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Jensen’s inequality is one of the fundamental inequalities which has several applications in almost every field of science. In 2003,
Mercer gave a variant of Jensen’s inequality which is known as Jensen–Mercer’s inequality.+e purpose of this article is to propose
new bounds for Csiszár and related divergences by means of Jensen–Mercer’s inequality. Also, we investigate several new bounds
for Zipf–Mandelbrot entropy. +e idea of this article may further stimulate research on information theory with the help of
Jensen–Mercer’s inequality.

1. Introduction

In theory of inequalities, convex functions play an important
role. +e definition of convex function [1] is as follows.

Let ϕ: [δ, ε] ⊂ R⟶ R be a function, then ϕ is said to be
convex if ∀w, z ∈ [δ, ε] and 0≤ t≤ 1, the inequality

ϕ(tw +(1 − t)z)≤ tϕ(w) +(1 − t)ϕ(z), (1)

holds, and ϕ is said to be strictly convex if ∀w≠ z and
t ∈ (0, 1), (1) holds strictly. If inequality (1) holds in reversed
directions, then ϕ is said to be concave, and ϕ is said to be
strictly concave if the inequality (1) holds strictly in reversed
direction ∀w≠ z and t ∈ (0, 1).

+ere are several important inequalities which have been
established with the help of convex functions. In 2003,
Mercer [2] proved the following variant of Jensen’s in-
equality, which is known as Jensen–Mercer’s inequality:

ϕ δ + ε −
1
Θn



n

λ�1
θλκλ⎛⎝ ⎞⎠≤ϕ(δ) + ϕ(ε) −

1
Θn



n

λ�1
θλϕ κλ( ,

(2)

where ϕ: [δ, ε]⟶ R is a convex function, [δ, ε] ⊂ R with
κλ ∈ [δ, ε], and θλ ∈ R+ ∀ λ ∈ 1, 2, . . . , n{ } with 

n
λ�1 θλ � Θn.

+is inequality has been refined, extended, and gener-
alized in different direction. Recently, Niezgoda [3] gener-
alized this inequality by using the concept of majorization
and doubly stochastic matrices.+e author gave applications
for separable sequences. For some other recent results re-
lated to Jensen’s and Jensen–Mercer’s inequality, we rec-
ommend [4–14].

In the remaining part of this paper, we present some
basic terms in information theory which we deal in this
paper. We start with divergence. Divergence measure is
basically the measure of distance between two probability
distributions. +e concept of divergence measure is working
efficiently to resolve different problems related to probability
theory. A few divergence measures are reasonable relying
upon the idea of the issue. Recently, Dragomir [15, 16], Jain
[17, 18], and Taneja [19] have made many contributions in
this field; they introduced different divergence measures,
obtained their bounds, presented relations with other di-
vergences, and discussed their properties.
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Divergence measures have gigantic applications in as-
sortment of fields, such as approximation of probability
distributions [20, 21], biology [22], economics and political
science [23, 24], analysis of contingency tables [25], signal
processing [26, 27], color image segmentation [28], pattern
recognition [29, 30], and magnetic resonance image analysis
[31].

Some specific operational facts about divergence mea-
sure have been introduced, characterized, and applied in
different fields, such as Bregman’s ϕ-divergence [32],
Csiszár’s ϕ-divergence [33], Burbea–Rao’s ϕ-divergence
[34], and Renyi’s like ϕ-divergence [35]. By suitable choice of
the function ϕ, many divergence measures can be obtained
from these generalized divergence. Because of its compact
nature, Csiszár ϕ-divergence is one of the most important
divergences, which is given as follows:

Iϕ(θ, c) � 
n

λ�1
cλϕ

θλ
cλ

 , (3)

where θ � (θ1, θ2, . . . , θn) and c � (c1, c2, . . . , cn) are pos-
itive real n-tuples and ϕ: R+⟶ R is a convex function.
Here, convexity of the function ϕ ensures that Iϕ(θ, c)≥ 0.

