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Due to the limited band width and congestion of communication channels in the wireless vehicle-to-vehicle (V2V) commu-
nication, time delay inevitably arises and dramatically leads to the disturbances for the automated vehicular platoon. ,is paper
focuses on computing the exact time delay stability margin. In this study, we treat this problem as a stability issue of a consensus
system with time delay, where each vehicle in the platoon is recognized as a node, and the interconnected information flow is
represented as a graph. ,en, the distributed controller is designed by combining the states of the vehicle itself and its
neighbouring vehicles. Furthermore, the stability of the entire platoon is analysed according to the characteristic equation of the
closed-loop system, and a necessary and sufficient condition for the exact time delay stability margin is obtained. Especially, for the
automated vehicular platoon with undirected topology, it is revealed that exact time delay stability margin is determined by the
largest eigenvalue of the augmented Laplacianmatrix. Furthermore, a rapid method for finding exact time delay stability margin is
proposed. Finally, numerical simulations demonstrate that this work generates exact and satisfactory time delay stability margin
for the automated vehicular platoon.

1. Introduction

Vehicular platoon is a vital component of intelligent vehicle
infrastructure cooperative systems (IVICS), which is the
frontier of intelligent transportation system (ITS) [1]. An
automated vehicular platoon consists of a group of coor-
dinated vehicles, which move at an identical speed and
maintain a prespecified formation geometry. Due to team
cooperation, the automated vehicular platoon is conductive
to improving traffic capacity, enhancing highway safety, and
reducing exhaust emission and fuel consumption [2].

Recently, the automated vehicular platoon technology
has attracted considerable attentions [3–6], which can be
recognized as a combination of four components, i.e., ve-
hicular longitudinal dynamics, interconnected information
flow, distributed controllers, and intervehicle spacing policy

[7, 8]. First, the vehicular longitudinal dynamics describes
the dominant longitudinal behaviour of each vehicle. Sec-
ond, the interconnected information flow depicts how the
vehicles in the vehicular platoon exchange state information
with the others. While its physical implementation depends
on wireless vehicle-to-vehicle (V2V) and vehicle-to-infra-
structure (V2I) communication [9]. Moreover, the structure
of interconnected information flow can be classified into two
types in terms of undirected and directed topologies. ,ird,
the distributed controllers are utilized for the specific
feedback control of each vehicle. Most controllers are linear
[7, 10]. Fourth, the intervehicle spacing policy arranges the
desired distance between the two successive vehicles and
further determines the formation geometry.

In an automated vehicular platoon, the interconnected
information flow depends on wireless communication. Due
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to the limited band width and congestion of the commu-
nication channels, it is inevitable to introduce time delay to
the vehicular platoon [11, 12]. Meanwhile, the time delay is
the inherent phenomenon in the wireless communication
networks, which is universally acknowledged as the main
factor for the vehicular platoon and leads to string instability
[13]. ,erefore, it is of high importance to study the ve-
hicular platoon with time delay. ,erein, we focus on the
computation of time delay stability margin for the auto-
mated vehicular platoon under both undirected and directed
topologies.

To obtain the time delay stability margin, most litera-
tures analyse the closed-loop system of the vehicular platoon
and recognize the entire vehicular platoon as a consensus
system [14]. For the stability analysis problem of the con-
sensus system with time delay, the majority of the existing
studies usually utilize Lyapunov-Krasovskii methodology
[15, 16], Lyapunov–Razumikin methodology [12, 17], and
generalised Nyquist criterion [18, 19]. However, these
studies can provide only sufficient conditions, which are
relatively conservative and fail to find the exact time delay
stability margin. On the contrary, because these results
mainly rely on some linear matrix inequalities, they are
usually imprecise and cumbersome to deploy.

Motivated by this fact, we focus on offering an analytical
method to find the exact time delay stability margin for the
automated vehicular platoon under both the directed and
undirected topologies. ,erein, a second-order consensus
system is used for modelling the longitudinal dynamics of
the vehicular platoon, designing the control gains, and
describing the interconnected information flow. By inves-
tigating the distribution of the roots for the closed-loop
system’s characteristic equation, we provide a necessary and
sufficient condition for the stability of the vehicular platoon.
,en, on the basis of the necessary and sufficient condition,
the exact time delay stability margin can be found. Specially,
for the undirected topology, by analysing the monotonicity
relationship between each eigenvalue of the augmented
Laplacian matrix and its corresponding time delay, it is
revealed that the exact time delay stability margin is de-
termined by the largest eigenvalue. ,erefore, a more rapid
method for computing the exact time delay stability margin
is further proposed for the undirected topology.

