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+e aerial manipulator is a complex system with high coupling and instability. +e motion of the robotic arm will affect the self-
stabilizing accuracy of the unmanned aerial vehicles (UAVs). To enhance the stability of the aerial manipulator, a composite
controller combining conventional proportion integration differentiation (PID) control, fuzzy theory, and neural network al-
gorithm is proposed. By blurring the attitude error signal of UAV as the input of the neural network, the anti-interference ability
and stability of UAV is improved. At the same time, a neural networkmodel identifier based onMaxout activation function is built
to realize accurate recognition of the controlled model. +e simulation results show that, compared with the conventional PID
controller, the composite controller combined with fuzzy neural network can improve the anti-interference ability and stability of
UAV greatly.

1. Introduction

With the maturity of drone technology, drones are widely
used in the industrial field. For some highly complex and
ultraprecise tasks, the UAV needs to be equipped with more
auxiliary structures (for example, multidegree of freedom
mechanical arms). +erefore, it is increasingly difficult for
conventional control methods to meet their high robustness
and anti-interference requirements. Quadrotor drone is one
of the most common drones, which is widely used because of
its simple structure. Quadrotor UAV is an underdriven
system with four inputs and six outputs [1]. Due to its strong
coupling and easy interference nonlinear characteristics, it is
extremely unstable when it carries a robotic arm.

At present, the common control algorithm includes PID
control, H-∞ robust control, etc. Ikeda et al. used an aerial
manipulator to do bridge-detection [2]. +ey used PID to
control both the UAV and the manipulator. However, they do
not elaborate on how to reduce drone vibration and improve
detection accuracy. Ballesteros-Escamilla designed an adaptive
controller based on PD control [3]. It optimizes the problem
that the traditional PD control requires tracking error time
derivative and needs to be equipped with a large number of

sensors. It can help save energy to increase the endurance of
drones, but the problem of lag still exists. A team from the
Nanjing University of Aeronautics and Astronautics estab-
lished an inverse system and uses the backpropagation (BP)
neural network to control attitude of UAV [4]. It can make the
UAV roll, pitch, and yaw (RPY) angle error within the al-
lowable range. However, it also has the problems of control lag
and low real-time performance. Zhang et al. controlled the
drone and the algorithm separately [5]. +ey used a combi-
nation of H-∞robust control and acceleration feedback to
control UAV and used PID to control manipulator. Accel-
eration feedback can help resist the interference of wind, but its
response to disturbances is relatively slow. Scholten et al.
combined PI control and impedance control to control the
aerial manipulator [6]. He achieved the grasp of the aerial
manipulator. However, it is not suitable for noncontact control.

During the flight of UAV, the nonlinear interference
from the outside world and the movement of the manip-
ulator will affect the flight status. +e traditional PID
controller has poor resistance to nonlinear interference [7].
+e self-adaptability of the neural network can adjust the
internal parameters of the drone [8]. At present, the most
commonly used neural networks include BP neural network,
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radial basis neural network, etc. [9]. +e combination of
neural network and fuzzy theory is widely used [10].

In this paper, a control method combining the fuzzy
neural network and PID is proposed, which not only solves
the problem of slow response speed caused by neural net-
work learning process but also improves the stability of UAV
with manipulator. Maxout identifier is established to rec-
ognize the model, which overcomes the problem that tra-
ditional control relies too much on model parameters. +e
simulation results show that the designed control method
can control the unmanned aerial vehicle with an unknown
model in real time and the stability and anti-interference of
the UAV system are improved.

2. Model Establishment of Quadrotor UAV

Figure 1 shows the model structure of the UAV [11].
+e four-rotor UAV has a simple structure [12], and it

controls the flight status by controlling the motors of the
four wings. +e four-rotor UAV system is an underdriven
system with four inputs and six outputs. Six degrees of
freedom include x(t), y(t), z(t), φ(t), θ(t), andψ(t). F1,
F2, F3, and F4 represent the rotor lift generated by the four
motors. Schematic diagram of a four-wing UAV is shown in
Figure 2.

+e relationship [13] between the total lift F and the
speed of the motor Ω is as follows:

F � 
4

i�1
kΩ2i , (1)

where k is the lift coefficient of the rotor, and it is related to
the shape and structure of the rotor.

+e linear motion model is as follows:

€x � (cosψ sin θ cosφ + sinψ sinφ)
F

m
,
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(2)

where m is the mass of the drone and g is the acceleration of
gravity.