By choosing appropriate convex function instead of
function ϕ, many well-known divergences or distance
functions can be acquired from (3), such as Hellinger, Renyi,
Bhattacharyya, Chi-square, Kullback–Leibler, triangular
discrimination, and Jefferys divergences. A concise pre-
sentation of these divergences is given as follows.

+e observed data are approximated by the probability
distribution in probability and statistics.+is approximation
leads to information loss. +e primary purpose is to assess
how much information is contained in the data. Approxi-
mating a distribution by c(κ) for which the real distribution
is θ(κ) results in loss of data. Kullback–Leibler divergence is
the deficiency of encoding the information regarding the
distribution c instead of genuine distribution θ. Kull-
back–Leibler divergence [36] can be acquired by choosing
ϕ(κ) � κ log κ, κ> 0, in (3):

K(θ, c) � 
n

λ�1
θλlog

θλ
cλ

 . (4)

Kullback–Leibler divergence is nonnegative and is zero if
and only if θλ � cλ. It satisfies the two properties of metric,
but K(θ, c)≠K(c, θ), and does not obey the triangle in-
equality. Kullback–Leibler divergence is also called relative
entropy. We can construct Shannon entropy [37] from
Kullback–Leibler divergence, which is given as follows:

H(θ) � 
n

λ�1
θλlog

1
θλ

, (5)

where θλ are positive real numbers with 
n
λ�1 θλ � 1.

Shannon entropy has been used widely in physics, partic-
ularly in many quantum soluble systems, for example, see
[38–41].

+e extension of Kullback–Leibler divergence is Jefferys
divergence [42]. It is the summation of Kullback–Leibler

divergence in both directions. Jeffery’s divergence can be
obtained by selecting ϕ(κ) � (κ − 1)log κ, κ> 0, in (3):

J(θ, c) � 
n

λ�1
θλ − cλ( log

θλ
cλ

 , (6)

J(θ, c)≥ 0, and J(θ, c) � J(c, θ), but does not obey the
triangle inequality; therefore, it is not a metric. +e uses of
Jefferys divergence are similar to Kullback–Leibler
divergence.

Bhattacharyya divergence [43] can be obtained by
choosing ϕ(κ) �

�
κ

√
, κ> 0, in (3):

B(θ, c) � 
n

λ�1

����
θλcλ


. (7)

Bhattacharya divergence also satisfies three properties of
a metric like Jefferys divergence, but does not obey the
triangle inequality. Bhattacharya divergence has limited
range. +e limited range of this divergence makes it quite
attractive for a distance comparison. Hussein et al. [44] used
Bhattacharyya divergence for solving track-to-track asso-
ciation (TTTA) problem in space surveillance.

Hellinger divergence [45] is defined as

H(θ, c) � 
n

λ�1

��
cλ

√
−

��

θλ


 
2
, (8)

which corresponds to ϕ(κ) � (1 −
�
κ

√
)2, κ> 0, in (3). It

satisfies all the properties of metric; therefore, Hellinger
divergence is a proper metric. Hellinger divergence is used
widely in data analysis, particularly when the objects being
analogized are high-dimensional experiential probability
distribution built from information data [46].

Total variational distance [47] can be deduced by
choosing ϕ(κ) � |κ − 1|, κ> 0, in (3):

V(θ, c) � 
n

λ�1
θλ − cλ


. (9)

+is divergence is also a proper metric. Total variational
distance is a basic quantity in probability and statistics. In
information theory, variational distance is utilized to
characterize solid typicality and asymptotic equipartition of
sequences generated by sampling from a given distribution
[48].

Now, by substituting ϕ(κ) � κs, κ> 0, for s> 1 in (3), we
can obtain Renyi divergence [49], which is given by

R(θ, c) � 
n

λ�1
θs
λc

1− s
λ . (10)

Renyi divergence appears as an important tool to provide
proofs of convergence of minimum description length and
Bayesian estimators, both in parametric and nonparametric
models [50]. Some other divergences are given below which
can be obtained from (3).