In a word, the main contributions of this work are
twofold. Firstly, to the best of the authors’ knowledge, it is
the first time that the exact time delay stability margin is
analytically acquired for the second-order platoon.,e exact
time delay stability margin is obtained by searching the pure
imaginary roots of the characteristic equation for the closed-
loop system, and it is further demonstrated that only the
positive pure imaginary root should be taken into consid-
eration. Secondly, for the undirected topology, we originally
propose a simple and rapid method to calculate the exact
time delay stability margin. Only one time delay, which
corresponds to the largest eigenvalue of the augmented
Laplacian matrix, needs to be computed. ,erefore, it is
unnecessary to compute the delays for the other eigenvalues.
For the large-scale vehicular platoon, the second

contribution is particularly useful to dramatically reduce the
computational burden.

,e remainder of this paper is organised as follows. ,e
problem statement is presented in Section 2. ,e compu-
tation of time delay stability margin for the automated
vehicular platoon is elaborated in Section 3. In Section 4,
numerical simulations are provided to demonstrate the
validity and superiority of the proposed algorithm. Finally,
the conclusions are summarized in Section 5.

2. Problem Statement

For the automated vehicular platoon, it can be treated as a
combination of four components, i.e., vehicular longitudinal
dynamics, interconnected information flow, distributed
controllers, and intervehicle spacing policy. In this part, the
four components will be elaborately described, respectively.

2.1.Model for Interconnected Information Flow. In our work,
we consider the platoon with N + 1 identical interconnected
vehicles, including one leader andN followers.,ere are two
typical interconnected information flows in terms of un-
directed and directed topologies. For the undirected to-
pology (as depicted in Figure 1(a)), except that the leader
vehicle transmits to the follower vehicles, the follower ve-
hicles share state information with their neighbouring ve-
hicles. For the directed topology (as depicted in Figure 1(b)),
the vehicle receives the state information only from the
following and the preceding vehicle. According to graph
theory, there are some distinct properties between these two
kinds of topologies. Especially, it is easier to analyse the
stability of undirected topology.

For both the undirected and directed topologies, the
interconnected information flow among the followers can be
modelled by a graph G � V,E,A{ }, where each vehicle is
recognized as a node. V � 1, 2, . . . , N{ } is the set of nodes
and E ⊆ V × V is the set of edges. ,e adjacency matrix
associated with the graph G is characterized by
A � [aij]N×N, where i, j ∈ V. ,e nonnegative adjacency
weight aij � 1 means that the node i can get information
from the node j; otherwise, aij � 0. Moreover, we assume
that aii � 0 (no self-loop is allowed unless otherwise
indicated).

To model the interconnected information flow between
the leader and the followers, an augmented graph is defined
as G � V, E, A , where V � 0, 1, 2, . . . , N{ } is the set of
nodes including the leader and followers, and the index 0
represents the leader vehicle. E ⊆ V × V is the edge set
appended with the information flow from the leader to the
followers, and A is the augmented adjacency matrix.

After modelling the interconnected information flow, we
aim to describe its property with the graphs G and G.
,erefore, two important matrices (i.e., Laplacian matrix
and pinning matrix) are introduced as follows. Firstly, the
Laplacian matrix L � [lij]N×N, which is associated with the
graph G, is defined as
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lij �

− aij, i≠ j,


N

k�1
aik, i � j.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Secondly, the pinning matrixP, which is associated with
the augmented graph G characterizing the interconnected
information flow from the leader to the followers, is defined
as

P � diag p1, p2, . . . , pN , (2)

where pi � 1 if the edge i, 0{ } ∈ E; otherwise, pi � 0. ,e
expression pi � 1 means that the ith vehicle can get infor-
mation from the leader. pi is called pinning gain in the field
of complex networks [20]. If pi � 1, the vehicle i is said to be
pinned to the leader.

According to the algebraic graph theory [21], the aug-
mented graph G should contain at least one spanning tree
rooting from the leader vehicle if the vehicular platoon is
asymptotically stable. A spanning tree is an algebraic tree
formed by some or all the edges of the augmented graph G

that links all the nodes. ,e graph G containing a spanning
tree means that a subset of its edges forms a spanning tree.
,erefore, for a stable vehicular platoon, there should exist at
least one directed path from the leader to each follower. In
contrary, each follower can acquire information from the
leader directly or indirectly.

