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With the emergence and development of the Internet of Vehicles (IoV), quick response time and ultralow delay are required.
Cloud computing services are unfavorable for reducing delay and response time. Mobile edge computing (MEC) is a promising
solution to address this problem. In this paper, we combined MEC and IoV to propose a specific vehicle edge resource
management framework, which consists of fog nodes (FNs), data service agents (DSAs), and cars. A dynamic service area
partitioning algorithm is designed to balance the load of DSA and improve the quality of service. A resource allocation framework
based on the Stackelberg game model is proposed to analyze the pricing problem of FNs and the data resource strategy of DSA
with a distributed iteration algorithm. The simulation results show that the proposed framework can ensure the allocation
efficiency of FN resources among the cars. The framework achieves the optimal strategy of the participants and subgame perfect

Nash equilibrium.

1. Introduction

With the emergence of various Internet of Vehicles (IoV)
applications, such as camera sensor data exchange, driving
behavior analysis, voice recognition, real-time traffic in-
formation updates, and software downloads, a new archi-
tecture that can achieve ultralow delay and high throughput
is highly required [1]. However, current wireless commu-
nication technologies cannot meet the ever-increasing ser-
vice quality requirements for the following two reasons. As
vehicles are densely deployed in some urban sections,
complex and intensive vehicle services are formed, which
increases the difficulty of data services. Additionally, current
communication technologies cannot support a large number
of user terminals. In cellular networks, the spectrum effi-
ciency drops drastically with increasing user density [2, 3].
To meet the demand for data computing services, a large
number of large-scale data centers have been deployed. In
addition, cloud computing has recently been proposed to
provide flexible and efficient services to data service

subscribers [4]. In cloud computing, the data service agent
can organize a shared pool of configurable computing re-
sources (such as servers, storage, networks, applications, and
services), which can be easily accessed by data service
subscribers on demand [5].

However, the distance between mobile vehicles and
remote cloud servers may cause a large network transmis-
sion delay and create considerable overhead, which is in-
tolerable for applications requiring real-time interaction and
high mobility requirements [6, 7]. Accordingly, it is bene-
ficial and necessary to bring the cloud closer to the users. In
this case, a new architecture and technology called MEC
emerged, pushing cloud services to the edge of wireless
networks and providing services close to mobile vehicle
terminals. In MEC, the network edge can run in an envi-
ronment isolated from the rest of the network and create
access to resources in the local neighborhood. Moreover, in
IoT, fog computing was proposed by Cisco as a promising
solution. In fog computing, multiple low-power computing
devices, commonly referred to as the FNs, at the edge of
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networks are deployed to offload the data computing ser-
vices from the cloud [8]. With the properties of small scale,
low construction cost, and mobility support, the FNs are
generally deployed much closer to the data service sub-
scribers; thus, the network latency of accessing cloud
computing services can be greatly reduced, enabling MEC to
provide fast interactive responses and location-aware ser-
vices in data services [9]. With different purposes and
preferences, data service subscribers at the network edge can
receive data services from the FNs in the neighborhood.

In this paper, MEC technology is introduced into the IoV
to form vehicular edge computing (VEC). In the VEC
network, the concept of network virtualization is also ap-
plied. As the large number of FNs and their computing
resources are invisible to the cars, the car can only contact
and purchase data services from the DSA. Therefore, there is
a virtualized network between the DSA and the car. When
service requests are received from all cars, each DSA can
collect computing resources from the FN and provide virtual
data services to the car. Thus, the computing resource can be
efficiently and effectively utilized by nearby cars. Each carisa
data service subscriber and needs to apply for data services
from the DSA.

An edge computing network can consist of a large number
of FNs deployed by different DSAs at different locations to
provide various data services and applications to the cars.
When cars can choose their DSA as well as the corresponding
FN to further enhance their quality of experience, how to form
a data service framework that is more efficient and meets the
highest revenues of all participants is still an open problem. In
this paper, we focus on the service radius of each DSA and the
benefits of each layer, proposing an efficient data resource
management framework. In this framework, combined with
cars’ highly mobile characteristics and motion characteristics,
we divided the service area of DSAs according to the density
and speed of the car. Then, we developed a Stackelberg game to
simulate the interaction between the FN and the DSA. The FN
determines their service price first, and the DSA then decides to
purchase the optimal number of computing resource blocks
(CRBs). Once the price of the FNs and the purchased resources
of the DSAs have been obtained, the DSA offloads this data
demand to the corresponding FN. However, if there are not
enough CRBs available in the FN to meet the data service
requirements of all DSAs, some DSAs will be served by remote
data centers that are remote from the DSA.