(1) Chi − square divergence (see [47]): for ϕ(κ) �

(κ − 1)2, κ> 0, the χ2-divergence is given by
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χ2(θ, c) � 
n

λ�1

θλ − cλ( 
2

cλ
. (11)

(2) Triangular discrimination (see [42]): the formula for
triangular discrimination can be deduced by selecting
ϕ(κ) � ((κ − 1)2/κ + 1), κ> 0, which is given by

Δ(θ, c) � 
n

λ�1

θλ − cλ( 
2

θλ + cλ( 
. (12)

(3) Relative arithmetic − geometric divergence (see
[42]): for ϕ(κ) � ((κ + 1)/2)log((1 + κ)/2κ) where
κ> 0, the relative arithmetic-geometric divergence is
given by

G(θ, c) � 
n

λ�1

θλ + cλ

2
log

θλ + cλ

2θλ
. (13)

Zipf’s law is one of the mandatory laws in information
science and is often utilized in linguistics as well. In 1932,
George Zipf [51] found that one can tally how often each
word shows up in the text. +erefore, if p is the rank of the
word and q is the frequency of occurrence of that word, then
q.p � c, where c is a constant.

+ere are several utilizations of Zipf’s law, such as in city
populations [52], geology [53], and solar flare intensity [54].
For more details, see [55, 56].

In 1966, Benoit Mandelbrot [57] gave generalization of
Zipf’s law, known as Zipf–Mandelbrot law, which gave
improvement on account of the low-rank words in corpus
[58] and is given as follows:

g(λ) �
c

(λ + τ)
u, (14)

where λ< 1000, u, c> 0, and τ ≥ 0. If τ � 0, we obtain Zipf’s
law.

If n ∈ Z+, τ ∈ R+ ∪ 0{ }, u> 0, λ ∈ 1, 2, . . . , n{ }, and
Wn,τ,u � 

n
λ�1 1/(λ + τ)u, then the probability mass function

for Zipf–Mandelbrot law is given by

f(λ, n, τ, u) �
1/(λ + τ)

u

Wn,τ,u

. (15)

+e formula for Zipf–Mandelbrot entropy is given as
follows:

Z(W, τ, u) �
u

Wn,τ,u



n

λ�1

log(λ + τ)

(λ + τ)
u + logWn,τ,u. (16)

In 2017, Khan et al. [59] used some refinements of the
Jensen inequality for convex functions and monotone
convex functions to obtain inequalities for Zipf–Mandelbrot
and Shannon entropy. +ey have used two parametric
Zipf–Mandelbrot laws instead of different weights in the
inequalities for Shannon entropy. As a result, different

parametric Zipf–Mandelbrot entropies have been obtained.
In 2017, Naveed et al. [60] obtained different inequalities for
these entropies by using somemajorization type inequalities.
In 2018, Khan et al. [55] obtained new estimations for these
entropies by applying some refinements of the Jensen in-
equality and Taylor’s formula. In 2019, Khalid et al. [61] also
gave some results related to these entropies. For more recent
results related to these entropies, see [61–71].

+e purpose of this paper is to use Jensen–Mercer’s
inequality and to give several inequalities in information
theory. We obtain bounds for Csiszár divergence by using
Jensen–Mercer’s inequality. Also, we give some bounds for
different divergences by using particular convex functions.
In addition, we establish bounds for Zipf–Mandelbrot en-
tropy by applying Zipf–Mandelbrot laws instead of proba-
bility distributions in Kullback–Leibler and Jefferys
divergences. Furthermore, we deduce new estimates for
Zipf–Mandelbrot entropy associated to different parametric
Zipf–Mandelbrot laws.

