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2Unité de Recherche de Matière Condensée, d’Electronique et de Traitement du Signal (URAMACETS), Department of Physics,
University of Dschang, P.O. Box 67, Dschang, Cameroon
3Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
4Department of Electrical and Electronic Engineering, College of Technology (COT), University of Buea, P.O. Box 63,
Buea, Cameroon

Correspondence should be addressed to Isaac Sami Doubla; samyisac@yahoo.fr

Received 24 September 2020; Revised 27 October 2020; Accepted 2 December 2020; Published 14 December 2020

Academic Editor: Chun-Biao Li

Copyright © 2020 Isaac Sami Doubla et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A generalized third-order autonomous Duffing–Holmes system is proposed and deeply investigated. )e proposed system is
obtained by adding a parametric quadratic term (mx2) to the cubic nonlinear term (− x3) of an existing third-order autonomous
Duffing–Holmes system. )is modification allows the system to feature smoothly adjustable nonlinearity, symmetry, and
nontrivial equilibria. A particular attention is given to the effects of symmetric and asymmetric nonlinearity on the dynamics of
the system. For the specific case of m � 0, the system is symmetric and interesting phenomena are observed, namely, coexistence
of symmetric bifurcations, presence of parallel branches, and the coexistence of four (periodic-chaotic) and six (periodic)
symmetric attractors. For m≠ 0, the system loses its symmetry. )is favors the emergence of other behaviors, such as the
coexistence of asymmetric bifurcations, involving the coexistence of several asymmetric attractors (periodic-periodic or periodic-
chaotic). All these phenomena have been numerically highlighted using nonlinear dynamic tools (bifurcation diagrams, Lyapunov
exponents, phase portraits, time series, frequency spectra, Poincaré section, cross sections of the attraction basins, etc.) and an
analog computer of the system. In fact, PSpice simulations of the latter confirm numerical results. Moreover, amplitude control
and synchronization strategies are also provided in order to promote the exploitation of the proposed system in engineering.

1. Introduction

)e study of nonlinear dynamic systems has been attracting
researchers from various fields of science. )anks to ana-
lytical, numerical, and experimental tools, striking nonlinear
phenomena involved for instance in the evolution of stock
market [1], neural networks [2–6], and population dynamics
[7] have been uncovered. However, systems exhibiting
chaotic dynamics are of particular interest owing to their
potential applications in various fields of science and

engineering such as image encryption [8], random bits
generation [9], and secure communications [10]. Yet,
transient chaos [11, 12], antimonotonicity [13–15], multi-
stability [13–16], and many other dynamical features of
chaotic systems are relevant for their applications
[15, 17–21].

Multistability, namely, the occurrence of two or more
attractors for a given set of system parameter values due to
initial states (or/and noise sensitivity) [22–24], has explained
a large number of events in biology [25, 26] and chemistry
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[27], just to mention a few. Some important works based on
the construction and study of multistable chaotic systems or
chaotic systems with the coexistence of multiple attractors
have recently been published in [28–33]. )e work of Lai
et al. [28] was based on the study of an extended Lü system;
their results showed that the system has a pair of strange
attractors, a pair of limit cycles, and a pair of point attractors
for different initial conditions. )e authors [29] have con-
structed an extremely simple chaotic system with an infinite
number of coexisting chaotic attractors. Lai et al. [30] re-
ported a new chaotic system they generated from the
simplest chaotic memristor circuit by introducing a simple
nonlinear feedback control input. )e main characteristic of
the new system is that it has an infinite number of coexisting
equilibria and abundant attractors. )e results of [31] report
a new chaotic system without equilibrium with hidden
attractors and coexisting attractors. )is special feature
(multistability) can sometimes be justified by the fact that
the system is symmetric [34]. In this line, Kengne and
collaborators have highlighted the coexistence of four, six,
and eight attractors from a cubic, hyperbolic tangent, and
hyperbolic tangent-cubic nonlinearity-based chaotic jerk
system, respectively [35–37]. )e authors of [38] showed
the presence of nine coexisting attractors in a hyperjerk
chaotic system with hyperbolic sine nonlinearity. On the
other hand, Negou and Kengne [34] recently introduced a
jerk system with adjustable symmetry and nonlinearity.
)e system was obtained by replacing a hyperbolic sine
nonlinearity in an existing jerk system with a smoothly
adjustable nonlinearity. )is modification demonstrated
the relevance of adjustable symmetries in the emergence
of striking multistability. )e authors of [39–41] did
similar works by considering adjustable symmetry and
nonlinearities in the dynamics of a simple jerk system,
snap system, and jerk circuit, respectively. As far as
symmetry breaking is concerned, the results obtained
highlighted issues, such as the presence of parallel bi-
furcation branches, hysteresis, and coexisting multiple
asymmetric attractors in the mentioned systems and
circuits. )ese results are of particular practical interest
given that perfect symmetry is not a practical reality.