2.2. Vehicle Longitudinal Dynamics. For the longitudinal
dynamics of each vehicle, it is mathematically charactered by
a second-order linear model. Moreover, to reduce the model
complexity, the input-output feedback linearisation is ap-
plied to build the model. ,en, the longitudinal dynamics of
the ith vehicle are denoted by

_ri � vi(t),

_vi � ui(t),
 (3)

where ri and vi are the position and velocity of the ith
vehicle, respectively. ,e propelling force ui represents the
control input. Once ui is appropriately chosen, the vehicular
platoon is capable of achieving the desired spacing, main-
taining an identical speed, and performing synchronous
braking maneuvers. It is assumed that an inner-loop au-
tomatic controller exists in each vehicle for responding to
the control input ui.

2.3. Intervehicle Spacing Policy. ,e intervehicle spacing
policy plays a vital role in the vehicular platoon control. In
contrary, to track the speed of the leader vehicle and realize
the predefined formation geometry, the objective of the
vehicular platoon control is governed by the intervehicle
policy:

ri(t)⟶ rj(t) + dij,

vi(t)⟶ v0(t),
i ∈ V,

⎧⎪⎨

⎪⎩
(4)

where dij is the desired intervehicle spacing between the ith
vehicle and the jth vehicle. It is assumed that dij � − dji. ,e
formation geometry of the vehicular platoon is determined
by dij. ,ere are two main kinds of intervehicle spacing
policies, i.e., constant distance (CD) policy and constant
time head headway (CTH) policy. For the CD policy, dij is
set to be a constant number:

dij � (j − i)di− 1,i � (j − i)d0, i ∈V, (5)

where d0 is the constant spacing between the ith vehicle and
its preceding vehicle.

For the CTH policy, di− 1,i is dependent on the vehicle
velocity vi:

di− 1,i � h · vi + d0, i ∈V, (6)

where h is the constant time headway.
In accordance with some geometrical considerations, the

spacing policy di− 1,i can be recast into the spacing with
respect to the leader vehicle as dij � di0 − dj0. ,us, the
objective of the platoon control in (4) can be rewritten as
follows:

ri(t)⟶ r0(t) + di0,

vi(t)⟶ v0(t),
i ∈ V,

⎧⎨

⎩ (7)

where di0 is the desired distance from the leader to the ith
vehicle.

2.4. Distributed Controller for the Vehicular Platoon with
TimeDelay. Nowadays, most literatures focus on designing
the controller for the vehicular platoon without time delay
[21, 22], and the distributed controller is designed as
follows:

(x1, v1) (x0, v0)(x2, v2)(x3, v3)

Follower 1 LeaderFollower 3 Follower 2
d23 d12 d01

(a)

(x1, v1) (x0, v0)(x2, v2)(x3, v3)

LeaderFollower 1Follower 3 Follower 2
d23 d12 d01

(b)

Figure 1: Typical interconnected information flow for vehicular platoons. (a) Undirected topology. (b) Directed topology.
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ui(t) � − kr 

N

j�0
aij ri(t) − rj(t) − dij 

− kv 

N

j�0
aij vi(t) − vj(t) ,

(8)

where kr > 0 and kv > 0 are the control gains for the position
and velocity, respectively.

However, due to the limited band width and congestion
of the communication channels, the time delay inevitably
appears in the vehicular platoon. Meanwhile, the time delay
is the inherent phenomenon in the wireless communication
networks, which is universally acknowledged as the main
factor for the performance of the vehicular platoon, leading
to the string instability. ,erefore, by considering the time
delay into the interconnected information flow, the dis-
tributed controller for the vehicular platoon with time delay
can be designed as

ui(t) � − kr 

N

j�0
aij ri(t − τ) − rj(t − τ) − dij 

− kv 

N

j�0
aij vi(t − τ) − vj(t − τ) ,

(9)

where τ represents the time delay. Generally, clock syn-
chronization is guaranteed throughout the platoon via GPS
[23], so the value of τ can be computed out according to the
transmission time.

3. Time Delay Stability Margin for the
Automated Vehicular Platoon

In this part, we aim to compute the time delay stability
margin for the automated vehicular platoon under both
undirected and directed topologies. To obtain the time delay
stability margin, it is necessary to elaborately analyse the
closed-loop system of the vehicular platoon. Besides, to
compute the exact time delay stability margin, it is essential
to obtain the necessary and sufficient condition. Further-
more, it is revealed that the exact time delay stability margin
is determined by the largest eigenvalue, and a more rapid
method for computing the exact time delay stability margin
is proposed for the undirected topology.