2. Bounds for Csiszár and Related Divergences

Theorem 1. Let ϕ: [δ, ε]⟶ R be a convex function. If θλ
and cλ(λ � 1, 2, . . . , n) are positive real numbers with
θλ/cλ ∈ [δ, ϵ]ε such that 

n
λ�1 θλ � Θn and 

n
λ�1 cλ � Γn, then

ϕ δ + ε −
Θn

Γn
 ≤ ϕ(δ) + ϕ(ε) −

1
Γn

Iϕ(θ, c). (17)

Proof. Replacing θλ by cλ and substituting κλ � θλ/cλ in (2),
we obtain (17).

Theorem 2. Let δ and ϵ be positive real numbers with δ < ε. If
θλ and cλ(λ � 1, 2, . . . , n) are positive real numbers with
cλ/θλ ∈ [δ, ε] such that 

n
λ�1 θλ � Θn and 

n
λ�1 cλ � Γn, then

log δ + ε −
Γn
Θn

 

− 1

≤ log
1
δε

−
1
Θn

K(θ, c). (18)

Proof. Let ϕ(κ) � − log κ, κ> 0, so clearly − log κ is a convex
function. +erefore, using (17) and interchanging cλ and θλ,
we obtain

− log δ + ε −
Γn
Θn

 ≤ − log δ − log ε +
1
Θn



n

λ�1
θλlog

cλ

θλ
.

(19)

Now, using the definition of Kullback–Leibler diver-
gence, we obtain (18).

Corollary 1. Let δ and ε be positive real numbers with δ < ϵ.
If θλ(λ � 1, 2, . . . , n) are positive real numbers such that
1/θλ ∈ [δ, ε] and 

n
λ�1 θλ � 1, then

log (δ + ε − n)
− 1 ≤ log

1
δε

+ H(θ). (20)
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Proof. By choosing cλ � 1, λ � 1, 2, . . . , n, in (18), we obtain
(20).

Theorem 3. Let δ and ε be positive real numbers with δ < ε. If
θλ and cλ(λ � 1, 2, . . . , n) are positive real numbers such that
θλ/cλ ∈ [δ, ε] for λ � 1, 2, . . . , n, 

n
λ�1 θλ � Θn, and


n
λ�1 cλ � Γn, then

δ + ε −
Θn

Γn
 log δ + ε −

Θn

Γn
 ≤ log δδεε −

1
Γn

K(θ, c).

(21)

Proof. Let ϕ(κ) � κ log κ, κ> 0, so clearly κ log κ is a convex
function. +erefore, using (17), we obtain (21).

Corollary 2. Let δ and ε be positive real numbers with δ < ε.
If θλ(λ � 1, 2, . . . , n) are positive real numbers such that
θλ ∈ [δ, ε] and 

n
λ�1 θλ � 1, then

δ + ε −
1
n

 log δ + ε −
1
n

 ≤ log δδεε +
1
n

H(θ). (22)

Proof. By choosing cλ � 1, λ � 1, 2, . . . , n, in (21), we obtain
(22).

Theorem 4. Let all the hypotheses of9eorem 3 hold, then we
have the following inequality:

−

�����������

δ + ε −
Θn

Γn
 



≤ − (
�
δ

√
+

�
ε

√
) +

1
Γn

B(θ, c). (23)

Proof. If ϕ(κ) � −
�
κ

√
, κ> 0, then ϕ″(κ) � (1/4κ3/2)> 0, so

ϕ(κ) is a convex function for κ> 0. +erefore, using ϕ(κ) �

−
�
κ

√
in +eorem 1, we obtain (23).

Theorem 5. Let all the hypotheses of9eorem 3 hold, then we
have the following inequality:

δ + ε −
Θn + Γn
Γn

 log δ + ε −
Θn

Γn
 ≤ log δδ− 1εε− 1

−
1
Γn

J(θ, c).

(24)

Proof. If ϕ(κ) � (κ − 1)log κ, κ> 0, then
ϕ″(κ) � (κ + 1/κ2)> 0, so ϕ(κ) is a convex function for κ> 0.
+erefore, using ϕ(κ) � (κ − 1)log κ in +eorem 1, we ob-
tain (24).