The rest of the paper is organized as follows. Related
work is described in Section 2. We introduce the system
framework and define the problem in Section 3. In Section 4,
we propose a dynamic service area partitioning algorithm to
divide the service area of the DSA. In Section 5, we use the
Stackelberg game to analyze the two layers of interaction in
the framework. Section 6 shows the experimental evaluation
based on a real dataset. Finally, a conclusion is drawn in
Section 7.

2. Related Work

In a lot of studies, fog computing has been advocated to be
the promising future of the cloud. Ahlgren et al. [10] studied
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the concept of mist computing, aiming to distribute the
cloud and its benefits deeply into the network. Yannuzzi
et al. [11] considered the requirements of mobility, scal-
ability, reliable control, and actuation in some challenging
scenarios of IoT to show the benefits and significance of fog
computing. A recent survey on the emerging 5G network
edge cloud architecture can be found in [12]. Taleb et al. have
analyzed the MEC reference architecture and main de-
ployment scenarios and conducted an overview of the
current standardization activities. Li et al. [13] proposed an
intermediary framework, where there exists an intermediary
between multiple cloud providers and users. The interme-
diary first rents the cloud service from cloud providers and
then provides streaming processing service to users with low
cost and delay. In [14], a highly localized IoT-based cloud
computing model was proposed. Aura allows mobile clients
to create ad hoc and flexible clouds using the IoT and other
computing devices in the nearby physical environment. Li
et al. [15] have presented a user-oriented improved spectral
clustering scheduling algorithm to solve the problem of
resource scheduling and improve the satisfaction of users.
And in [16], the methods of fuzzy clustering were combined
with particle swarm optimization to divide the resources,
which improves user satisfaction and the efficiency of re-
source scheduling. However, mobile cloud computing also
requires a high quality of network connections with remote
infrastructures. Therefore, on the basis of these studies, our
work is to build a layer of edge network between the cloud
and the end user, to provide data services for the car, and use
the car as the end user, so the car is also a part of the edge.
Our edge node layer can be closer to the end user; instead of
sending the information to the remote server, some data
services can be provided directly by edge nodes to improve
service efficiency. In [17], a Stackelberg game theoretic
model was shown for dynamic bandwidth allocation be-
tween virtual networks. Wu et al. [18] considered a Stack-
elberg game between data center and buses in the smart city,
where each bus collects data along its route and competes
with other buses for the reward forwarding to the data
center. In the game, following the proposed heuristic al-
gorithm, the Stackelberg equilibrium is shown to be
achieved where the data center and each bus are able to reach
maximum utility. Wang et al. [19] modeled the interaction
between the monopolistic data center operator and the
customers as a Stackelberg game. In the game, the pricing
strategies of the monopolistic data center operator and the
corresponding behavior of data service customers are de-
tailedly analyzed in both homogeneous and heterogeneous
customer scenarios.