Motivated by these results, we propose in this article a
third-order chaotic system with adjustable symmetry,
nonlinearity, and nontrivial equilibria as well. )e novel
system is a generalized form of the third-order autonomous
Duffing–Holmes oscillator introduced by Lindberg et al.
[42]. )e novelty is brought by adding a parametric qua-
dratic term to the cubic nonlinear term of the former system,
resulting in a nonlinear function of the form
φm(x) � x − mx2 − x3. )e quadratic term has been con-
sidered here because it models a possible imperfection that
breaks the perfect symmetry of the original system. )is
modification can also be regarded as mathematical tech-
niques to discover new nonlinear patterns. Historically,
forced Duffing–Holmes system is one of the well-known
simple nonautonomous second-order chaotic system
[43, 44]. In 2009, Lindberg et al. [42] suggested an auton-
omous third-order Duffing–Holmes type system, with a
smoother spectrum. In spite of the numerous studies

recently devoted to uncovering multistability in nonlinear
systems, no report has shown that the autonomous third-
order Duffing–Holmes system suggested by Lindberg et al.
has such striking behavior (to the best of the authors’
knowledge). With the generalized third-order autonomous
Duffing–Holmes system proposed in this work, our aim is
twofold. Firstly, we show that the autonomous Duf-
fing–Holmes system introduced by Lindberg et al. (which is
a particular case of the generalized one) exhibits multi-
stability. Secondly, we investigate the effects of adjustable
symmetry, nonlinearity, and nontrivial equilibria on the
dynamics previously obtained (with the particular case).
Moreover, amplitude control and adaptive synchronization
of the system are performed for promoting possible appli-
cations in engineering.

)e remainder of this article is structured as follows.
Section 2 is devoted to the description of the novel system
and analytical examination of its basic properties. In Section
3, the system is numerically analyzed using appropriate tools
of nonlinear dynamics. In Section 4, an electronic analog
calculator of the system is designed and PSpice simulation
results are also presented. Sections 5 and 6 are about am-
plitude control and adaptive synchronization, respectively.
Finally, conclusions are drawn in Section 7.

2. System Description and Basic Properties

2.1. System Description. )e autonomous Duffing–Holmes
system derived by Lindberg et al. [42] is as follows:

_x � y,

_y � x − x
3

+ by − kz,

_z � wf(y − z),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where b represents the damping coefficient, k is the feedback
coefficient, and wf is the cutoff frequency of the filter (see
Ref. [42] for more details). )e system under investigation is
obtained by adding the parametric quadratic term mx2 to
the second equation of the autonomous Duffing–Holmes
system (1), that is:

_x � y,

_y � x − x
3

+ by − kz − mx
2
,

_z � wf(y − z).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

)e quadratic nonlinearity coefficient m is introduced to
modify system’s nonlinearity, symmetry, and equilibria as it
will be shown later. Note that system (1) can always be
obtained by setting m � 0. )ough this has been studied in
[42], some complex behaviors such as coexistence of
attractors were not revealed. With the generalized model
(system (2)), we are going to revisit system (1) and inves-
tigate the case with m≠ 0.

2.2. Dissipation and Existence of Attractors. )e presence of
attractors in a system can be determined by calculating its
divergence. )e divergence of system (2) is given by
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Λ �
z _x

zx
+

z _y

zy
+

z _z

zz
� − wf − b . (3)

Given that wf and b are strictly positive, the divergence
of system (2) is strictly negative whenever wf > b (case
considered in this work). )is proves the existence of
attractors because the volume elements contract after a unit
of time. )is contraction reduces a volume V0 by a factor
e− (wf− b)t. )is means that each volume containing the
trajectory of system (2) converges to zero when t tends to
infinity at an exponential rate of (wf − b). )erefore, all the
orbits of system (2) are finally limited to a specific subset
having a zero volume. )us, the asymptotic movement
settles on an attractor [45–49].

2.3. Symmetry. Symmetry is an interesting feature of dy-
namic systems. It tells us if the solutions are unique or even.
System (2) is invariant to the transformation
(x, y, z)⇔(− x, − y, − z) when m � 0. In this case, if s(x, y, z)

is a solution of the system for a set of parameter values, then
s(− x, − y, − z) is also a solution for the same values of pa-
rameters. )is symmetry will be responsible for the ap-
pearance of the solutions in pair by polarity inversion of the
initial conditions [50] and thus leads to the coexistence of
attractors in the state space. However, the aforementioned
symmetry disappears for m≠ 0.

2.4. Analysis of Fixed Points and Hopf Bifurcation. When
studying the dynamics of a system, it is always interesting to
analyze the stability of its fixed points. By setting the left-
hand side of equation (2) equal to zero ( _x � _y � _z � 0), we
find that system (2) has three fixed points: one trivial
equilibrium p1(x01, y01, z01) � (0, 0, 0) and two nontrivial
equilibria p2,3(x02,03, y02,03, z02,03) � ((− m ±

������
m2 + 4

√
/2),

0, 0). It should be noted that coordinates of nontrivial
equilibria depend on the parameter m; it is therefore possible
to adjust their positions by acting on the parameter m. )e
Jacobian matrix of system (2) associated with any of these
fixed points is given by the following expression:

MJ �

0 1 0

1 − 3x
2

− 2mx b − k

0 wf − wf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

)e nature of equilibria can be found from the following
characteristic equation (det(MJ − λI3) � 0):

λ3 + wf − b λ2 + 3x
2

+ 2mx − bwf + kwf − 1 λ

+ wfx(3x + 2m) − wf � 0,
(5)

where I3 denotes the 3× 3 identity matrix. By applying
Routh–Hurwitz stability criteria to characteristic equation
(5), we obtain the following generalized stability conditions
for the equilibrium points of system (2):

wf − b > 0,

wf − b  3x
2

+ 2mx − bwf + kwf − 1 

− wfx(3x + 2m) + wf > 0,

wf(x(3x − 2m) − 1)> 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

For the trivial fixed point p1(x01, y01, z01) � (0, 0, 0), we
obtain the following stability conditions:

wf > b,

k> 1 −
1

wf wf − b 
⎛⎝ ⎞⎠b,

wf < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

while for the equilibrium points P2,3, we have the following
stability conditions:

wf > b,

k>
b − w

2
f − 3x

2
02,03 − 2mx02,03 + bwf + 1 

wf − wf + b 
,

wf > 0,

m< ±
2
15

��
15

√
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

with

x02,03 �
− m ±

������
m

2
+ 4



2
. (9)

Table 1 confirms relations (7) and (8), for different values
of the parameters wf, betm.