3.1. Stability Analysis for the Automated Vehicular Platoon.
To analyse the stability of system (3) with the distributed
controller (9), the error states, which is determined with the
comparison of the state information for the leader vehicle, is
defined as follows:

r � r1, r2, . . . , rN 
T
,

v � v1, v2, . . . , vN 
T
,

(10)

where ri � ri(t) − r0(t) − di0 is the spacing error state and
vi � vi(t) − v0(t) is the velocity error state. r0(t) and v0(t)

represent the position and velocity of the leader vehicle.

By substituting the error states into the distributed
controller (9), it can be recast in terms of the error states as

ui(t) � − kr 

N

j�0
aij ri(t − τ) − rj(t − τ) 

− kv 

N

j�0
aij vi(t − τ) − vj(t − τ) .

(11)

,erefore, by using the error dynamics (11), system (3)
can be rewritten as follows:

_ri � vi(t),

_vi � − kr 
N

j�0
aij ri(t − τ) − rj(t − τ) 

− kv 
N

j�0
aij vi(t − τ) − vj(t − τ) .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

For simplicity, we define the error state vector as
x � [rT, vT]T. ,en, the collective closed-loop dynamics of
the vehicular platoon are rewritten into a compact form as
follows:

_x � Ax + Bx(t − τ), (13)

with

A �
0N×N IN×N

0N×N 0N×N

 ,

B �
0N×N 0N×N

− kr(L + P) − kv(L + P)
 ,

(14)

where IN×N and 0N×N denote the N-dimensional identity
matrix and zero matrix, respectively.

So far, the closed-loop dynamics of the vehicular platoon
is build. In the following, the stability analysis will be
implemented according to the augmented Laplacian matrix.

,erein, we define the eigenvalue of the augmented
Laplacian matrix L + P as λi, i ∈V, which mathematically
reflects the important features of the augmented graph G. By
utilizing the eigenvalue λi, it is convenient to analyse the
stability of the closed-loop dynamics (13). Moreover, to
facilitate the stability analysis of the closed-loop dynamics
(13), we utilize the method in [24] to divide the entire ve-
hicular platoon into some small synchronous subsystems.

,en, the characteristic equation of system (13) is given
by

det sI − A − Be
− τs

(  � 
N

i�1
fi(s) � 0, (15)

where
fi(s) � s

2
+ kvs + kr( λie

− τs
. (16)

Before analysing the stability of the closed-loop dy-
namics (13), some lemmas are provided as follows.

Lemma 1. When the augmented graph G contains a span-
ning tree, all the eigenvalues ofL + P are located in the open
right half complex plane, i.e., λi > 0, i ∈ V.
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Lemma 1 describes the distribution of the eigenvalues of
L + P, and it is fundamental to indicate the stability and
compute the exact time delay stability margin from the
augmented graph G.

Lemma 2. When the graph G is undirected, all the eigen-
values of L + P are positive real numbers, i.e.,
λi ∈ R+, i ∈ V.

Lemma 2 describes the special character of undirected
topologies. When the interconnected information flow
among the follower vehicles is undirected, it is useful to
simplify the theoretical deduction of verifying the stability.
,e proof of Lemma 1 and 2 can be found in [21].

Lemma 3. :e closed-loop dynamics (13) are asymptotically
stable if and only if every equation (16) is Hurwitz stable, i.e.,
the roots of the closed-loop system’s characteristic equation
are all located in the open left half complex plane.

Based on the abovementioned three lemmas, we obtain
the first stability result for the closed-loop dynamics (13).

Theorem 1. If the closed-loop dynamics (13) is asymptoti-
cally stable, the following inequality holds:

k2
v

kr

> max
i∈V

Im2 λi( 

Re λi(  λi



2, (17)

where |λi| is the module of λi. Re(λi) and Im(λi) are the real
part and imaginary part of λi, respectively.

Proof. ,e closed-loop dynamics (13) should be primarily
stable for the delay-free case [25]. When τ � 0, there exists

fi(s) � s
2

+ kvs + kr( λi � 0. (18)

As λi � Re(λi) + ι · Im(λi), ι2 � − 1 is probably a complex
number, (18) is transformed into a fourth-order equation as

s
4

+ 2kvRe λi( s
3

+ k
2
v λi



2

+ 2krRe λi(  s
2

+ 2krkv λi



2
s + k

2
r λi



2

� 0.