In recent years, in many studies, the combination of
resource scheduling and cloud computing in the Internet of
Vehicles has achieved research results. Shiraz et al. [20]
have proposed thematic taxonomy of current DAPFs,
reviewed current offloading frameworks by using thematic
taxonomy, and analyzed the implications and critical as-
pects of current offloading frameworks. In [21], a local
roadside cloud-based network is proposed to deal with
traffic-related data, which is coincident with the goal of fog
computing. A vehicular fog computing (VFC) architecture
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is proposed in [22], in which vehicles with redundant
resources are used as the computational infrastructures and
the burdens of congested resource-limited vehicles are
relieved. Alamer et al. [23] modeled a CVCC network by a
two-phase heterogeneous public good game and then in-
vestigated the influence of different incentive mechanisms
and the structure of a complex network describing the
vehicles’ connectivity on the vehicles’ investment rate.
Kumar et al. [24] have discussed the use of vehicular delay
tolerant network technologies for MEC targeting mainly at
smart grid applications. Salahuddin et al. [25] proposed a
novel roadside unit (RSU) cloud, a vehicular cloud, as the
operational backbone of the vehicle grid in the Internet of
Vehicles (IoV). The architecture of the proposed RSU cloud
consists of traditional and specialized RSUs. Kim et al. [26]
considered an innovative RSU deployment framework,
which is a well-balanced combination of three different
approaches: deploying RSUs on static locations, public
mobile transportation, and fully controllable vehicles
owned by the local government. Zhang et al. proposed a
cooperative fog computing-based intelligent vehicular
network for dealing with big IoV data, and they further
discussed mobility control and distributed computation
and storage [27]. However, our research is quite different
from theirs. Although we both mentioned the features such
as using edge computing to solve the problem, our man-
agement framework highlights the new features such as
taking into account the impact of the vehicle’s mobile
characteristics on the service provided by the edge nodes
and making a prejudgment of the service capabilities to
provide low-latency communication and more context
awareness.

3. System Framework

The car needs data service during the driving process, and
each car can deliver data to the FN at the edge of the
network. Each DSA selects an FN to provide cars with the
required data services, as shown in Figure 1. Such a three-
layer edge network is the main core framework of this paper.
DSA is located in the middle layer, which serves the lower
car and manages the upper FN through a connecting car and
the FN. We define the unit number of computing resources
that can be distributed by each FN as the CRB, each of which
can provide computing service at the rate of y. The physical
data transmission network between FNs and cars satisfies
the SecondNet topology, where the network facilities can
provide guaranteed quality of service (QoS) for the DSSs.
Accordingly, to reduce the risk of potential network con-
gestion and achieve real-time fast-response interaction, each
DSA tries to oftload the data service submitted by a car to the
EN. However, as the car cannot have the authorization to
access the CRBs directly, the cars are required to receive the
virtualized services from the DSAs, and with the manage-
ment of DSAs, the CRBs of the FNs can finally be allocated to
the cars.

The system architecture is shown in Figure 1. FN stands
for the fog server, DSA is the multidata agent, and car stands
for the data service subscribers (see Figure 1).

4. Service Area Partitioning Algorithm

To enable the car to apply for services at any time and
reduce the service response time, it is necessary to divide
the service area of each DSA. The service area of a DSA is a
circle with a radius of R, . By default, all cars in this circle
are served by the corresponding DSA. Each car has a
corresponding DSA, and the service area of all DSAs is
added to M. Each car can communicate with an FN through
a DSA or with vehicles in different service areas through
mmWare or other networks. One FN is responsible for one
DSA, and each DSA can communicate directly with the
corresponding FN. Because the traffic conditions on dif-
ferent roads are different and the driving of vehicles is
random, the density of vehicles in the service area of each
DSA is different, which leads to the unbalanced load of the
DSA. If there are too many cars requesting data services
within a DSA service area, the response time of service will
be too long and even the quality of service will be affected.
Therefore, we propose a dynamic service area partitioning
algorithm that helps us adjust the service area radius R,
according to the car driving behavior in the circle. We
mainly consider three factors: speed factor, location factor,
and server idle resources with the algorithm. Each car is
connected with mmWare, and each node shares its own
information with hello messages.

4.1. Acquisition of Vehicle Motion Data

4.1.1. Interpolation Method. We obtained the speed of the
car with the interpolation method in [28]. The interpola-
tion method is a function value that uses a function f (x) to
know several points in a certain interval. If there is an
appropriate specific function, other points in the interval
can obtain an approximation of the function f (x) with the
value of the specific function. This is the interpolation
method.

Let function y = f (x) be defined on the interval [a, b],
and there exist a set of values y, y,,. .., ¥, at a set of points
a<xy<x;<---x,<b; if there is a simple function p(x),

p(x:) =y (1)

then p(x) is the interpolation function of f (x), the point
Xg, X1, ..,X, is the interpolation node, and the interval
containing the interpolation node [a, b] is the interpolation
interval.

