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*e phytoplankton-fish model for catching fish with impulsive feedback control is established in this paper. Firstly, the Poincaré
map for the phytoplankton-fish model is defined, and the properties of monotonicity, continuity, differentiability, and fixed point
of Poincaré map are analyzed. In particular, the continuous and discontinuous properties of Poincaré map under different
conditions are discussed. Secondly, we conduct the analysis of the necessary and sufficient conditions for the existence,
uniqueness, and global stability of the order-1 periodic solution of the phytoplankton-fish model and obtain the sufficient
conditions for the existence of the order-k(k≥ 2) periodic solution of the system. Numerical simulation shows the correctness of
our results which show that phytoplankton and fish with the impulsive feedback control can live stably under certain conditions,
and the results have certain reference value for the dynamic change of phytoplankton in aquatic ecosystems.

1. Introduction

Fisheries can provide people with quality food resources for
the survival and development of human beings. *erefore,
the healthy development of fishery resources is the focus of
attention. If we cannot regulate the capture of fish regularly,
it will lead to the depletion of fishery resources. People would
be faced with increasing shortages of fish resources.
*erefore, it is imperative to formulate effective fishing
strategies, maintain the ecological balance of fishery re-
sources, and protect the ecological environment [1–4].

Due to the interaction of energy conversion and the
nutrient cycle between plankton and herbivores (such as
fish), they play an significant role in the most terrestrial and
aquatic ecological system. In [5], a phytoplankton and
zooplankton model is established by the interaction of
nutrients, and the dynamics properties such as limit cycle are
investigated in this paper. In [6], a commercially valuable
model of phytoplankton and zooplankton predation is
proposed, which analyzes the stability of the equilibrium
point, explores methods to maintain the ecological balance
of the population at different harvest levels, and discusses the
impact of selective harvesting on fisheries.

Recently, threshold state pulsed dynamic systems have
been widely used [7–14]. *e geometric theory of impulse
dynamical system has been well-developed [15–23]. Many
pulse equations have been studied which simulate the eco-
logical processes of populations [24–32]. However, with the
further development of the state feedback control model, we
need more new methods to find out the complete dynamic
properties and control strategies of dynamic systems and to
discuss its biological significance.*e primary purpose of this
paper is to provide a comprehensive qualitative analysis of the
global dynamics through analyzing a phytoplankton-fish
model with impulse feedback control using the Poincaré map.

*e central arrangement of this paper is as follows. In
Section 2, we establish a phytoplankton-fish model for
catching fish based on impulse feedback control. In Section
3, the Poincaré map for the phytoplankton-fish model is
defined and the properties of monotonicity, continuity, and
differentiability of the Poincaré map are analyzed. In Section
4, we discuss the existence, uniqueness, and global stability
of the order-1 periodic solution of the model and obtain the
conditions for the existence of order-k(k≥ 2) periodic so-
lution of the model. In Section 5, we perform numerical
simulations.

Hindawi
Complexity
Volume 2020, Article ID 8974763, 13 pages
https://doi.org/10.1155/2020/8974763

mailto:chd900517@sdust.edu.cn
https://orcid.org/0000-0001-7529-1218
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8974763


2. Model Establishment

In the ecosystem of lakes, phytoplankton is considered to be
the most favorable source of food for fish or other aquatic
animals. Wang et al. [33] propose a predator model of
continuously harvested phytoplankton and herbivorous fish:

du

dt
� ru 1 −

u

k
􏼒 􏼓 −

βuv

α + u
− c1Eu,

dv

dt
�
β1uv

α + u
− dv −

ρuv

α + u
− c2Ev,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where u and v represent the population density of phyto-
plankton and fish at the moment, respectively, and E is the
effort for continuous harvesting. For details of other pa-
rameters, see [34–36].

System (1) shows that, without considering the number
of phytoplankton and herbivore, continuous capture will
lead to resource depletion. We will seek an integrated
capture strategy to achieve ecological stability, for which we
make the following assumption:

(i) Assuming that phytoplankton and fish stocks are
evenly distributed within the lake

(ii) Let r be the intrinsic growth rate of phytoplankton,
α be the absorption rate of phytoplankton by fish, β
be the conversion rate of biomass, and d denote the
mortality rate of fish

(iii) Formula au/b + u represents the death number of
fish due to the distribution of phytoplankton tox-
icants, where b represents semisaturation constant
and a represents the rate at which phytoplankton
releases toxins

Let H denote the threshold at which the fish are allowed
to be caught, that is, when the density of the fish is lower than
the threshold H, it is unreasonable to catch fish; however,
only when the density of fish reaches, the predetermined
value H can catch the fish. *e amount of phytoplankton is
affected when the fish is caught. *e numbers of the fish and
the amount of phytoplankton are updated to v(t) − (τ/1 +

θv(t)) and u(t)(1 − (δu(t)/u(t) + c)), respectively.
Here, δ represents the maximum fishing rate, c repre-

sents the half-saturation constant, τ indicates the number of
phytoplankton reductions, and θ represents the morphology
parameters, where 0< δ < 1, c> 0, τ > 0, and θ > 0 [37].