(19)

,en, the stability of (19) is examined based on the
Routh–Hurwitz stability criterion:

s4 1 k2
v λi



2

+ 2krRe λi(  k2
r λi



2

s3 2kvRe λi(  2krkv λi



2

s2
k2

vRe λi(  λi



2

+ krRe2 λi(  − krIm2 λi( 

Re λi( 
k2

r λi



2

s1
2krkv λi



2

k2
vRe λi(  λi



2

− krIm2 λi(  

k2
vRe λi(  λi



2

+ krRe2 λi(  − krIm2 λi( 

s0 k2
r λi



2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

,e Routh table is listed out in equation (20). Consid-
ering the definition that kr > 0, kv > 0 in (9) and the fact that
Re(λi)> 0 from Lemma 1, it is concluded that (18) is as-
ymptotically stable if and only if

k2
v

kr

>
Im2 λi( 

Re λi(  λi



2. (21)

Taking all λi into consideration, if the closed-loop dy-
namics (13) are asymptotically stable, inequality (17)
holds. □

Remark 1. ,e stability condition (17) of ,eorem 1 is a
necessary and sufficient condition of the closed-loop dy-
namics (13) for the delay-free case, but it is just a necessary
condition for the delay case. For τ > 0, the stability of the
closed-loop dynamics (13) is not only correlated with the
control gains and structure of the interconnected infor-
mation flow but also dependent on the time delay.

Corollary 1. For τ � 0, when the graph G is undirected, the
closed-loop dynamics (13) are asymptotically stable, for any
kr > 0, kv > 0.

When the graph G is undirected, there exists Im(λi) � 0
according to Lemma 2. Hence, inequality (17) holds for any
kr > 0, kv > 0.

3.2. Computation of the Exact TimeDelay StabilityMargin for
the Automated Vehicular Platoon. For the delay case τ > 0,
we review the characteristic equation (16) as

fi(s) � s
2

+ kvs + kr( λie
− τs

. (22)

It is obvious that fi(s), i ∈ V is a quasi-polynomial and
its characteristic equation fi(s) � 0 is a transcendental
equation. Hence, it is complicated to analyse the roots of the
characteristic equation. Despite of this, we are still devoted
to checking the property of the roots to find the exact time
delay stability margin.
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Theorem 2. For the closed-loop dynamics (13) satisfying
condition (17), let ωi > 0 be the root of the following equation:

ω4
i − k

2
v λi



2ω2

i − k
2
r λi



2

� 0, (23)

with ωi �

������������������������

(k2
v|λi|

2 +

��������������

k4
v|λi|

4 + 4k2
r |λi|

2


)



. Take

τi �
arctanξi + kπ

ωi

, k ∈ 0, 1{ }, (24)

where ξi � − (δi/θi) with δi � kvωiRe(λi) + krIm(λi) and
θi � kvωiIm(λi) − krRe(λi). Let τmin � mini∈Vτi. :en, sys-
tem (13) is asymptotically stable if and only if τ ∈ [0, τmin).

Proof. According to Corollary 2.4 in [26], it is known that
for a quasi-polynomial g(s, e− τs) � g0(s) + g1(s)e− τs, if
g(s, e− τs) is Hurwitz stable for τ � 0 and unstable for
τ > τmin, there must exist a root on the imaginary axis for
g(s, e− τmins). In our work, if the stability condition (17) in
,eorem 1 is satisfied, fi(s) in (22) is Hurwitz stable for
τ � 0. ,us, it is available to utilize Corollary 2.4 in [26] to
find the exact time delay stability margin τmin. Afterwards,
we aim to find the root ι · ωi on the imaginary axis for τi.

With respect to the imaginary root ι · ωi, there exists
fi(ι · wi) � 0, which implies that both the real and imaginary
parts of fi(ι · wi) are zero, shown as

− ω2
i + δi sin τiωi(  − θi cos τiωi(  � 0,

θi sin τiωi(  + δi cos τiωi(  � 0.