The linear interpolation formula is

p(x) =a,+ax. (2)

Set the pixel coordinates of the rear wheel center point to
the previous frame t,, and the next frame ¢, to be (x,, y,) and
(x> y1), respectively. The pixel coordinates of the front
wheel center point in the middle of the two frame images are
(x, ¥), and the time ¢ of the front wheel at this frame is
t,—t

o, <) (3)

t =

The principle of calculating the speed of the video is
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FIGURE 1: System framework graph.

Ad

= (4)

v

In general, the above formula is known as the Ad or At
value of a variable, and then, another calculation method is
used to obtain another variable value.

4.1.2. Time Interpolation Method to Obtain Speed. In this
study, we calculate the speed of a car based on video images
using the interpolation method. We adopted the most basic
linear interpolation. The motion data of the car are obtained
by using a video. In the video image, the captured target
vehicle can find more than two feature points with known
distances in the moving direction and take the actual dis-
tance between the two feature points as the scale length. The
pixel coordinate values of each feature point in the image are
combined with the interpolation principle to calculate the
exact time when the vehicle passes a scale distance, finally
obtaining an accurate vehicle speed.

Assume that the wheelbase L of the vehicle is set to the
scale and the direction of driving is as shown. At 0 frames,
the front wheel position is X (0) q and the rear wheel position
is X (0); in the n frame, the front wheel position is X (n),
and the rear wheel position is X (1n),; in the n + 1 frame, the
front wheel is at the X (n + 1), position and the rear wheel is
at the X (n + 1), position (see Figure 2).

If X (n);, = X (0),, the target vehicle passes the distance L
for exactly n frames, and the average speed is

| | | | |
X(n)q X(n+ 1)q

FIGURE 2: Schematic diagram of the time interpolation method.

L
v=—x3.6. (5)
nt

When X(n)h<X(0)q, find the time difference value
between X (n), and X (O)q with the interpolation method:

X(0), - X (n),

t, = . 6
L X(n+ 1), - X (), ©
The average velocity is
Vi(x) = L X 3.6 7
VS At xt ™

4.2. Affecting Factors of Service Radius
4.2.1. Speed Factor (VF). Calculate VF(s,m) according to
the time interpolation method:

lv(m)| = min ¢y [v(y)l

[v(p)l

VF(s,m) = , (8)
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where N represents a group of nodes in the neighborhood
and v () represents the speed. A smaller VF indicates a lower
velocity. Based on the weighted exponential moving average,
the VF is updated periodically at an interval of 10 seconds:

VE; (s,m) «— (1 — w) x VF_, (s,m) + w X VF; (s,m), (9)

where VF,_, (s,m) and VF, (s, m) represent the previous and
current values of VF, respectively. w represents the influence
value of the current speed on speed change, VF is initialized
to 1, and w is set to 0.7.

4.2.2. Location Factor (LF). The location factor is calculated
as follows:

LE(s,7) =[tvg = 2 (Ryepy + Reepy + -+ + Reeg)|- (10)

LF indicates the position of the car from the edge of the
current service area and tv; indicates the distance traveled
by the car s in area i. A smaller LF indicates that the car is
about to leave the service area.

4.2.3. Server Idle Resources. The server idle resources is given
as follows:

(1-8)<d,
R (11)
st Y 2(Reg)m=M, 3i, VR(1 = 8;) 2 pnin

i=1

where §; represents the resource occupancy of the server. All
service areas add up to exceed M, and idle resources should
be greater than the minimum value. Only by guaranteeing
these two conditions can the server provide data resource
services.

4.3. Service Area Partitioning Algorithm. If the car is fast or
closer to the edge of the DSA’s service area, then determine if it
will take a short time to reach the next DSA. If so, if it is small
enough, when the server is busy, the job cannot be queued first,
and the car may soon reach the service area of the next DSA and
be served by the next DSA. When a certain number is reached, it
means that the car density decreased before the current DSA
processed the job. There is no need to change R, in this
situation. Only when the idle resource of the current DSA is less
than the threshold, and the car within the service area can only
provide the service by the DSA within a certain period of time
will the radius of the service area change, and R, is changed 2
times. Conversely, when a DSA is idle, the job of the busy DSA
is transferred to the DSA with idle server resources. If there are
still more free resources, R, is changed to half of the original
R,.s. The sum of the service areas of each DSA after the change
must be equal to the original total area M (e.g., in Figure 3). The
service area partitioning algorithm is as follows (see
Algorithm 1).