Corollary 3. Let δ and ϵ be positive real numbers with δ < ε.
If θλ(λ � 1, 2, . . . , n) are positive real numbers such that
θλ ∈ [δ, ε] and 

n
λ�1 θλ � 1, then

δ + ε −
1 + n

n
 log δ + ε −

1
n

 ≤ log δδ− 1εε− 1
+
1
n



n

λ�1
log θλ +

1
n

H(θ).

(25)

Proof. By choosing cλ � 1, λ � 1, 2, . . . , n, in (24), we obtain

δ + ε −
1 + n

n
 log δ + ε −

1
n

 ≤ log δδ− 1εε− 1
+
1
n


n

λ�1
log θλ −

1
n


n

λ�1
θλlog θλ.

(26)

Now, using the definition of Shannon entropy, we obtain
(25).

Theorem 6. Let all the hypotheses of9eorem 3 hold, then we
have the following inequality:

1 −

���������

δ + ε −
Θn

Γn



⎛⎝ ⎞⎠

2

≤ δ2 + ε2 + 2(1 − (
�
δ

√
+

�
ε

√
)) −

1
Γn

H(θ, c).

(27)

Proof. If ϕ(κ) � (1 −
�
κ

√
)2, κ> 0, then

ϕ″(κ) � 1/2κ − (
�
κ

√
− 1/2κ3/2)≥ 0, so ϕ(κ) is a convex

function for κ> 0. +erefore, using ϕ(κ) � (1 −
�
κ

√
)2 in

+eorem 1, we obtain (27).

Theorem 7. Let all the hypotheses of9eorem 3 hold, then we
have the following inequality:

δ + ε −
Θn

Γn
 

s

≤ δs
+ εs

−
1
Γn

R(θ, c), (28)

where s> 1.

Proof. For s> 1, the function ϕ(κ) � κs, κ> 0, is clearly a
convex function. +erefore, using ϕ(κ) � κs in +eorem 1,
we obtain (28).

Theorem 8. Let all the hypotheses of9eorem 3 hold, then we
have the following inequality:

δ + ε −
Θn + Γn
Γn




≤ |δ − 1| +|ε − 1| −

1
Γn

V(θ, c). (29)

Proof. If ϕ(κ) � |κ − 1|, κ ∈ R, and we know that absolute
function is always convex on R. +erefore, using ϕ(κ) �

|κ − 1| in +eorem 1, we obtain (29).

Theorem 9. Let all the hypotheses of9eorem 3 hold, then we
have the following inequality:

δ + ε −
Θn + Γn
Γn

 

2

≤ δ2 + ε2 − 2(δ + ε − 1) −
1
Γn
χ2(θ, c).

(30)

Proof. If ϕ(κ) � (κ − 1)2, κ> 0, then ϕ″(κ) � 2> 0, so ϕ(z)

is a convex function for κ> 0. +erefore, using
ϕ(κ) � (κ − 1)2 in +eorem 1, we obtain (30).

Theorem 10. Let all the hypotheses of 9eorem 3 hold, then
we have the following inequality:
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δ + ε − 1/Γn(  Θn + Γn( ( 
2

δ + ε − 1/Γn(  Θn − Γn( ( 
≤

(δ − 1)
2

(δ + 1)
+

(ε − 1)
2

(ε + 1)
−

1
Γn
Δ(θ, c).

(31)

Proof. If ϕ(κ) � (κ − 1)2/(κ + 1), κ> 0, then
ϕ″(κ) � 8/(κ + 1)3 ≥ 0, so ϕ(κ) is a convex function for κ> 0.
+erefore, using ϕ(κ) � (κ − 1)2/(κ + 1) in +eorem 1, we
obtain (31).