⎧⎨

⎩ (25)

By rearranging (25), two following trigonometric
functions are obtained:

sin τiωi(  �
θiω2

i

δ2i + θ2i
,

cos τiωi(  � −
δiω2

i

δ2i + θ2i
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where δ2i + θ2i � (k2
vω

2
i + k2

r)|λi|
2. According to the well-

known trigonometric property sin2(τiωi) + cos2(τiωi) � 1,
it is concluded that

ω4
i − k

2
v λi



2ω2

i − k
2
r λi



2

� 0. (27)

,en, two real-valued roots about ωi, which are positive
and negative, respectively, can be solved out. Meanwhile, it
is obtained that ξi � tan(τiωi) � (sin(τiωi)/ cos(τiωi)) �

(− (θi/δi)) based on (26). ,e delay for i ∈ V is also deduced
as τi � (arctan ξi + kπ)/ωi, k ∈ 0, 1{ }, where the integer k

should be chosen as the minimum value satisfying τi > 0.
Next, we aim to demonstrate that only the situation

ωi > 0 needs to be considered. Two cases for the graphG, i.e.,
undirected and directed topologies, are taken into account as
follows:

(i) ,e undirected graphG: in this case, Im(λi) � 0. We
assume that the two real-valued roots of (27) are
ωi1,ωi2, and ωi1 > 0,ωi2 < 0. It is obvious that
ωi2 � − ωi1. Based on this, one can find that
δi2 � − δi1, θi2 � θi1, and ξi2 � − ξi1. ,ere must exist

arctan ξi2/ωi2 � arctan ξi1/ωi1 such that we can
simply take τi2 � τi1. In a word, considering only the
positive root ωi > 0 suffices to obtain τi, because the
imaginary roots for fi(s) form complex conjugate
pairs.

(ii) ,e directed graph G: in this case, Im(λi)≠ 0. ,ere
must also exist a conjugate eigenvalue of λi for the
directed graph G, where the conjugate eigenvalue is
also a root of (27). We define the conjugate eigen-
value as λl � Re(λi) − ι · Im(λi), l ∈ V. Let
ωi1 > 0,ωi2 < 0,ωl1 > 0, andωl2 < 0. According to
(27), it is easy to see that ωl1 � ωi1 andωl2 � ωi2.
,en, one can find that
δl2 � − δi1, θl2 � θi1, and ξl2 � − ξi1. ,ere must exist
arctan ξl2/ωl2 � arctan ξi1/ωi1 such that we can
simply take τl2 � τi1. ,erefore, for the directed
graph G, considering only the positive root ωi > 0
still suffices to obtain τi.

,en, by synthesizing the above two cases with the fact
that ωi > 0, the positive root of (27) is solved out as follows:

ωi �

�������������������������

k2
v λi



2

+

��������������

k4
v λi



4

+ 4k2r λi



2



 



. (28)

At last, we scan all the eigenvalue λi, i ∈V to compute all
τi and find the exact time margin τmin � min

i∈V
τi. □

Remark 2. ,eorem 2 provides a method for finding the
exact time delay stability margin τmin of the closed-loop
dynamics (13). ,eorem 2 is a necessary and sufficient
condition for the stability for the delay case.

3.3. A Rapid Method for Computing the Exact Time Delay
Stability Margin under the Undirected Topology. A large-
scale vehicular platoon generally generates plenty of ei-
genvalues of the graphG. It is time consuming to scan all the
eigenvalue λi, i ∈ V to compute all τi. However, it is com-
mon knowledge that the most critical eigenvalue directly
determines the exact time delay stability margin. If the most
critical eigenvalue is found, there is no need to scan all the
other eigenvalues. Moreover, because it is very fussy to
analyse the most critical eigenvalue for the directed graph,
we only consider the undirected topology. ,erefore, we
focus on look for the most critical eigenvalue under the
undirected topology, aiming to reduce the computational
burden and quickly compute the exact time delay stability
margin.

Theorem 3. For the closed-loop dynamics (13), under the
undirected graph G, let λmax � maxi∈Vλi. :en, λmax is the
most critical eigenvalue, which determines the exact time
delay stability margin τmin.

Proof. Although it is difficult to directly confirmwhether the
monotonicity of τi depends on the monotonicity of λi, we
plan to reveal their monotonous relationship through two
steps. By treating ωi as an immediate variable, the first step is
to verify that the monotonicity of ωi depends on the
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monotonicity of λi, and the second step is to verify that the
monotonicity of τi depends on the monotonicity of ωi.

In the first step, we only consider the case ωi > 0 in
accordance with ,eorem 2. When the graph G is undi-
rected, (28) turns into the following form as follows:

ωi �

����������������������
1
2

k
2
vλ

2
i +

�����������

k4
vλ

4
i + 4k2rλ

2
i



 



. (29)

According to Lemma 2, λi is a positive real number for
the undirected topology, so it can be seen that ωi gets larger
with the increase of λi. ,en, it is demonstrated that the
monotonicity of the immediate variable ωi depends on the
monotonicity of λi.