5. Stackelberg Game Decision

5.1. Definition of the Stackelberg Game. The Stackelberg
game is a game problem in which the decision-makers are in

a master-slave relationship; that is, the status of game players
belonging to the two decision-making layers is inequitable,
and the players in the upper-layer game are more influential
than the lower-layer players. It is a leader and follower
relationship. The leader always takes the lead in making
decisions, while the followers make the best decisions based
on the strategy of the leader and other followers in the same
layer.

A game model usually consists of three elements: the
game player, strategy, and revenue. Because the Stackelberg
game has two different decision-making layers, its players
are divided into two categories and have their own strategic
space and revenue.

Game player defines m leaders and n followers, re-
spectively, and is represented by two sets A = {1,2,...,m}
and B=1{1,2,...,n}.

Strategy defines the strategy combination of leader as x =
{x1,x5,...,x,} and the set as X and the strategy combi-
nation of follower y = {y,, ¥,,...,y,} and the set as Y.

Revenue of leader i is expressed as U, and the revenue of
follower j is expressed as U, , where i € M and j € N.

The above game model is defined as a Stackelberg game
with multiple leaders and multiple followers. Assuming that
the leader has made a decision, each follower who partici-
pates in the game plays a noncooperative game under this
decision to maximize their own revenues; then, the best
strategy for the follower under the leader strategy can be
expressed as

S@ =1y = (1 yhe 3 Uo (5571007

(12)
ZUoj(x, Vs oo ,y_j)]»,
where y7 represents the best strategy for follower j and y”,
represents the best set of strategies for followers other than j.
When all the follower strategies satisfy the above formula,
the optimal strategy space y = (y7,y3,...,y}) is called a
Nash equilibrium of the noncooperative game [29].

5.2. Stackelberg Game Analysis for Two-Layer Interaction.
Assume that in a particular edge computing network, there
are multiple FNs set to set M= {1, 2, ..., m}. The set of DSAs
covered in this range is N=1{1, 2, ..., n}, and FN competes
for all DSAs. The price strategy of the FN; node is p;, j € M,
and the price strategy of all ENs is p = (p,, ps> - - -» Pyn)- The
CRB requirement strategy of DSA; is x;;, i € N, which means
the quantity of CRB purchased by DSA; at FN;. We define
x; = (x;j,x_;;) as the CRB requirement strategy vector of
DSA;, where x_;; represents the strategy of DSA; at other
FNs except for FN;and g = (g;, 95, . - -, q,) denotes the set of
data requirement strategies for all DSAs.

The Stackelberg game mainly means that one player of
the game first predicts the purchase amount of the other
player to determine the price and the other player deter-
mines the purchase amount according to the price so that the
determined price is considered by both parties to take care of
the revenues of both parties. In our model, we consider DSA
as the applicant for computing resources and as a follower in
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F1GURE 3: Schematic diagram of service region division.

Input: The number of DSA
The Car density k,

the radius, get the R
if ((1-6;)<4,)

while (k,, >n)

for(s =1,s<k,s++)

t, = (LE(s,m)/VE (s,m))
if (t<ty)
counter +1
if (counter > 0.5k,,)
keep R
else

ref

if (1, > 0.75k,,)
Rref = 2Rref
else((1-6;)>6,)

if (8)20,)
Rref = (I/Z)Rref
output R ¢

The service radius for each DSA

According to the above input, bring the program to determine

if (VE(s,m)>v, || LF(s,m) <l,)

join the DSA queue list

move tasks from the adjacent DSA queue list to local completion

ALGORITHM 1: DSA service area partitioning algorithm.

the game model. The FN needs to provide computing ser-
vices to DSA, which is the leader in the game model. The
game between the FN and the DSA consists of two phases. In
the first phase, different FNs first declare their price strategy
p and broadcast the strategy to all DSAs. In the second phase,
the DSA makes its own data resource strategy q based on the
received price strategy vector p. After determining the price
strategy and data resource strategy, the competition of the

DSA and the FN constitutes a noncooperative game prob-
lem. The strategic combination of the DSA and the FN (p, q)
is a solution to the Stackelberg game. Next, we formulate the
utility of the DSA and the FN.