We have established the following impulse feedback
control model based on the abovementioned assumptions:

du

dt
� (r − αv(t))u(t)

dv

dt
� βu(t) − d −

au(t)

b + u(t)
􏼠 􏼡v(t)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

v(t) <H,

u t+( ) � u(t) 1 −
δu(t)

u(t) + c
􏼠 􏼡

v t+( ) � v(t) −
τ

1 + θv(t)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

v(t) � H.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

System (2) is called a semicontinuous dynamic system
[38–40].

When there is no impulse, system (2) becomes
du

dt
� (r − αv(t))u(t),

dv

dt
� βu(t) − d −

au(t)

b + u(t)
􏼠 􏼡v(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Lemma 1 (see [37]). System (3) has two equilibrium points,
O(0,0) and E∗(u∗, v∗), where the boundary equilibrium point
(0, 0) is the saddle point and the internal balance point
(u∗, v∗) is a stable center:

u
∗

�
d + a − βb +

�����������������

(d + a − βb)2 − 4βbd

􏽱

2β
, v
∗

�
r

α
. (4)

It is easy to calculate, the first integral of system (3) is

H(u, v) � βu − dlnu − aln(b + u) − rlnv + αv + H0, (5)

where H0 is the constant related to the initial value. For ease
of expression, two isoclines are defined as

L1: ] �
r

α
; L2 : u �

d + a − βb +

�����������������

(d + a − βb)2 − 4βbd

􏽱

2β
.

(6)

To study the dynamic properties of system (2), the
following research methods are given.

3. PoincaréMap of System (2) and Its Properties

We intersect the dynamic properties of model (2) in R+
2 �

(u, v), u≥ 0, v≥ 0{ } based on biological significance. In order
to accurately define the impulse set and phase set of the pulsed
semidynamic system (2), the following set is given first:

ΣN � (u, v) u≥ 0, v � H −
τ

1 + θH

􏼌􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

ΣM � (u, v) | u≥ 0, v � H{ }.

(7)

Apparently, withinR+
2 , ΣN and ΣM represent two straight

lines of the vertical v-axis, respectively, and we assume ΣN
and ΣM intersect the line L2 at point A+ and point A− ,
respectively, since the internal balance point E∗ is the center
point. According to the size of H, we can divide the pulse set
and phase set into the following cases:

Case I: H< v∗
When H< v∗, the trajectory ΓA+ must intersect the ΣM at

point A11(u11, H) (see Figure 1(a)). In this case, impulse sets

M1 � (u, v) | v � H, u≥ u11􏼈 􏼉, (8)

and the corresponding phase set is

N1 � (u, v) | v � H −
τ

1 + θH
, u≥ u11 1 −

δu11

u11 + c
􏼠 􏼡􏼨 􏼩.

(9)
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Case II: H> v∗
When H> v∗, if the trajectory ΓA+ intersects the ΣM at a

point, we assume this intersect is A22(u22, H) (see
Figure 1(b)). In this case, the impulse set and the phase set
are the same as those in Case I. It is easy to infer the impulse
set

M2 � (u, v) | , v � H, u≥ u22􏼈 􏼉, (10)

and the corresponding phase set

N2 � (u, v) | v � H −
τ

1 + θH
, u≥ u22 1 −

δu22

u22 + c
􏼠 􏼡􏼨 􏼩.

(11)

If the trajectory ΓA+ and ΣM does not intersect (see
Figure 1(c)), the trajectory ΓA− intersects the ΣN at point
A31(u31,H − (τ/1+θH)) and point A32(u32,H − (τ/1+θH)),
respectively, where u32>u31.

In this case, the impulse set

M3 � (u, v) | v � H, u≥ u
∗

􏼈 􏼉, (12)

and the corresponding phase set

N3 � (u, v) | v � H −
τ

1 + θH
, u≥ u

∗ 1 −
δu∗

u∗ + c
􏼠 􏼡􏼨 􏼩.

(13)

Based on the abovementioned discussion, we define the
Poincaré map as follows.

Let

A
+
k � u

+
k , v

+
k( 􏼁 � u

+
k , H −

τ
1 + θH

􏼒 􏼓 ∈ ΣN, (14)

where 0< u+
k < +∞; the trajectory

π t, t0, uk
+
, H −

τ
1 + θH

􏼒 􏼓􏼒 􏼓Δ u t, t0, uk
+
, H −

τ
1 + θH

􏼒 􏼓􏼒 􏼓,􏼒

v t, t0, uk
+
, H −

τ
1 + θH

􏼒 􏼓􏼒 􏼓􏼓,

(15)

which goes through point A+
k will reach the ΣM at point

Ak+1 t1, t0, uk+1, H( 􏼁( 􏼁 �
Δ

Ak+1 uk+1, H( 􏼁, (16)

after time t1, and here
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Figure 1: *e domain of phase set and pulse set in three cases. *e parameter values are as follows: r � 1.444, α � 0.1, β � 0.15, d � 0.5,
a � 0.5, b � 1, δ � 0.8, and c � 1. (a) H � 12, θ � 0.02, and τ � 6.2. (b) H � 17, θ � 0.01, and τ � 11.7. (c) H � 24, θ � 0.01, and τ � 17.36.
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v t1, t0, u
+
k , H −