+e torque formula of the quadcopter to the UAV in x-
axis, y-axis, and z-axis is as follows:

MΦ � lk Ω24 −Ω22 ,

Mθ � lk Ω21 −Ω23 ,

Mψ � λ Ω24 +Ω22 −Ω21 −Ω23 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Among them, λ is the counter torque coefficient and l is
the distance from the center of mass of the drone to the
center of the rotor. +e drone dynamic equation can be
obtained as follows:

M � Jε + ω × Jω, (4)

where J represents the rigid body rotational inertia, ε rep-
resents the angular acceleration, ω represents the angular
velocity, and M represents the attitude channel control
torque.+e angular acceleration formula can be expressed as
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(5)

When equipped UAV with manipulator, it became a
more complex system. A simple model of aerial manipulator
is shown in Figure 3.

During the movement of the robotic arm, a large dis-
turbance force will be generated for the UAV, which will
affect the self-stabilization of UAV.

3. Design of Fuzzy Neural Network
Compound Controller

+e controller of UAV adopts the parallel combination of PID
control and fuzzy neural network control, as shown in Figure 4.
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Figure 1: Four-rotor UAV.
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Figure 2: Schematic diagram of a four-wing UAV.
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+e UAV control system input commands include the
UAV roll, pitch, yaw, and throttle. Input the RPY error e_rpy
into the traditional PID controller, input the RPY error
e_rpy, the angular velocity error e_w_rpy, and the z-axis
direction velocity error e_v into the fuzzy neural network
controller, and then connect the traditional PID controller
and the fuzzy neural network controller in parallel to form a
composite controller. Output control signal u is used to
control four motors of the UAV, and the obtained motor
speed n provides lift for the UAV. During the control of
manipulator, the interference signal will be produced to
affect the control of UAV’s attitude.

Among them, it is necessary to use the mathematical
relationship between the output state of the drone and the
control signal into the feedback convergence process of the
fuzzy neural network. +is value is Jacobi parameter yu,
which is the relevant input parameter variable of the fuzzy
neural network controller. +is variable can be obtained by
the Maxout neural network recognizer [14].

3.1. Traditional PIDController. +e PID controller structure
is as follows [15]:

u � kpe + ki  edt + kd

de

dt
. (6)

+e traditional controller input parameters e include
RPY error and speed error; u is the output of the controller;
kp, ki, and kd are PID proportional, integral, and differential
coefficients.

3.2. FuzzyNeural Network Controller. In the control process
of the UAV, the input values include RPY, angular velocity,
speed error e, and the Jacobi parameter yu.

First of all, in order to reduce the impact of the mag-
nitude of different input quantities [16], it is necessary to
normalize the input error e:

e′ �
exp(e) − 1
exp(e) + 1

. (7)

Use themembership function [17] of fuzzy theory to blur
the normalized parameter e′:

μ e′(  � exp −
e′ − m(i)

p(i)
 

2
⎛⎝ ⎞⎠, (8)

where i is from 1 to 5, which means that the input is
converted to five stages. +at is, the error e> 0 and e is large;
e> 0 and e is small; e is approximately equal to 0; e< 0 and |e|

is small; e< 0 and |e| is larger. And m and p are weight
coefficients. According to fuzzy learning rules in Table 1, for
the error signal e, the corresponding control signals u1, u2,
u3, u4 of the four motors adopt the logic method of the
following table [18]. Values 1 to 5 indicate that the control
signal changes from weak to strong as shown in Table 1. +e
logic rules are as follows.

+e neural network structure adopts the BP neural
network, which uses the gradient steepest descent method
and the gradient search technique to minimize the mean
square value of the error between the actual output value and
the expected output value and minimize the quadratic error
function by adjusting the weight. +e expression of the
secondary error function is as follows:

J �
1
2

 yt − y( 
2
, (9)

where yt is the expected value of the output state of the
drone and y is the actual value. +e state of the drone

Figure 3: A simple model of aerial manipulator.
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includes the RPY angle and angular velocity of the drone and
the velocity in the vertical direction of the z-axis.

+e input of the neural network is RPY speed errors and
RPY errors. +e error e is normalized by formula (7) to
obtain e′ as the input of the hidden layer value.

For the hidden layer, the node output value is

Oi � exp −
e′ − m

p
 

2
⎛⎝ ⎞⎠, (10)

where m and p are constants. According to fuzzy rules, m
takes 5 different parameters as −1, −0.5, 0, 0.5, 1.