Considering the change of variable λ � iw0(w0 > 0) and
substituting into (5), after separation of real part from
imaginary part, we obtain relation (10) for the trivial point of
equilibrium (P1) when m � 0.

wHopf � w0 �

������
wf

b − wf



,

kc � 1 −
1

wf wf − b 
⎛⎝ ⎞⎠b.

(10)

Differentiation of equation (5) with respect to k gives the
following relation:

Real
zλ
zk

 

k�kc

�
− 1
2wf

1

b − wf 
2

− 1 
2

+ 1
≠ 0, ∀wf > 0.

(11)
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Equation (10) defines the frequency of stable oscillations
as well as the critical value of k corresponding to the Hopf
bifurcation of system (2). From relation (11), note that the
transversality condition is always satisfied provided that wf

is a strictly positive parameter.

3. Numerical Investigations

3.1. Methodology. In this section, we do a thorough analysis
of the dynamics of system (2) using numerical tools such as
bifurcation diagrams, maximum Lyapunov exponent,

Table 1: Stability of the equilibrium points P1, P2, and P3 obtained from equations (7) and (8) for different values of wf, b, k, and m.

Equilibrium points
Parameter values Eigenvalues

Stability
wf b k m λ1 λ2 λ3

P1

− 1 − 3 − 8 — − 0.2848 + 0.0000i − 0.8576 + 1.6661i − 0.8576 − 1.6661i Stable
− 2 − 4 − 7 — − 0.4668 + 0.0000i − 0.7666 + 1.9227i − 0.7666 − 1.9227i Stable
1 3 10 — 0.1761 + 0.0000i 0.9120 + 2.2016i 0.9120 − 2.2016i Unstable
2 4 9 — 0.2329 + 0.0000i 0.8836 + 2.7942i 0.8836 − 2.7942i Unstable

P2
1 3 1.6696 0.6 − 0.7163 + 0.0000i 1.3582 + 0.5695i 1.3582 − 0.5695i Unstable
3 1 2.2589 0.6 − 1.5882 + 0.0000i − 0.2059 + 3.3692i − 0.2059 − 3.3692i Stable

P3
2 4 2.1936 − 0.6 − 1.4073 + 0.0000i 1.7036 + 1.0422i 1.7036 − 1.0422i Unstable
4 2 3.7016 − 0.6 − 1.2907 + 0.0000i − 0.3546 + 2.9277i − 0.3546 − 2.9277i Stable
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Figure 1: Bifurcation diagrams as a function of the parameter b showing destruction of the symmetry of the system for some values of m: (a)
the symmetric system for m � 0.00; (b–d) destruction of the system’s symmetry for m � 0.05, m � 0.10, and m � 0.25, respectively. )e
initial conditions are (x(0), y(0), z(0)) � (0.25, 0, 0) and (− 0.25, 0, 0) for the traces in red and blue, respectively.
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Poincaré section, phase portraits, time series, cross section of
the basin of attraction, and so on. Bifurcation diagrams are
obtained from the local maxima of one of the state variables
for different values of the control parameters. Maximum
Lyapunov exponents are computed using Wolf‘s algorithm
[51]. In fact, the Maximum Lyapunov exponent makes it
possible to estimate the rate of convergence or divergence
between two close trajectories. )us, if the maximum
Lyapunov exponent is (i) positive, the system is considered
as chaotic because for a small perturbation, its trajectory
diverges (this implies the occurrence of a strange attractor in
phase space); (ii) negative, the system is considered stable
because for all perturbations, it returns to its equilibrium
point; (iii) null, the system is considered periodic or
quasiperiodic.

All the numerical integrations are based on the fourth-
order Runge–Kutta algorithm with an integration step
h � 5.10− 3, for better precision.

3.2. Coexistence of Bifurcations and Multiple Attractors

3.2.1. Considering b as a Control Parameter with m � 0.
In this section, we consider b as a control parameter and m is
equal to zero.)e dynamics obtained is that represented by the
bifurcation diagrams of Figure 1(a), carried out in the as-
cending direction for 0.22≤ b≤ 0.32, wf � 0.5, and k � 1.6.
)is figure presents a very interesting phenomenon which is
the coexistence of two symmetric bifurcation diagrams. )is
coexistence is highlighted through the superposition of two
diagrams (red and blue) obtained by symmetrically changing
the initial conditions ((0.25, 0, 0)⇔(− 0.25, 0, 0)). )ey are in
good agreement with the corresponding graphs of Lyapunov
exponents as shown in Figure 2(a). Figure 3 shows some 3D
phase portraits obtained for different values of the control
parameter with initial conditions as indicated. Figures 4(a)–
4(d) show a symmetric chaotic attractor, its time series, its
frequency spectrum, and its Poincaré section (these repre-
sentations are consistent with the chaotic behavior), respec-
tively, for b � 0.32. All these confirm the symmetric nature of
the dynamic of system (2).