Theorem 11. Let all the hypotheses of 9eorem 3 hold, then
we have the following inequality:

1
2

δ + ε −
1
Γn
Θn − Γn(  log

δ + ε − 1/Γn Θn − Γn( 

2 δ + ε − Θn/Γn( 
 

≤
δ + 1
2

log
1 + δ
2δ

+
ε + 1
2

log
1 + ε
2ε

−
1
Γn

G(θ, c).

(32)

Proof. If ϕ(κ) � (κ + 1/2)log(1 + κ/2κ), κ> 0, then
ϕ″(κ) � 1/2κ2(κ + 1)> 0, so ϕ(κ) is a convex function for
κ> 0.+erefore, using ϕ(κ) � (κ − 1)2/(κ + 1) in+eorem 1,
we obtain (32).

3. Bounds for Zipf–Mandelbrot Entropy

In this section, we present some bounds for
Zipf–Mandelbrot entropy.

Theorem 12. Let δ and ε be positive real numbers with δ < ε.
If n ∈ 1, 2, 3, . . .{ }, τ ≥ 0, u> 0, and cλ > 0, λ � 1, 2, . . . , n,
such that cλ(λ + τ)uWn,τ,u ∈ [δ, ε] and 

n
λ�1 cλ � Γn, then

log δ + ε − Γn( 
− 1 ≤ log

1
δε

+ 
n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

+ Z(W, τ, u).

(33)

Proof. Let θλ � 1/(λ + τ)uWn,τ,u, λ � 1, 2, . . . , n, then



n

λ�1
θλlog

θλ
cλ

� 
n

λ�1

1
(λ + τ)

u
Wn,τ,u

log
1
cλ

 
1

(λ + τ)
u
Wn,τ,u

  

� − 

n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

− 

n

λ�1

log (λ + τ)
u
Wn,τ,u 

(λ + τ)
u
Wn,τ,u

� − 

n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

− 

n

λ�1

u

(λ + τ)
u
Wn,τ,u

log(λ + τ)

− 
n

λ�1

logWn,τ,u

(λ + τ)
u
Wn,τ,u

� − 
n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

− Z(W, τ, u).

(34)

As Wn,τ,u � 
n
λ�1 1/(λ + τ)u, 

n
λ�1 θλ � 

n
λ�1(1/(λ+ τ)u

Wn,τ,u) � 1. Hence, using (18) for θλ � 1/ (λ + τ)uWn,τ,u,

λ � 1, 2, . . . , n, we obtain (33).
+e following corollary is the special case of+eorem 12.

Corollary 4. Let δ and ε be positive real numbers with δ < ε.
If n ∈ 1, 2, 3, . . .{ }, τ ≥ 0, u> 0, and (λ + τ)uWn,τ,u ∈ [δ, ε],
then

log (δ + ε − n)
− 1 ≤ log

1
δε

+ Z(W, τ, u). (35)

Proof. By choosing cλ � 1, λ � 1, 2, . . . , n, in (33), we obtain
(35).

+e next result gives the inequality for Zipf–Mandelbrot
entropy using two different parameters.

Theorem 13. Let δ and ε be positive real numbers with δ < ε.
Let n ∈ 1, 2, . . . ,{ }, τ1, τ2 ≥ 0, u1, u2 > 0, and
((λ + τ1)

u1Wn,τ1 ,u1
)/((λ + τ2)

u2Wn,τ2 ,u2
) ∈ [δ, ε], then

log (δ + ε − 1)
− 1 ≤ log

1
δε

+ Z W, τ1, u1(  − 
n

λ�1

log λ + τ2( 
u2Wn,τ2 ,u2

λ + τ1( 
u1Wn,τ1 ,u1

.