In the second step, we aim to verify that the monoto-
nicity of τi depends on the monotonicity of ωi. with respect
to (24), there exists τi � ω− 1

i arctan ξi � ω− 1
i arctan (kvωi/kr)

with ωi > 0. We intend to apply the partial derivative
property to conform themonotonicity.,e partial derivative
(zτi/zωi) is calculated as follows:

zτi

zωi

� −
1
ω2

i

arctan
kvωi

kr

+
1
ωi

·
krkv

k2
r + k2

vω2
i

�
1
ω2

i

− arctan
kvωi

kr

+ ωi ·
krkv

k2
r + k2

vω2
i

 ,

(30)

with (z arctan (kvωi/kr)/zωi) � (krkv/k2r + k2
vω2

i ).
In (30), the term arctan (kvωi/kr) still exists.,erefore, it

is uneasy to identify whether (30) is positive or negative. To
solve this problem, we deduce the partial derivative once
again, and an auxiliary function is given by

d ωi(  � − arctan
kvωi

kr

+ ωi ·
krkv

k2
r + k2

vω2
i

. (31)

Comparing with (31), (30) can be rewritten as

zτi

zωi

�
1
ω2

i

d ωi( . (32)

,en, the partial derivative (zd(ωi)/zωi) is calculated as

zd ωi( 

zωi

� −
krkv

k2
r + k2

vω2
i

+
k3

rkv − krk
3
vω2

i

k2
r + k2

vω2
i( 

2

�
− 2krk

3
vω

2
i

k2
r + k2

vω2
i( 

2.

(33)

With the definition that kr > 0, kv > 0 in (9), it is noted
that (zd(ωi)/zωi) � 0 when ωi � 0, and (zd(ωi)/zωi)< 0
when ωi > 0. ,en, it is concluded that (zτi/zωi)< 0 in (32)
when ωi > 0, which means that τi gets smaller with the in-
crease of ωi. Until now, we verify that the monotonicity of τi

depends on that of ωi by using the partial derivative
property.

By taking the abovementioned two steps into account, it
is confirmed that τi gets smaller with the increase of λi.
Hence, the largest eigenvalue λmax is most critical and de-
termines the exact time delay stability margin τmin. □

Remark 3. ,eorem 3 reveals the inherent relationship
between the exact time delay stability margin and the ei-
genvalues of the augmented Laplacian matrix for the un-
directed graph G. According to ,eorem 3, just computing
one delay corresponding to the largest eigenvalue λmax
suffices to obtain the exact time delay stability margin, and it
is no longer necessary to scan the other eigenvalues. For the
large-scale vehicular platoon, utilizing ,eorem 3 can
dramatically reduce the computational burden.

4. Numerical Simulations

In this section, numerical simulations are conducted to
verify the effectiveness of the main results. ,erein, an
automated vehicular platoon with five identical vehicles (one
leader and four followers) is considered. Simulations are
performed for a single-lane road. As the intelligent trans-
portation system scenario described in [27], we take the
structure of the interconnected information flow that the
leader vehicle transmits to the follower vehicles.,e pinning
matrix is set as P � diag 1, 0, 1, 0{ }. Meanwhile, the follower
vehicles share the state information with their neighbouring
vehicles and form undirected topology or directed topology
(as depicted in Figure 1). It is noted that the configuration of
the interconnected information flow contains a spanning
tree and satisfies Lemma 1.,e leader vehicle maneuvers at a
constant velocity of 20m/s (i.e., 72 km/h). ,e CD policy is
chosen as the intervehicle spacing policy, and the desired
spacing is set as dij � 15m. ,e initial error states are de-
fined as r(0) � [5, − 5, 10, − 10]T m and v(0) � [− 2, 2, − 4, 4]T

m/s. In the following, two scenarios, undirected and di-
rected topologies, are simulated for investigating the stability
and the exact time delay stability margin.