3.2.2. Considering b as a Control Parameter with m≠ 0.
In this section, we still consider b as a control parameter but
m≠ 0.0. With 0.22≤ b≤ 0.32, wf � 0.5, and k � 1.6, bifur-
cation diagrams shown in Figures 1(b)–1(d) are plotted for
m equal to 0.05, 0.10, and 0.25, respectively. Let us recall that
red color is used for (x0, y0, z0) � (0.25, 0, 0) and blue color
is used for (x0, y0, z0) � (− 0.25, 0, 0). Comparing
Figures 1(b)–1(d) with Figure 1(a), we can observe that
bifurcation diagrams in red are no more symmetric to their
counterpart (in blue). )ere is a gap (discontinuity) in the
blue bifurcation diagrams (Figures 1(b)–1(d)), which in-
creases asm is increased.)is observation is caused by a shift
in equilibrium points (see Table 2) and implies the existence
of coexisting attractors. )e coexistence of a period-2 limit

cycle with a period-3 limit cycle (Figure 5(c)) and a chaotic
attractor with a periodic attractor (Figure 5(d)), for instance,
is revealed in Figure 5. Figures 6(a)–6(d) represent an
asymmetric chaotic attractor, its time series, its frequency
spectrum, and its Poincaré section (these representations are
specific to chaotic attractors), respectively, for b � 0.32. )e
aforementioned results indicated an increase in system’s
complexity when m≠ 0.

3.2.3. Considering k as a Control Parameter with m � 0.
Considering k as a control parameter with m equal to zero,
the dynamics of system (2) is governed by the superimposed
bifurcation diagrams and Lyapunov exponents of
Figures 7(a) and 8(a), respectively. )ese diagrams are
obtained by varying the control parameter (downward) in
the range 2≤ k≤ 3 for initial conditions of opposite signs
( ± 0.75, 0, 0) with wf � 0.5 and b � 0.41. Figure 9 shows an
enlargement of the diagram of Figure 7(a) (in red) in the
intervals 2.6575≤ k≤ 2.68 (Figure 9(a)) and 2.671≤ k≤ 2.672
(Figure 9(b)) illustrating parallel branches. )ey show the
coexistence of four (two periodic and two chaotic) and six
attractors occurring in symmetric pairs. Figures 10 and 11
illustrate the 2D representations of these different attractors
in the phase space. )ese attractors are obtained for the
values of k � 2.667 and 2.6714, respectively. )e different
values of the initial conditions (x0, y0, z0) are as follows: for
the coexistence of the four attractors—period-1 ( ± 0.12,

0, 0) and chaotic spiral ( ± 0.39, 0, 0); for the coexistence of
the six attractors—n-finite periods ( ± 0.28, 0, 0), period-
6( ± 0.06, 0, 0), and period-1 ( ± 0.108, 0, 0). )ese multi-
stabilities are well illustrated on the cross sections of the
basins represented in Figures 12(a)–12(d), where we can
observe several regions distinguished by different colors that
correspond to each attractor.

3.2.4. Considering k as a Control Parameter with m≠ 0.
Keeping k(2≤ k≤ 3) as the control parameter, with
m≠ 0(m � 0.10, 0.125), wf � 0.5, and b � 0.41, we obtain
the asymmetric bifurcation diagrams of Figures 7(b) and
7(c), which govern the evolution of system (2) for
m � 0.10 and 0.125, respectively. )ese diagrams are ob-
tained for the initial conditions ( ± 0.75, 0, 0). )e asym-
metry observed in these diagrams is due to the destruction of
the system’s symmetry. )is is caused by a nonsymmetric
displacement of nontrivial equilibrium points with respect
to the values of m (see Table 2). )is can also be observed on
the corresponding Lyapunov exponents diagrams of
Figures 8(b) and 8(c).

3.3. Two Parameters and Lyapunov Exponents. )e changes
that occur in chaotic dynamic systems may not be only
related to small differences of initial conditions but also rely
on the variation of parameters to which the system is
sensitive. Figure 13 shows an interesting way to represent the
behavior of system (2) according to its parameters
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(b, k, andwf) through the maximum Lyapunov exponents
(λmax) [52, 53]. In this figure, we can appreciate behavioral
changes marked by transitions, from periodic zones (where
λmax < 0) in blue to chaotic zones (where λmax > 0) in red (see
Figures 13(a) and 13(b)). )is way of presenting the dy-
namics of the system (2) thus makes it possible to prove the
existence of chaotic solution for a combination of the values
of its parameters.

4. Circuit Design and PSpice Simulations

)e theoretical and numerical predictions previously
obtained are verified in this section using an electronic
analog of system (2). )e circuit diagram of the proposed
electronic analog computer is shown in Figure 14. It
involves three integrators, an inverter, a subtractor, and
two multipliers which are at the origin of the nonlinear
terms.

Using Kirchhoff’s laws, equations governing the circuit
can be obtained as

1
RC

dx

dτ
�

1
RC

y,

1
RC

dy

dτ
�

1
RC

y −
1

RC
x
3

+
Rb

RC
y −

Rk

RC
z −

Rm

RC
x
2
,

1
RC

dz

dτ
�

Rwf

RC
(y − z),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

with the following considerations:

x � X,

y � Y,

z � Z,

τ �
t

RC
.

(13)

Equation (12) becomes
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Figure 2: Diagrams of the maximum Lyapunov exponents, corresponding to the bifurcation diagrams of Figure 1. )is figure shows the
impact of the value of m on the symmetry of system (2) considering b as a control parameter.
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dX

dt
�

1
RC1

Y,

dY

dt
�

1
RC2

X −
1

RC2
X

3
+

Rb

RC2
Y −

Rk

RC2
Z −

Rm

RC2
X

2
,

dZ

dt
�

Rwf

RC2
(Y − Z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Systems (14) and (2) are equivalent for

b �
Rb

R
,

k �
Rk

R
,

wf �
Rwf

R
,

m �
Rm

R
.