5.2.1. Utility of DSA. Each DSA independently selects the FN
to develop a CRB demand strategy. The utility function of the
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DSA is composed of two parts: the benefits and costs of
providing data services for a car. The benefits are related not
only to the number of CRBs but also to the satisfaction of
different cars with CRBs of the same unit. The cost of the DSA
includes the cost of purchasing the CRBs from the FN and the
delay in the data service. The increase in price and the increase
in data transmission delay caused by network congestion will
lead to the DSA adjusting the data resource strategy. The
utility of the DSA can be expressed by the following formula:

j=1 j=1

where U, (Z;”:lxi ;) is the total revenue earned by the DSA
when car is served by the DSA, p; is the price set by the FN,
P;(pjx;;) is the price paid by the DSA to the FN, and D, (x;;)
represents the delay cost of the DSA’s service to cars.

We only study flexible business flow. When the data service
requested by the car is low, the marginal effect of the DSA based
on data is very large, but the marginal effect decreases with the
increase in data. Its benefit function can be described as an
increasing concave function based on the total resource, which
generally conforms to the trend of the logarithmic function.
Therefore, we use the logarithmic function U (x) = alog (1 +
x) to represent the utility function of the DSA flexible business
flow, where « is a constant greater than zero, related to the
sensitivity to the data latency of the car, and x represents the
total number of CRBs obtained by the DSA. Finally, the goal of
each DSA is to choose its own optimal data resource strategy
x};, which is argmaxUy; (x;j, x_jj, pj» p-;), where x_;; and
p-; indicate that other DSAs and FNs also choose the optimal
data resource strategy and price strategy.

We assume that the workload of each DSA follows the
Poisson arrival process. If the total load Q; > C; of all DSAs
in an FN, the network will be congested. Only when the load
of all DSAs in the FN satisfies Q;<C;j can the effective
transmission of data be guaranteed. Specifically, the load of
FNis Q > and the delay cost function of DSA; in FN jcan be
expressed as

, ifQ.<C,
- 7

D;(g) = (14)

00, ifQj<Cj,

where f3; is a constant related to data transfer technology.

5.2.2. Utility of FN. For FN, the total utility is the payment
received from the DSA minus the transmission cost. We set
¢;; to the transmission cost per unit CRB, and DSA,; is the
service price per unit for the FN. Therefore, the utility of the
EN can be expressed by the following formula:

n

Unij = ).( )iy (15)

i=1

where Y. p;x;; is the total revenue received by the FN from
the DSA and ), c;;x;; is the total transmission cost esti-
mated by the FN.

To obtain data services from the FN, the DSA needs to
purchase a small amount of CRB from the FN to achieve
satisfactory service, which comes at a price. Different DSAs
have different service delay tolerances. When the upper limit
of the service delay is high, the DSA only needs to buy a small
amount of CRB to achieve satisfactory service. However,
when the upper limit of the service delay is low, the DSA
must purchase a large number of CRBs to ensure that the
quality of service is improved and the service delay is within
the tolerant area. In addition, the price of the service set by
the FN will also affect the utility of the DSA. When the price
is high, even if a large number of CRBs can improve the
quality of data services, the DSA also needs to pay a large
number of fees to the FN, so the benefits may not be sat-
isfactory. How many resources does a car need to apply to
complete its own tasks but also to ensure the quality of
service without wasting resources? The FN provides data
computing services to the DSA and needs to set a price that
benefits the DSA. However, if the price is set too high, the
DSA will reduce the number of CRB purchases or choose
another FN, so it is necessary to predict the response of the
DSA to determine the service price to maximize utility.
Therefore, how the FN prices its resources to protect its
revenue without losing user satisfaction is the key.