4.1. Undirected Topology. For an undirected topology, the
numerical simulations are conducted to verify the effec-
tiveness of ,eorem 2 and,eorem 3. ,e adjacency matrix
A and the Laplacian matrix L are given by

A �

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L �

1 − 1 0 0

− 1 2 − 1 0

0 − 1 2 − 1

0 0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(34)

,e eigenvalues of the augmented Laplacian matrixP +

L for the undirected topology are λ1 � 0.382, λ2 � 1.000,
λ3 � 2.618, and λ4 � 4.000. It is seen that all the eigenvalues
are positive real numbers such that their distribution co-
incides with Lemma 2. ,e control gains are tuned as kr � 1
and kv � 1 satisfying ,eorem 1. We scan every eigenvalue
to get that τ1 � 0.88 s, τ2 � 0.71 s, τ3 � 0.44 s, and
τ4 � 0.32 s. ,en, the exact time delay stability margin
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τmin � 0.32 s is obtained. One can find that the exact time
delay stability margin is determined by the largest eigenvalue
λ4 � 4.000, which confirms to the conclusion of ,eorem 3.
Two extreme cases are verified with the time delays τ � 0.31 s
and τ � 0.33 s, which are depicted in Figures 2 and 3, re-
spectively. It is seen that the stability is guaranteed in Fig-
ure 2 and instability occur in Figure 3. ,us, the simulation
results under undirected topology support the main results
of ,eorems 2 and 3.

4.2. Directed Topology. For a directed topology, the nu-
merical simulations are conducted to verify the effectiveness
of ,eorem 2. ,e adjacency matrix A and the Laplacian
matrix L are given by

A �

0 0 0 1

1 0 0 0

1 0 0 0

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L �

1 0 0 − 1

− 1 1 0 0

− 1 0 1 0

0 0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

,e eigenvalues of the augmented Laplacian matrixP +

L for directed topology are λ1 � 1.000, λ2 � 2.233 + 0.793ι,
λ3 � 2.233 − 0.793ι, and λ4 � 0.534. It is seen that all the
eigenvalues have positive real parts such that their distri-
bution coincides with Lemma 1. ,e control gains are tuned
as kr � 1 and kv � 1 satisfying ,eorem 1. We scan every
eigenvalue to get that τ1 � 0.71 s, τ2 � 0.60 s, τ3 � 0.34 s, and
τ4 � 0.83 s. ,en, the exact time delay stability margin
τmin � 0.34 s is obtained. Two extreme cases are verified with
the time delays τ � 0.33 s and τ � 0.35 s, which are depicted
in Figures 4 and 5, respectively. It is seen that the stability is
guaranteed in Figure 4 and instability occurs in Figure 5.
,us, the simulation results under directed topology support
the main results of ,eorem 2.

Furthermore, it is noted that the exact time delay stability
margin for directed topology in this example is associated
with one of the eigenvalues with the largest module. ,is is
an interesting phenomenon. ,erefore, our further research
topic is to figure out whether this phenomenon is general for
directed topologies. Meanwhile, this paper focuses on
computing the exact time delay stability margin for linear
dynamical systems.,e proposedmethod is only suitable for
linear dynamical systems because we obtain the exact time
delay stability margin according to the characteristic
equation of the closed-loop system. ,e method cannot be
directly applied to nonlinear dynamical systems. However, it
can be extended to the nonlinear dynamical systems which
can be converted into controllable linear systems via dy-
namic feedback linearisation. ,erefore, finding exact time
delay stability margin for nonlinear dynamical systems is our
another work in the future.
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Figure 2: Spacing errors for an automated vehicular platoon under
undirected topology with τ � 0.31 s.
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Figure 3: Spacing errors for an automated vehicular platoon under
undirected topology with τ � 0.33 s.
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Figure 4: Spacing errors for an automated vehicular platoon under
directed topology with τ � 0.33 s.
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5. Conclusions

,is paper investigates the problem of finding the exact time
delay margin for the automated vehicular platoon. After
designing a distributed controller, we focus on analysing the
stability of the entire platoon. By investigating the roots’
distribution of the closed-loop system’s characteristic
equation, the exact time delay stability margin is acquired. It
is a necessary and sufficient condition, which implies that
our result outperforms most existing methods at over-
coming conservatism. Furthermore, a rapid method for
finding the exact time delay stability margin for undirected
topologies is proposed by exploring the monotonicity re-
lationship between each eigenvalue of the augmented
Laplacian matrix and its corresponding delay. We analyti-
cally demonstrate that the largest eigenvalue determines the
exact time delay stability margin. ,erefore, it is no longer
necessary to compute the delays corresponding to the other
eigenvalues. For the large-scale vehicular platoon, utilizing
our proposed theorem can dramatically reduce the com-
putational burden. Numerical simulations for undirected
and directed topologies are both conducted to verify the
effectiveness of the theoretical derivation. Simulation results
additionally show that the exact time delay stability margin
for directed topologies is associated with one of the ei-
genvalues with the largest module. Figuring out, whether
this interesting phenomenon is general, is the subject of our
ongoing work.
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