(15)

0.4
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Figure 3: )ree-dimensional representations (x − y − z) of trajectories in phase space, at different points of the bifurcation diagram of the
symmetry system (Figure 1(a)) for different values of b: (a) cycle of period-1 for b � 0.22, (b) cycle of period-2 for b � 0.28, (c) cycle of
period-4 for b � 0.284, and (d, e) single and double chaotic bands for b � 0.288 and b � 0.3 , respectively. )e initial conditions are
(x(0), y(0), z(0)) � (0.25, 0, 0) and (− 0.25, 0, 0) for the curves in red and blue, respectively.
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Let us carry out analog simulations of the circuit’s dy-
namics in PSpice. For these simulations, the following con-
figurations of the transient analysis are adopted. Print step:
200ns; final step: 500ms; no-print delay: 480ms; step ceiling:
4µs. For electronic components, C1 � C2 � C3 � 10 nF and
R � 10 kΩwhile Rb, Rk, Rm, and Rwf

are tunable.)e different
portraits presented in Figure 14 correspond to the transitions to
chaos of the symmetric system obtained by fixing

Rm � 1MΩ, Rwf
� 20 kΩ, and Rk � 6.25 kΩ and by varying

Rb (see Table 3) for the initial conditions (X(0), Y(0), Z(0)) �

( ± 0.25V, 0V, 0V). We can observe similarities between
phase portraits of Figure 15 with those of Figure 3 obtained
from the bifurcation diagram of the symmetric system
(Figure 1(a)). Figure 16 shows the transitions of the asymmetric
system to chaos obtained for Rm � 200 kΩ, Rwf

� 20 kΩ, Rk �

6.25 kΩ by varying Rb (see Table 3) with the initial conditions

–0.5
2

0z

0.5

0

–2 –2

0
xy

2

(a)

–1.5
1500 1550 1600 1650

τ
1700 1750

–0.5

–1

0x

0.5

1

1.5

(b)

0 2 4
Freq

6 8 10
10–15

10–10

PS
D

 (x
2)

10–5

100

(c)

–0.4
–1.5 –1 –0.5 0

z
0.5 1 1.5

–0.1

–0.2

–0.3

0x

0.1

0.2

0.4

0.3

(d)

Figure 4: )ree-dimensional portrait (a), time series (b), frequency spectrum (c), and Poincaré section (d), confirming symmetric chaotic
behavior of the system for m � 0.00 and b � 0.32. )e other parameters are specified in the text.

Table 2: Modifications of nontrivial equilibrium points for different values of m.

Values of m
Nontrivial equilibrium points

P2 P3
0.00 (1, 0, 0) (− 1, 0, 0)
0.05 (0.9753, 0, 0) (− 1.0253, 0, 0)
0.10 (0.9512, 0, 0) (− 1.0512, 0, 0)
0.125 (0.9395, 0, 0) (− 1.0645, 0, 0)
0.25 (0.8828, 0, 0) (− 1.1328, 0, 0)

8 Complexity



(X(0), Y(0), Z(0)) � ( ± 0.15V, 0V, 0V). )ese transitions
are similar to those of Figure 5 obtained by numerical inte-
grations at different points of the bifurcation diagram of the
asymmetric system (Figure 1(b)). )e coexistence of the four
and six attractors (see Figures 17 and 18) was obtained forRk �

3.746 kΩ and Rk � 3.745 kΩ, respectively (see Table 3), with
Rm � 1MΩ, Rwf

� 20 kΩ, Rb � 24.39 kΩ. Concerning the
values of the initial conditions(X(0), Y(0), Z(0)), they are
( ± 0.13V, 0V, 0V) and( ± 0.15V, 0V, 0V) for the four
attractors and ( ± 0.11V, 0V, 0V), ( ± 0.25V, 0V, 0V),
(0.17V, 0V, 0V), and (− 0.88V, 0V, 0V) for the six
attractors.

5. Total Amplitude Control (TAC)

Amplitude control of chaotic signals is important in engi-
neering applications where the amplitude is desired for
signal generation and transmission [54–58]. It makes it
possible to get the attractor large or small by changing one or
more variables in a range, without changing the dynamic
and topological properties of the attractor [59]. )e am-
plitude control can be total (TAC), in this case all variables
are controlled in a linked way. When all the variables are
controlled separately, we speak of composite amplitude
control (CAC). In the case where only the amplitude of one
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Figure 5: )ree-dimensional representations (x − y − z) of trajectories in the phase space, at different points of the bifurcation diagram of
the asymmetry system (Figure 2(a)), for different values of b with m� 0.05: (a, b) cycle of period-1 for b � 0.22 and cycle of period-2 for
b � 0.25; (c) cycles of period-4 and period-2 for b � 0.2824; (d) single-band chaotic attractor with cycle of period-4 for b � 0.2856; (e, f )
single and chaotic dual-band attractor for b � 0.2892 and b � 0.3, respectively. )e initial conditions are (x(0), y(0), z(0)) � (0.25, 0, 0)

and (− 0.25, 0, 0) for the traces in red and blue, respectively.
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or of n − 1(n≥ 3) variables is controlled, it is a partial
amplitude control (PAC) [56, 59].

Referring to [56, 59–61], it is possible to perform a total
amplitude control (TAC) of system (2) by introducing an
amplitude control function f(r) on the cubic term, which
leads to the following system:

_x � y,

_y � x −
1

f(r)
x
3

+ by − kz − mx
2
,

_z � wf(y − z).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

)e function f(r) makes it possible to control the
amplitudes of the variables x, y, and z according to
1/

����
f(r)


(f(r)> 0).