5.3. Proving the Existence of Nash Equilibrium Based on a
Utility Function. According to the previous derivation, the
utility function of DSA; can be expressed as

Uni(%ijp %4 Pjp P-5) = 1°g<1 +) x,.j> =D P
=1 =
¥y B
jzzl Ci-Q

(16)

According to the utility function of the DSA, the second

derivative of Uy; relative to x;; is

U y; _ o p ﬁj
Ox;; 1+ Z;”:lxij 7Ci-Qf

(17)

The result of finding the second-order partial derivative
of the utility function Uy, of the DSA is
Uy «; 2B;
alefl = ,:l 2= ’ 5<0. (18)
i (1+Xhw) (G- Q)
The utility function of the DSA is proved by a strictly
concave function, so the Nash equilibrium point exists.

5.4. Solution of the Stackelberg Game Problem. Aiming at the
characteristics of local sharing of decision information
among players in the Stackelberg game model mentioned
above, we solve the perfect Nash equilibrium of the subgame
with the distributed iteration algorithm proposed in [30];
that is, each player can determine the best strategy only with
local information. Assume that at time ¢, the price strategy of



the FN broadcast is p(f). Based on the demand for data
resources, DSA considers the price and service capabilities of
the FN and adjusts its data resource strategy to maximize its
utility. The rate of change in the data obtained by the DSA at
each FN is proportional to the gradient of the utility
function. The time from 7 to 7 + 1 is defined as an iteration
period At of the DSA, and the data resource strategy of the
DSA in the period is

xi(j”l) = xi(jT) +1d, (19)
where A is the data resource strategy adjustment step size and
d™ is the gradient of the utility function and its calculation
formula is

4 = U y;

5 (20)

Xij x,-J:xi(jT)

Because Uy; has been proven to satisfy the character-
istics of the concave function, the data resource strategy of
the DSA can converge to the Nash equilibrium point
through (19) after a plurality of Ar.

The optimal price strategy of FN can be calculated by
iteratively adjusting the price and then observing the data
resource strategic changes of each DSA to calculate the
impact on its utility. The optimal price strategy maximizes
the FN’s utility function. The price strategy adjustment of the
EN can be calculated as

BUM]- (x (1), P (1)
ap; (1)
where y > 0 indicates the iteration step size. Similarly, the time
interval from time ¢ to time ¢+ 1 is called an iteration period

At of the FN. The partial derivative of the price can be cal-
culated by using a small variable ¢; the formula is as follows:

3U; (x(6), p(1))
an (1)

(t+1) _

P! |

Py +y : (21)

:UMj(...,pj(t)+s,...)—UMj(...,pj(t)—g,_,.)
2¢ ’

(22)

Before the data resource strategy of the DSA is stable, the
price of the FN should be kept constant to obtain the best
strategy for the DSA under this price strategy. At this price,
the time that the strategy of the DSA achieves stability is
called an iteration period At of the FN, and one At contains
multiple A7. Throughout the framework, the FN as a leader
dynamically adjusts pricing based on the demand of the
DSA, and when its revenue reaches its maximum, it stops
changing the pricing strategy and determines this price as
the best price p*. Under this pricing, the DSA’s best data
resource strategy x™* is the optimal response to the pricing of
the FN. At this point, the leaders and followers of the game
reach the Nash equilibrium (x*, p*).

The algorithm is divided into two parts, including the
price strategy of the FN and the data resource strategy of the
DSA:

Complexity

(1) At each time ¢, the FN formulates a price strategy
based on the marginal effects of formulas (21) and
(22).

(2) After the DSA receives the new price strategy and
then within each time interval A7, it adjusts its data
resource strategy according to formulas (19) and (20)
until the utility reaches the maximum value and the
entire DSA reaches the Nash equilibrium.

(3) If the utility of all the FNs reaches the maximum
value at this time, the iteration is stopped. Otherwise,
at the next time ¢ + 1, the FN returns to (1) according
to the data resource strategy of the DSA to continue
iteration.

6. Simulation Experiments

The simulated scene was on a 3,000-meter road. All the cars
were running in one direction. The initial DSA service area
was 500 meters. In this 3,000-meter area, we allocated 3 FNs
and DSAs. We assumed that each car’s sensor is in the same
location on the car, the rate of data transmission is
50 km/ms, and the delay tolerance of the car is 60 ms. In the
iterative algorithm experiment, we only use two service areas
covered by different FNs. There are three kinds of DSAs in
this area: « = 0.5, « = 0.9, and a = 2. Assume that under the
initial conditions, the price strategies of both FNs are 0.1, the
value of f is 1, and the initial data resource strategy of the
DSA at both FNs is 0.