(36)

Proof. Let θλ � 1/(λ + τ1)
u1Wn,τ1 ,u1

and cλ � 1/ (λ + τ2)
u2Wn,τ2 ,u2

, λ � 1, 2, . . . , n, then



n

λ�1
θλlog

θλ
cλ

� 
n

λ�1

1
λ+ τ1( 

u1Wn,τ1,u1

log
λ+ τ2( 

u2Wn,τ2 ,u2

λ+ τ1( 
u1Wn,τ1 ,u1

 

� − 
n

λ�1

log λ+ τ1( 
u1Wn,τ1,u1

λ+ τ1( 
u1Wn,τ1 ,u1

+ 
n

λ�1

log λ+ τ2( 
u2Wn,τ2,u2

λ+ τ1( 
u1Wn,τ1 ,u1

� − Z W,τ1,u1(  + 
n

λ�1

log λ+ τ2( 
u2Wn,τ2,u2

λ+ τ1( 
u1Wn,τ1,u1

.

(37)

Also, 
n
λ�1 θλ � 

n
λ�1 1/(λ + τ1)

u1Wn,τ1 ,u1
� 1 and


n
λ�1 cλ � 

n
λ�1 1/(λ + τ2)

u2Wn,τ2 ,u2
� 1; therefore, using (18)

for θλ � 1/(λ + τ1)
u1Wn,τ1 ,u1

and cλ � 1/(λ + τ2)
u2Wn,τ2 ,u2

,
λ � 1, 2, . . . , n, we obtain (36).

Theorem 14. Let δ and ε be positive real numbers with δ < ε.
If n ∈ 1, 2, 3, . . .{ }, τ ≥ 0, u> 0, and cλ > 0, λ � 1, 2, . . . , n,
such that 1/cλ(λ + τ)uWn,τ,u ∈ [δ, ε] and 

n
λ�1 cλ � Γn, then

δ + ε −
1
Γn

 log δ + ε −
1
Γn

 ≤ log δδεε

+
1
Γn



n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

+
1
Γn

Z(W, τ, u).

(38)

Proof. Substituting θλ � 1/(λ + τ)uWn,τ,u, λ � 1, 2, . . . , n, in
(21) and using similar method which we used in the proof of
+eorem 12, we obtain (38).

+e following corollary is the special case of+eorem 14.
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Corollary 5. Let δ and ε be positive real numbers with δ < ε.
If n ∈ 1, 2, 3, . . .{ }, τ ≥ 0, u> 0, and 1/(λ + τ)uWn,τ,u ∈ [δ, ε],
then

δ + ε −
1
n

 log δ + ε −
1
n

 ≤ log δδεε +
1
n

Z(W, τ, u).

(39)

Proof. By choosing cλ � 1, λ � 1, 2, . . . , n, in (38), we obtain
(39).

+e next result gives the inequality for Zipf–Mandelbrot
entropy using two different parameters.

Theorem 15. Let δ and ϵ be positive real numbers with δ < ϵ.
Let n ∈ 1, 2, . . . ,{ }, τ1, τ2 ≥ 0, u1, u2 > 0, and
((λ + τ2)

u2Wn,τ2 ,u2
)/((λ + τ1)

u1Wn,τ1 ,u1
) ∈ [δ, ε], then

(δ + ε − 1)log(δ + ε − 1)≤ log δδεε + Z W, τ1, u2( 

− 
n

λ�1

log λ + τ2( 
u2Wn,τ2 ,u2

λ + τ1( 
u1Wn,τ1 ,u1

.

(40)

Proof. Substituting θλ � 1/(λ + τ1)
u1Wn,τ1 ,u1

and cλ � 1/
(λ + τ2)

u2Wn,τ2 ,u2
, λ � 1, 2, . . . , n, in (21) and using similar

method which we used in the proof of +eorem 13, we
obtain (40).

Theorem 16. Let all the hypotheses of 9eorem 14 hold, then
we have the following inequality:

δ + ε −
1 + Γn
Γn

 log δ + ε −
1
Γn

 ≤ log δδ− 1εε− 1

+
1
Γn



n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

+ Z(W, τ, u)⎡⎣

− 

n

λ�1
cλlog cλ − u 

n

λ�1
cλlog(λ + τ)⎤⎦ − logWn,τ,u.