Proof. Let: u � x/
����
f(r)


, v � y/

����
f(r)


and w � z/

����
f(r)


.

)e resulting system (17) considering m � 0 is identical to
system (2):

_u � v,

_v � u − u
3

+ bv − kw − m

����

f(r)



u
2
,

_w � wf(v − w).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

So, the function f(r) controls all the amplitudes
according to 1/

����
f(r)


. Consider f(r) � 1/r(r> 0), with r

being the total amplitude control parameter. By acting on
the amplitude control parameter r(r> 0), the variables are
modified while leaving the dynamics of the attractor un-
changed. Figure 19(a) shows the reductions in the ampli-
tudes of the x, y, and z variables of the dual-band chaotic
attractor when increasing the control parameter r.
Figure 19(b) shows the largest Lyapunov exponent diagram,
which remains unchanged when the control parameter
varies, which justifies the invariance of the properties of the
attractor during amplitude control. )e phase portraits of
this dual-band chaotic attractor are shown in Figure 20 in
the (x − y), (x − z), and (y − z) planes for the discrete
values of r. )ese representations come to validate the total
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Figure 6: )ree-dimensional portrait (a), time series (b), frequency spectrum (c), and Poincaré section (d), confirming asymmetric chaotic
behavior of the system for m � 0.25 and b � 0.32. )e other parameters are specified in the text.
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amplitude control (TAC) because the amplitudes of the
three variables are reduced without altering the dynamic
and topological properties of the attractor. )is control
can be achieved by introducing a potentiometer in the
electronic circuit. )is is convenient or beneficial in the
context of secure communication as well as in various
fields of information processing in engineering
[54–58]. □

6. Adaptive Synchronization

)e importance of synchronizing chaotic and/or hyper-
chaotic systems could be its application in areas of engi-
neering such as secure communication [62–66]. To date,
there are several synchronization schemes that have already
been developed with notable applications [67–71]. Among
these, one of the best known methods is the adaptive
method, which we will use in this section.

Consider the master and slave subsystems described by
expressions (18) and (19), respectively:

_x1 � y1,

_y1 � x1 − x
3
1 − mx

2
1 + by1 − kz1,

_z1 � wf y1 − z1( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

_x2 � y2 + u1,

_y2 � x2 − x
3
2 − mx

2
2 + by2 − kz2 + u2,

_z2 � wf y2 − z2(  + u3,

⎧⎪⎪⎨

⎪⎪⎩
(19)

where (x1, y1, z1) and (x2, y2, z2) represent the state vari-
ables of the master and slave, respectively. ui(i � 1, 2, 3) are
the nonlinear controllers to choose so that the subsystems
(18) and (19) synchronize.

)e synchronization errors between (18) and (19) are
given by

–1
2 2.2

m = 0.00

2.4
k

2.6 2.8 3

–0.5

0

x

0.5

1

1.5

(a)

–1.5

–1

2 2.2

m = 0.10

2.4
k

2.6 2.8 3

–0.5

0x

0.5

1

1.5

(b)

–1.5

–1

2 2.2

m = 0.125

2.4
k

2.6 2.8 3

–0.5

0x

0.5

1

1.5

(c)

Figure 7: Bifurcation diagrams as function of the parameter k, showing destruction of the symmetry of the system for some values ofm: (a)
the symmetric system for m � 0; (b, c) destruction of the system symmetry for m� 0.10 and m � 0.125, respectively. )e initial conditions
are (x(0), y(0), z(0)) � (0.75, 0, 0) and (− 0.75, 0, 0) for the traces in blue and red, respectively.
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Figure 8: Diagrams of the maximum Lyapunov exponents corresponding to the bifurcation diagrams of Figure 7 showing the impact of the
value of m on the symmetry of system (2) considering k as a control parameter.
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Figure 10: Coexistence of four attractors at the point k� 2.66 of Figure 9(a), for different values of the initial conditions (x(0), y(0), z(0)): (a)
a period-1 attractor and its symmetry for (±0.12, 0, 0); (b) a chaotic spiral attractor and its symmetry for (±0.39, 0, 0).
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Figure 11: Coexistence of six periodic attractors at point k� 2.6714 of Figure 9(b), for different values of the initial conditions (x(0), y(0),
z(0)): (a) a finite n-period attractor and its symmetry for (±0.028, 0, 0); (b) a period-6 attractor and its symmetry for (±0.06, 0, 0); (c) a
period-1 attractor and its symmetry for (±0.108, 0, 0).
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_e1 � _x2 − _x1 � e2 + u1,

_e2 � _y2 − _y1 � e1 − x
3
2 − x

3
1  − m x

2
2 − x

2
1  + be2 − ke3 + u2,

_e3 � _z2 − _z1 � wf e2 − e3(  + u3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

where

e2 � y2 − y1,

e3 � z2 − z1.
(21)

For reasons of simplicity, consider the expressions of the
controllers described by

u1 � − e2 − k1e1,

u2 � − e1 + x
3
2 − x

3
1  + m x

2
2 − x

2
1  − be2 + ke3 − k2e2,

u3 � − wf e2 − e3(  − k3e3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

with b, wf, and k being the estimated parameters of b, wf,
and k, respectively. ki(i � 1, 2, 3) is the positive feedback
gain.