Output layer node value is as follows:

Ooutput � 
5

i�1
ωiOi. (11)

Among them, ωi are the corresponding weight coeffi-
cients, which are adjusted by the neural network feedback.
+e adjustment method follows the BP neural network
adjustment rules.

+e weight adjustment formula is

Δωi � −η
zJ

zωi

� −η
zJ

zy

zy

zu

zu

zωi

� η · e · yu · Oi, (12)

where η is the network learning rate and yu is the Jacobi
parameter. When the angle is controlled to converge, e in the
formula includes the sum of the angle error and the angular
velocity error. Only if both the angle error and the angular
velocity error converge within a certain range [19], the
neural network would converge, thereby achieving control
accuracy. +e flowchart of fuzzy neural network learning is
shown in Figure 5.

3.3.MaxoutNeuralNetwork Identifier. +e Jacobi parameter
yu in the weight adjustment in the controller reflects the
mathematical relationship between the output state of the
drone and the input control signals of the four motors. +is
relationship needs to be obtained through the neural net-
work recognizer. To obtain accurate related parameters of
the controlled object, the identification accuracy of the

Table 1: Fuzzy control rules.

Error (e)
Control signal (u)

Roll Pitch Yaw +rottle
u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4

e> 0, |e| is large 3 5 3 1 5 3 1 3 5 1 5 1 5 5 5 5
e> 0, |e| is small 3 4 3 2 4 3 2 3 4 2 4 2 4 4 4 4
e ≈ 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
e< 0, |e| is small 3 2 3 4 2 3 4 3 2 4 2 4 2 2 2 2
e< 0, |e| is large 3 1 3 5 1 3 5 3 1 5 1 5 1 1 1 1
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Figure 4: Aerial manipulator control system.
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neural network must be particularly high. +e neural net-
work has the function of identifying the tracking function.
When the tracking ability of the network is good, the output
fitted by the neural network is approximately equal to the
actual output:

yu �
zy

zu
≈

zyt

zu
. (13)

In the design process of the identifier, the inputs include
the difference between the input signal of the UAV, the
output of the identifier, and the output signal of the UAV.
+e activation function of the neural network has a greater
impact on the performance of the neural network. To im-
prove the identification ability, this paper uses one of the
newest functions, Maxout function, as the activation
function [20]. +e Maxout function is a more advanced
activation function. Its core is to use linear fitting nonlinear.
+e more intuitive explanation is that a polygon with ex-
tremely many edges can be seen as a circle. +e Maxout
activation function adds a complex hidden layer between the
original two layers and takes the largest node of the complex
hidden layer in each feedforward calculation to output to the

next layer. +e more hidden layer nodes, the better the
theoretical identification effect [21]. +e structure of the
network with Maxout function is shown in Figure 6.

x1 and x2 are input quantities, and z1, z2, and z3 are
complex hidden layer nodes. +e output calculation formula
is as follows:

z1 � ω1x + b1,

z2 � ω2x + b2,

z3 � ω3x + b3,

y � max z1, z2, z3 .

(14)

4. Simulation Results

In the simulation experiment, the composite controller is
compared with the traditional PID controller. By inputting RPY
and angular velocity and the drone z-axis direction velocity, the
drone responds to the attitude according to the specified angle.

Make the drone take off at a speed of 5m/s from 0 to 13th
second and hover in the air between 13th and 50th second;

Target yaw

Normalization

Fuzzy with
membership

function 

Fuzzy with
membership
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Fuzzy with
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Target roll Target pitch Target velocity
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e = 0? e = 0?e = 0?e = 0?

Unmanned aerial vehicle

Real roll Real pitch Real velocityReal yaw

– – – –

No NoNo No

Convergence Convergence Convergence Convergence

Figure 5: Fuzzy neural network learning flowchart.
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the roll angle begins to reach 10 degrees in 2 second during
the simulation of 5th second and returns to 0 degree in the
15th second.+e pitch angle reaches −10 degrees in 2 second
at the 8th second of simulation and returns to 0 degree in the
20th second; the yaw of the yaw angle starts to reach 50
degrees at 5 degree/s in the 15th second.

Firstly, UAV without manipulator was used to take the
simulation experiment.

