0.8025
0.9 0.4678 − 0.1037 − 0.3056 − 0.7989
0.995 0.4278 − 0.0743 − 0.3075 − 0.7989

Table 2: Lyapunov exponents versus b.

b LE1 LE2 LE3 LE4

0.0 0.2343 0.0183 − 0.2853 − 0.8646
0.1 0.2193 0.0149 − 0.3362 − 0.8687
0.2 0.2113 0.0017 − 0.3924 − 0.8526
0.3 0.2619 − 0.1430 − 0.4236 − 0.8053
0.4 0.1934 − 0.2965 − 0.4528 − 0.7678
0.5 0.0927 − 0.3732 − 0.5441 − 0.7491
0.6 − 0.0023 − 0.4360 − 0.6342 − 0.7381
0.7 − 0.0796 − 0.4976 − 0.7201 − 0.7352
0.8 − 0.1422 − 0.5577 − 0.7980 − 0.7432
0.9 − 0.1942 − 0.6148 − 0.8646 − 0.7656
1.0 − 0.2384 − 0.6674 − 0.9181 − 0.8041

Table 3: Lyapunov exponents versus c.

c LE1 LE2 LE3 LE4

1.00 0.5564 0.0400 − 0.3685 − 0.7869
1.10 0.2668 0.0585 − 0.3721 − 0.7458
1.20 0.2113 0.0017 − 0.3924 − 0.8526
1.30 0.1915 0.0067 − 0.3161 − 1.2144
1.40 0.1343 0.0167 − 0.3287 − 1.3357
1.50 0.0722 0.0356 − 0.3459 − 1.4590
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of the eigenvalues of the Jacobian matrix is not sufficient for
the local stability. Let us describe the procedure which we
will adopt in this section.)ere exist nowadays two methods
to evaluate the stability of our related problem.)e first is to
use the Laplace transformation and the second is to use the
Matignon criterion. )eMatignon criterion is algebraic. )e
first step consists of determining the equilibrium points of
the studied system. )e second step consists of evaluating
the Jacobian matrix at the equilibrium points. )e third
condition consists of determining the eigenvalues of the
considered Jacobian matrix. In addition, as the last condi-
tion, we should verify if all the eigenvalues satisfy the so-
called Mategnon criterion expressed as the form

arg λi Jequi  


 � π > απ/2, (110)

where i � 1, 2, . . . , n and λi(Jequi) represent the eigenvalue of
the Jacobian matrix evaluated at the equilibrium point.
Equation (110) is the main difference between the stability
with integer-order derivative and the stability with frac-
tional-order derivative. It is essential to mention that if all
the eigenvalues of the Jacobian matrix satisfy the condition
(110), we get the local asymptotic stability. )e present
procedure does not give global stability, which needs to find
suitable Lyapunov function. )e global stability is not trivial
in general for the hyperchaotic model because many of its
equilibrium points are not stable. First of all, we determine
the equilibrium points, and after calculations, we obtain the
following relationships:

x
∗
1 � −

ck − c d − abck − bk

ck − c d
 

1/4

,

x
∗
2 �

ck − c d − abck − bk

ck − c d
 

1/4

,

y
∗

�
ack + k

ck − c d
,

z
∗
1 �

x
∗
1

c
,

z
∗
2 �

x
∗
2

c
,

u
∗
1 � −

dx
∗
1y
∗

k
,

u
∗
2 � −

dx
∗
2y
∗

k
.

(111)

Using the values of the saving rate a � 0.5, the per in-
vestment cost b � 0.2, the elasticity of demands c � 1.2,
d � 0.2, and the average profit margin influence k � 0.15, the
equilibrium points are given by Eq1

� (0, 5, 0, 0),
Eq2

� (− 0.158, − 4, − 0.132, − 0.842), and
Eq3

� (0.158, − 4, 0.132, 0.842). )e Jacobian matrix which is

also used to determine the Lyapunov exponent is given by
the following matrix:

J �

y − a x 1 1

− 4x
3

− b 0 0

− 1 0 − c 0

− dy − dx 0 − k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (112)

We begin our local stability study by the equilibrium
point given by Eq1

� (0, 5, 0, 0) according to the Matignon
criterion previously described. Here, the values of the pa-
rameter are used directly in the calculations. )e following
matrix is the Jacobian matrix at the point Eq1