By substituting (22) in (19) and (20), we obtain the
following expressions for the slave subsystem (23) and the
synchronization errors (24):
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Figure 12: Cross sections of the basins of attraction in the (x(0) − y(0)) and (y(0) − z(0)) plane: on (a, b) blue and yellow colors indicate
regions of period-1 while green and magenta indicate regions of chaotic attractors; on (c, d) magenta and yellow colors indicate the regions
of n-finite periods, cyan and black indicate the regions of period-6 while green and blue the regions indicate of period-1. Regions of
unbounded behavior are in red.
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Table 3: Comparison between the results of numerical integrations and PSpice.

System Attractors
Numerical integration results PSpice results

b Rb � 10/b(kΩ) k Rk � 10/k(kΩ) Rb(kΩ) Rk(kΩ)

Symmetric (m � 0.0, Rm � 1MΩ)

Period 1 0.22 45.4545

1.6 6.25

45 6.25
Period 2 0.28 35.7142 35.6
Period 4 0.284 35.2112 35.4

Single band chaos 0.288 34.7222 35
Double band chaos 0.3 33.3333 33.33
Coexistence of four 0.41 24.3902 2.66 3.7593 24.39 3.746
Coexistence of six 2.6714 3.7433 24.39 3.745

Asymmetric (m � 0.05, Rm � 200 kΩ)

Period 1 0.22 45.4545

1.6 6.25

37

6.25

Period 2 0.25 40 36
Period 4-period 2 0.2824 35.4107 35.6

Single band chaos-period 2 0.2856 35.01 35.2
Single band chaos 0.2892 34.5781 34.8
Double band chaos 0.3 33.3333 34.631
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Figure 15: Continued.
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Figure 15: Phase portraits obtained from PSpice for Rm � 1MΩ (corresponding to the symmetric case) and different values of the control
resistance Rb showing (a) cycle of period-1 for Rb � 45 kΩ, (b) cycle of period-2 for Rb � 35.6 kΩ, (c) cycle of period-4 for Rb � 35.4 kΩ,
(d) single chaotic band for Rb � 35 kΩ, and (e) double-band chaotic attractor Rb � 33.33 kΩ. )e pairs are obtained for
(X(0), Y(0), Z(0)) � ( ± 0.25, 0, 0).

Complexity 17



V (–X)
–1.5V –1.0V –0.5V –0.0V

–1.0V

0V

1.0V

V (Y)

(a)

–1.0V

0V

1.0V

V (–X)
0V 0.5V 1.0V 1.5V

V (Y)

(b)

–2.0V –1.0V –0.0V 1.0V
–1.0V

0V

1.0V

V (–X)

V (Y)

(c)

–1.0V 0V 1.0V 2.0V
–1.0V

0V

1.0V

V (–X)

V (Y)

(d)

–2.0V –1.0V –0.0V 1.0V
–1.0V

0V

1.0V

V (–X)

V (Y)

(e)

–1.0V

0V

1.0V

–1.0V 0V 1.0V 2.0V
V (–X)

V (Y)

(f )

Figure 16: Continued.
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Figure 16: Phase portraits obtained from PSpice for Rm � 200 kΩ (corresponding to the asymmetric case) and different values of the control
resistance Rb showing (a, b) cycle of period-1 for Rb � 37 kΩ, (c, d) cycle of period-2 for Rb � 36 kΩ; (e) and (f) for cycle of period-4 and
period-2 respectively with Rb � 35.6 kΩ; (g) and (h) for single-band chaotic attractor and cycle of period-4 respectively with Rb � 35.2kΩ; (i,
j) for single-band chaotic attractor with Rb � 34.8 kΩ; (k) and (l) for two asymmetric double-band chaotic attractor with Rb � 34.631 kΩ.
)e pairs are obtained for (X (0), Y(0), Z (0)) � ( ± 0.15, 0, 0).
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_x2 � y1 − k1e1,

_y2 � x1 − x
3
1 − mx

2
1 + y2eb + by1 − z2ek − kz1 − k2e2,

_z2 � y2 − z2( ewf
+ wf y1 − z1(  − k3e3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

_e1 � − k1e2,

_e2 � e2eb − e3ek − k2e2,

_e3 � e2 − e3( ewf
− k3e3,

⎧⎪⎪⎨

⎪⎪⎩
(24)

where

eb � (b − b),

ewf
� wf − wf ,

ek � (k − k),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25a)

such as

_eb � −
_b,

_ewf
� − _wf,

_ek � −
_k.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(25b)

)e synchronization problem amounts to impose that
the synchronization error e(τ)⟶ 0 (where e � [e1, e2,

e3]
T) when τ⟶∞ (asymptotically stable around its point

of equilibrium) [72]. For this, let us consider the following
positive definite function as Lyapunov candidate function:

V e1, e2, e3, eb, ewf
, ek  �

1
2

e
2
1 + e

2
2 + e

2
3 + e

2
b + e

2
wf

+ e
2
k .

(26)
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Figure 17: Representations of the four coexisting attractors obtained in PSpice with Rm� 1MΩ, Rk� 3.746kΩ for different values of the initial
conditions (X(0), Y(0), Z(0)): (a) cycle of period-1 and (b) its symmetry for (±0.13, 0, 0); (c) chaotic attractor and (d) its symmetry for (±0.15, 0, 0).