As the density of vehicles in the area continues to in-
crease, the service area of the DSA becomes correspondingly
smaller. In the case where the size of the service area is the
same, the density of vehicles in the service area of the DSA
with a resource occupancy rate of 0.2 is the largest. When the
density of cars is fixed, we find that the DSA with a resource
occupancy rate of 0.8 has the smallest service area, that is;
when the server is busy, the service area of the DSA is
smaller. As shown in Figure 4, both density of vehicles and
resource occupancy rate can affect the service area of the
DSA; the greater the density of cars, the fewer the resources
available to the server and the smaller the service area (see
Figure 4).

Figure 5 shows the curve changes of three different utility
functions of DSA in the iteration process. The users of curve
o = 2 are cars, which are the least sensitive to data service
delay, so the corresponding price paid by the cars is relatively
low. The resource in the FN is preferentially contested by
DSA, which is sensitive to delay and applies for more re-
sources, so the effect is relatively low. The curve of « = 0.5 is
a car and is the most sensitive to data service delays, so the
DSA needs to buy more data resources from the FN, and the
price strategy of the FN will be more friendly, so the utility of
the DSA is getting higher and higher, but as the equilibrium
point of the game is reached, the resource of the FN is
effectively utilized, FN found a higher price in the Nash
equilibrium state, and the utility of the DSA decreases ac-
cordingly, so has a maximum value at the beginning. The car
in the DSA service area of a« = 0.9 is moderately sensitive to
service delays, and the curve increases gradually at first and
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then gradually becomes stable. All three curves tend to
stabilize after reaching that equilibrium point (see Figure 5).

We obtain the subgame perfect Nash equilibrium of the
Stackelberg game of heterogeneous wireless networks. The
two curves in the figure are the optimal price curve of the
first FN and the optimal price curve of the second FN. The
intersection of the two curves is the Nash equilibrium point
p*. Because the price strategy at this point can satisfy the

The price of the second FN
o N o o I ot g
w > v =)} ~N o) Nel
T T T T T T T
L L L L L L L

S

[N}
T

|

o
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The price of the first FN

—o— The first FN’s optimal price strategy
—o— The second FN’s optimal price strategy

FIGURE 6: Nash equilibrium of the game between FNs.
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[ DSAS utility
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F1GURE 7: The relationship between price, CRB quantity and utility.

maximum utility of two leaders at the same time, if any FN
unilaterally changes the current price, it will reduce its
utility. The intersection of two curves corresponds to the
optimal price strategy of two FNs. At this point, both the FN
layer and the DSA layer have reached the Nash equilibrium,
and the subgame perfect Nash equilibrium is obtained for
the Stackelberg game (see Figure 6).

We evaluated the utility of the DSA and the FN and
combined the best data service status after each layer of
utility. As shown in Figure 7, the utility of the DSA and the
EN is affected by the pricing of the FN and the demand for
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CRB is determined by the DSA. The FN cannot continue to
increase the price of a unit virtual CRB to increase utility
because when the price is too high, the DSA will reduce the
number of purchases, so the utility of the FN will decrease
only when the most suitable price and the best CRB quantity
are reached, and the utility of DSA and FN can reach the
maximum (see Figure 7).

7. Conclusion

In this paper, we propose a joint optimization framework for
multi-FN, multi-DSA, and multicar scenarios for VEC.
Under this framework, we first determine the service area of
the DSA according to the characteristics of the car move-
ment. Then, we model the Stackelberg game to solve the
pricing problem of the FN and the resource purchase
problem of the DSA. For each stage of the problem, all
participants can achieve balanced or stable results, and no
one in this framework can unilaterally change their behavior
to achieve higher utility. The simulation results show that all
the FN and the DSA can achieve the best effect for them-
selves and can achieve the high performance of the proposed
framework compared. For future work, we can consider the
contact between the cars of the lowest layer and whether
some data services can be obtained in the neighborhood
vehicles. If data service can be provided between vehicles,
which vehicle should be selected is determined.
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