+e simulation results of the system with traditional PID
controller and the composite controller are shown in Figure 7.
In Figure 7(a), under the control of the traditional PID
controller, at the 8th second, the UAV pitch input command
causes a short-term distortion of the UAV yaw. During the
process, the deflection speed decreases when approaching the
target angle. Moreover, the deflection time is uncontrollable,
and input commands will distort other response curves.
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y
x1

x2

Figure 6: Structure of network under Maxout.
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Figure 7: RPY response curve. (a) PID controller. (b) Compound controller.
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As shown in Figure 7(b), in the control process of the
compound controller, due to the automatic adjustment of
the neural network, the above phenomenon is well im-
proved. +e yaw speed of the yaw angle has a good linear
relationship with time.+emutual coupling interference has
also been improved.

Regarding the speed response in the z-axis direction, the
response curve of the drone with traditional PID controller
occurs overshoot phenomenon during takeoff or the speed
change when a new command arrives. If the command
changes or the model structure parameters change, the
relevant parameters of the controller need to be readjusted.

+e speed response curve with the PID controller is
shown in Figure 8.

With the compound controller, due to the gradual ad-
justment performance of the internal parameters in the
neural network, the overshoot phenomenon is alleviated
very well. At the same time, because the compound con-
troller combines the PID controller, it makes up for the
shortcomings of the neural network controller’s slow re-
sponse. Even if the model parameters change, the neural
network can still adjust itself well.

As shown in Figure 8, the traditional PID controller
produces an overshoot response of the maximum instan-
taneous speed of −1.185m/s when the drone speed changes
from 5m/s to hovering 0m/s in the air. For the neural
network controller, due to its parameter autotuning, under
the same condition, the speed response of the compound
controller produces only −0.2013m/s overshoot. Compared
with the traditional PID control, the response of the com-
pound controller is more perfect.

+en, a drone with a manipulator was used to take the
simulation experiment.

To verify the anti-interference ability and stability of the
system, random interference caused by arbitrary movement of
manipulator is applied to theUAV. Each joint of the robot arm
is made to move damping-without-drive in its own dimen-
sions to simulate the interference introduced to the UAV
during themovement of the robot arm. And then compare the
system response under PID control and compound control. As
is known from Figures 9 and 10, with the PID controller, it has
a large fluctuation error caused by interference.

With PID control, it can be known from Figure 10 that in
the first 5 s of the beginning, the roll angle was severely
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Figure 8: Z-velocity response curve. (a) PID controller. (b) Compound controller.
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shaken, and the amplitude of the initial shaking degree
reached 3.61°. At the end of the simulation, the fluctuations
still reached 0.1225°. PID control has limited ability to
suppress UAV sloshing caused by manipulator.

As shown in Figures 11 and 12, after combining the fuzzy
neural network, the unmanned aerial vehicle’s external
disturbance force is well suppressed in the early stage of
simulation, and the sloshing amplitude is controlled within
1.25°. After the internal self-tuning of the parameters of the
neural network, the angle error of the UAV is finally

controlled within a very small magnitude.+e adaptability of
the neural network significantly improves the self-optimi-
zation and environmental adaptability of the system. At the
same time, in the process of controlling the yaw angle, the
neural network controller well controls the yaw speed.

+e simulation results show that the compound con-
troller based on the uzzy neural network [22] has a more
superior control effect for the UAV system and improves the
anti-interference ability of the system [23]. It provides better
conditions for performing more accurate and complex tasks.
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Figure 9: RPY output response curve of PID controller under interference.

6

4

2

0

–2

–4

–6
0 1 2 3 3.5 4 4.5 50.5 2.5 2.5

RP
Y 

an
gl

e (
°)

Time (s)

Roll
Pitch
Yaw

Figure 10: RPY output response curve of PID controller between 0 and 5 second.

8 Complexity



5. Conclusions

In this paper, the aerial manipulator is taken as the re-
search object. Under the control of conventional PID, the
system needs to rely on accurate mathematical models
and the ability to resist interference is weak. +is com-
pound Controller is a combination of fuzzy theory, neural
network, and PID algorithm. +e compound controller
fuzzy inputs the controlled variable to the neural network
to reduce the influence of external interference, and the
real-time degradation problem that may be caused by the
neural network learning process can be solved by assisting
with PID controller. At the same time, the UAV system
uses a neural network recognizer based on the Maxout
activation function to accurately identify the controlled
object. +at could improve the control accuracy. +e

recognizer enables the controller to autonomously adjust
the parameters of different controlled objects to achieve
intelligent control. At the end of this paper, the simu-
lation experiment of the compound controller and the
conventional PID controller is compared to verify the
conclusion that the composite controller has superior
control accuracy and anti-interference ability compared
with the conventional PID controller. +e proposed
composite controller has laid the foundation for the he
aerial manipulator to carry out complex tasks in more
fields.
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