20 Complexity



–2.0V –1.0V –0.0V 1.0V
–2.0V

–1.0V

–0.0V

1.0V

V (–X)

V (Y)

(a)

–1.0V

0V

2.0V

1.0V

–1.0V 0V 1.0V 2.0V
V (–X)

V (Y)

(b)

–2.0V –1.0V –0.0V 1.0V
–2.0V

–1.0V

–0.0V

1.0V

V (–X)

V (Y)

(c)

–1.0V

0V

2.0V

1.0V

–1.0V 0V 1.0V 2.0V
V (–X)

V (Y)

(d)

–2.0V –1.0V –0.0V 1.0V
–1.0V

0V

1.0V

V (–X)

V (Y)

(e)

–1.0V

0V

1.0V

–1.0V 0V 1.0V 2.0V
V (–X)

V (Y)

(f )

Figure 18: Representation of the six coexistence attractors obtained in PSpice with Rm � 1MΩ, Rk � 3.745 kΩ for different values of the
initial conditions (X(0), Y(0), Z(0)): (a) cycle of n-finite period and (b) its symmetry for (± 0.25, 0, 0); (c) cycle of period-6 and (d) its
symmetry for (+ 0.17, 0, 0) and (− 0, 88, 0, 0), respectively; (e) cycle of period-1 and (f) its symmetry for (± 0.11, 0, 0).
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Figure 19: Bifurcation diagrams (a) and largest Lyapunov exponent (b), illustrating the change in amplitude of the variables x, y, and z (in
red, blue, and black, respectively) as a function of the parameter r, without alteration of the properties of the system.)e parameters b, wf, k,
and m are set to 0.3, 0.5, 1.6, and 0.0, respectively.
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By differentiating the Lyapunov candidate function (26)
along the error trajectory (27), we have

dV

dτ
� e1 _e1 + e2 _e2 + e3 _e3 + eb _eb + ewf

_ewf
+ ek _ek, (27)

which yields

_V � − k1e
2
1 − k2e

2
2 − k3e

2
3 + _eb + e

2
2 eb

+ ( _ewf
+ e3 e2 − e3( ewf

+ ek − e2e3( ek.
(28)

)e subsystems (18) and (19) will be synchronized if (29)
is satisfied.

_V< 0. (29)

)e condition for (29) to be satisfied is specified by the
following expression:

_eb � − e
2
2,

_ewf
� − e3 e2 − e3( ,

_ek � e2e3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

Figure 21 shows the evolutions of the estimated pa-
rameters b, wf, and k converging asymptotically to the
values 0.32, 0.5, and 1.6, respectively. On the other hand,
Figure 22 shows evolutions of the errors e1, e2, and e3 which
converge asymptotically towards zero with time. )ese
evolutions prove that the subsystems (18) and (19) are well
synchronized. For these numerical simulations, we have
considered the initial conditions (x1(0), y1(0), z1(0)) �

(1, − 1, 1) and (x2(0), y2(0), z2(0)) � (1, 0, 1) with the
values of the gains (k1, k2, k3) � (1, 1, 0). For parameter
values, b � 0.32, wf � 0.5, m � 0, and k � 1.6. At the starting
point, estimated parameters are(b(0), wf(0), k(0)) �

(− 0.15, − 1, − 1).

7. Conclusion

)is work focused on the effects of symmetric and asym-
metric nonlinearity on the dynamics of a third-order chaotic
system, namely, the Duffing–Holmes autonomous oscillator.
)is has been investigated by supplementing a parametric
quadratic term (mx2) to the cubic nonlinear term (− x3) of
the existing third-order autonomous Duffing–Holmes
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Figure 21: Temporal evolutions of the estimated gains of b, wf, and k converging asymptotically to (a) 0.32 (in blue), (b) 0.5 (in green), and
(c) 1.6 (in red), respectively.
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Figure 22: Temporal evolutions of the errors between the two subsystems (11) and (12) (master and slave), starting from different initial
conditions: convergence of the errors (a) e1 (in green), (b) e2 (in blue), and (c) e3(in red) towards zero.
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system [42]. An electronic circuit analog to the proposed
system has also been designed. Using the Routh–Hurwitz
criteria, stability conditions of the fixed points have been
established and the existence of a Hopf bifurcation is ob-
tained. )e dynamics of the system has been studied by
considering two control parameters (b and k) for discrete
values of the parameter m. )e parameter m made it possible
to adjust the symmetry of the system bymodifying nontrivial
equilibrium points. With b as control parameter, the system
exhibits a coexistence of symmetric bifurcation diagrams,
confirmed by superposition of the Lyapunov exponent di-
agrams, phase portraits, and others when m � 0. When
m≠ 0, symmetry is destroyed. With k as control parameter,
dynamics of the system is still symmetric in the case of
m � 0. )is has been confirmed by the superposition of
bifurcation diagrams obtained from different initial con-
ditions. With this, the coexistence of four and six attractors
in a set of symmetric pairs has been revealed at certain points
of the bifurcation diagrams. )e cross sections of the basins
of attraction have been represented in these different points
of coexistence. For the case of m≠ 0 (with k as control
parameter), the system exhibits asymmetry behavior con-
firmed by bifurcation diagrams obtained from different
initial conditions. )ese symmetric breakdowns (asymme-
try) are related to the movements of the nontrivial equilibria,
caused by the values of the parameter m. )e representations
of the dynamics of the system according to its parameters
and the Lyapunov exponents revealed the presence of pe-
riodic and chaotic regions. )e results from the analog
simulations in PSpice show good agreement with the nu-
merical results. )e results obtained under total amplitude
control (TAC) and synchronization analyses conducted
using the adaptive method prove that this new system is
suitable for applications in various fields of engineering such
as encryption of images [73], secure communication [74],
and random bit generator [75].

)e model reported in this work is a typical example of
a 3D system with three rest points and a nonlinear
function with a region of negative slope. Also, we con-
jecture that the results obtained in this work may also be
found in the Chua circuit, Shinriki oscillator, and jerk
system (with cubic, hyperbolic sine, or hyperbolic tan-
gent) just to cite a few, hence the pertinence and relevance
of our study.
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