(41)

Proof. Let θλ � 1/(λ + τ)uWn,τ,u, λ � 1, 2, . . . , n, then



n

λ�1
θλlog

θλ
cλ

� − 
n

λ�1

log cλ

(λ + τ)
u
Wn,τ,u

− Z(W, τ, u), (42)



n

λ�1
cλlog

θλ
cλ

� − 
n

λ�1
cλlog cλ(λ + τ)Wn,τ,u

� − 
n

λ�1
cλlog cλ − u 

n

λ�1
cλlog(λ + τ)

− ΓnlogWn,τ,u. (43)

Also, 
n
λ�1 θλ � 

n
λ�1 1/(λ + τ)uWn,τ,u � 1; therefore,

using (42) and (43) in (24) for θλ � 1/(λ + τ)uWn,τ,u,
λ � 1, 2, . . . , n, we obtain (41).

+e following corollary is the particular case of +eorem
16.

Corollary 6. Let δ and ε be positive real numbers with δ < ε.
If n ∈ 1, 2, 3, . . .{ }, τ ≥ 0, u> 0, and 1/(λ + τ)uWn,τ,u ∈ [δ, ε],
then

δ + ε −
1 + n

n
 log δ + ε −

1
n

 ≤ log δδ− 1εε− 1

+
1
n

[Z(W, τ, u) − u 
n

λ�1
log(λ + τ)⎤⎦ − logWn,τ,u.

(44)

Proof. By choosing cλ � 1, λ � 1, 2, . . . , n, in (41), we obtain
(44).

Theorem 17. Let all the hypotheses of 9eorem 15 hold, then
we have the following inequality:

(δ + ε − 2)log(δ + ε − 1)≤ log δδ− 1εε− 1
+ Z W, τ1, u1( 

− Z W, τ2, u2(  + 
n

λ�1

log λ + τ1( 
u1Wn,τ1 ,u1

λ + τ2( 
u2Wn,τ2 ,u2

⎡⎣

−
log λ + τ2( 

u2Wn,τ2 ,u2

λ + τ1( 
u1Wn,τ1 ,u1

⎤⎦.

(45)

Proof. Let θλ � 1/(λ + τ1)
u1Wn,τ1 ,u1

and cλ � 1/(λ + τ2)
u2

Wn,τ2 ,u2
, λ � 1, 2, . . . , n, then



n

λ�1
θλlog

θλ
cλ

� − Z W, τ1, u1(  + 
n

λ�1

log λ + τ2( 
u2Wn,τ2 ,u2

λ + τ1( 
u1Wn,τ1 ,u1

,

(46)



n

λ�1
cλlog

θλ
cλ

� 
n

λ�1

1
λ + τ2( 

u2Wn,τ2 ,u2

log
λ + τ2( 

u2Wn,τ2 ,u2

λ + τ1( 
u1Wn,τ1 ,u1

 

� 
n

λ�1

log λ + τ2( 
u2Wn,τ2,u2

λ + τ2( 
u2Wn,τ2 ,u2

− 
n

λ�1

log λ + τ2( 
u2Wn,τ2 ,u2

λ + τ1( 
u1Wn,τ1 ,u1

� Z W, τ2, u2(  − 
n

λ�1

log λ + τ1( 
u1Wn,τ1 ,u1

λ + τ2( 
u2Wn,τ2 ,u2

.

(47)

Also, 
n
λ�1 θλ � 

n
λ�1 1/(λ + τ1)

u1Wn,τ1 ,u1
� 1 and


n
λ�1 cλ � 

n
λ�1 1/(λ + τ2)

u2Wn,τ2 ,u2
� 1; therefore, using (46)

and (47) in (24) for θλ � 1/(λ + τ1)
u1Wn,τ1 ,u1

and
cλ � 1/(λ + τ2)

u2Wn,τ2 ,u2
, λ � 1, 2, . . . , n, we obtain (45).
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