:

JEq1
�

4.5 0 1 1

0 − 0.2 0 0

− 1 0 − 1.2 0

− 1 0 0 − 0.15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (113)

Using Matlab, the eigenvalues of the Jacobian matrix at
the point Eq1

is given by the following values
λ1 � 4.093, λ2 � − 0.230, λ3 � 0.106, and λ4 � − 0.2. By the
Matignon criterion, we have that |arg(λ1)| � 0< απ/2,
|arg(λ2)| � π > απ/2, |arg(λ3)| � 0< απ/2, and
|arg(λ4)| � π > απ/2. )us, the equilibrium point Eq1

is not
stable because all the eigenvalues do not satisfy theMatignon
criterion given at equation (110).

We continue our local stability study by the equilibrium
point given by Eq2

� (− 0.158, − 4, − 0.132, − 0.842) according
to the Matignon criterion. As recalled in the previous point,
here, the values of the parameters are used directly in the
calculations. )e following matrix is the Jacobian matrix at
the point Eq2

:

JEq2
�

− 4.5 − 0.158 1 1

0.0158 − 0.2 0 0

− 1 0 − 1.2 0

0.8 0.0316 0 − 0.15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (114)

)e Jacobian matrix evaluated at the points Eq2
has the

following eigenvalues λ1 � 4.4840, λ2 � − 0.912, λ3 � 0.771,
and λ4 � − 0.199. By the Matignon criterion, we have that
|arg(λ1)| � 0< απ/2, |arg(λ2)| � π > απ/2,
|arg(λ3)| � 0< απ/2, and |arg(λ4)| � π > απ/2. )us, the
equilibrium point Eq2

is also not stable.
We finish our local stability study by the equilibrium

point given by Eq3
� (0.158, − 4, 0.132, 0.842) according to

the Matignon criterion. We suppose the same assumptions
related to the values of the parameters of the model. )e
following matrix is the Jacobian matrix at the point Eq3:

JEq2
�

− 4.5 0.158 1 1

− 0.0158 − 0.2 0 0

− 1 0 − 1.2 0

0.8 − 0.0316 0 − 0.15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (115)
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)e Jacobian matrix evaluated at the points Eq3 has the
following eigenvalues λ1 � 4.4840, λ2 � − 0.912, λ3 � 0.771,
and λ4 � − 0.199. By the Matignon criterion, we have that
|arg(λ1)| � 0< απ/2, |arg(λ2)| � π > απ/2,
|arg(λ3)| � 0< απ/2, and |arg(λ4)| � π > απ/2. )us, the
equilibrium point Eq3

is also not stable. Finally, we conclude
all the equilibrium points are not stable.

9. Conclusion

In this paper, we have focused on the fractional 4D
hyperchaotic financial model in the context of the fractional
calculus. We have mainly focused on the existence and the
uniqueness of the solutions of the fractional 4D hyperchaotic
financial model described by the generalized Capu-
to–Liouville derivative. We also proposed a novel numerical
scheme based on the fractional integral for getting the ap-
proximate solutions of the hyperchaotic financial model.)e
results are validated by the bifurcation, the Lyapunov ex-
ponent, and the stability analysis. )e solutions are repre-
sented graphically to observe the behavior of the solutions.
Significant results appear in this paper such as the impact of
the fractional-order derivative in the hyperchaotic behav-
iors, the effect of the variations of the saving rate, the average
profit margin influence, the elasticity of demands, and the
variation of the per investment cost in the dynamics of the
proposedmodel. It is noticed they can generate hyperchaotic
and chaotic behaviors when their values change in time. )e
proposed numerical scheme has many advantages due to the
fact the stability and the convergence of the numerical
method come from the Lipschitz continuous of the drift
functions of the model. Another significant result is the
stability of the equilibrium point depends strongly on the
value of the used fractional-order derivative. For future
works, the problem related to adaptative control of this new
chaotic model can be investigated. We can observe in many
financial models with fractional-order derivative; the in-
commensurable model is better to describe the concrete
market behaviors; therefore, in the future direction of the
investigations, we will investigate the phase portrait, the
bifurcation, and the stability of the 4D financial hyperchaotic
model with Caputo derivatives with different orders. )is
problem is opened in the literature and constitutes a new
challenge for researchers in this field.
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