τ
1 + θH

􏼒 􏼓􏼒 􏼓 � H. (17)

*en, there is

u
+
k+1 � u t1, t0, u

+
k , H −

τ
1 + θH

􏼒 􏼓􏼒 􏼓 Δ u u
+
k , H −

τ
1 + θH

􏼒 􏼓 Δ

� P u
+
k( 􏼁,

(18)

which indicates that the ordinate u+
k+1 is determined by u+

k .
Since point Ak+1 is on the impulse set, Ak+1 jumps to point

A
+
k+1 � u

+
k+1, H −

τ
1 + θH

􏼒 􏼓, (19)

where

u
+
k+1 � 1 −

δuk+1

uk+1 + c
􏼠 􏼡uk+1 � 1 −

δP u+
k( 􏼁

P u+
k􏼐 􏼑 + c

⎛⎝ ⎞⎠P u
+
k( 􏼁Δ

� Gm u
+
k( 􏼁.

(20)

Consider the scalar differential equation of model (3):
du

dv
�

(r − αv)u

(βu − d − au/b + u)v
≜w(u, v),

u H −
τ

1 + θH
􏼒 􏼓 � u+

0 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

Let v+
0 � H − (τ/1 + θH) and u+

0 � S, then we have
(u+

0 , v+
0 ) in ΣN.

We define

μ(x) � u x; H −
τ

1 + θH
, S􏼒 􏼓 Δ μ(x, S), H −

τ
1+ θH
≤x≤H.

(22)

According to model (21),

μ(x, S) � S + 􏽚
x

H− (τ/1+θH)
ω(s, u(s, S))ds. (23)

From (20) and (23), the Poincare
�

map expression of
system (2) is

Gm(S) � 1 −
δμ(H − τ/1 + θH, S)

μ(H − τ/1 + θH, S) + c
􏼠 􏼡μ H −

τ
1 + θH

, S􏼒 􏼓.

(24)

*e properties of the Poincare
�
map Gm(s) is discussed

below.

Theorem 1. Let H< v∗, trajectory ΓA+ intersects with line
ΣM at point A11(u11, H) and point A12(u12, H), respectively,
where u11 > u12. Poincare

�
map Gm(s) has the following

properties:

(i) ;e domain of Gm(s) is (0, +∞), Gm(s) is mono-
tonically decreasing on (0, u∗], and monotonically
increasing on (u∗, +∞).

(ii) Gm(s) is continuously differentiable on (0, +∞).

(iii) When Gm(u∗)> u∗, there is a unique fixed point on
(u∗, +∞) (see Figure 2(b)). When Gm(u∗)< u∗,
there is a unique fixed point on (0, u∗) (see
Figure 2(a)). When Gm(u∗) � u∗, u∗ is the fixed
point of Gm(s).

Proof

(i) Since E∗(u∗, v∗) is the center point and H< v∗, take
any point A+

k (u+
k , v+

k ) on ΣN, and the trajectory of
point A+

k will reach the impulse set M1 at point
Ak+1(uk, H), so the domain of Gm(s) is (0, +∞).
For any u+

k1
, u+

k2
∈ [u∗, +∞) and u+

k1
< u+

k2
, from the

uniqueness of the solution of the differential
equation, it can be known that

μ u
+
k1

, v􏼐 􏼑< μ u
+
k2

, v􏼐 􏼑, H −
τ

1 + θH
≤ v≤H, (25)

and by the definition of the Poincare
�
map we can

get Gm(u+
k1

)<Gm(u+
k2

). *erefore, Gm(s) is
monotonically increasing on [u∗, +∞).
When u+

k1
, u+

k2
∈ (0, u∗), where u+

k1
< u+

k2
. *e tra-

jectories start from point A+
k1

(u+
k1

, H − (τ/1 + θH)),
and point A+

k2
(u+

k2
, H − (τ/1 + θH)) will pass

through the isocline L2 and intersect the set ΣN at
point A+

k11
(u+

k11
, H − (τ/1 + θH)) and point

A+
k21

(u+
k21

, H − (τ/1 + θH)), respectively, where
u+

ki1
(i � 1, 2) ∈ [u∗, +∞) and u+

k11
> u+

k21
. It can be

seen from the uniqueness of the solution of the
differential equation that Gm(u+

k11
)>Gm(u+

k21
) be-

cause Gm(u+
k11

) � Gm(u+
k1

) andGm(u+
k21

) � Gm(u+
k2

),
so Gm(u+

k1
)>Gm(u+

k2
); therefore, Gm(s) is mono-

tonically decreasing on (0, u∗).
Note 1. Because Gm(s) is monotonically decreasing
on (0, u∗] and monotonically increasing on
(u∗, +∞), it is easy to know that Gm(s)≥Gm(u∗) is
true for any s ∈ (0, +∞), and Gm(s) � Gm(u∗) if
and only if s � u∗.

(ii) It is easy to know that w(u, v) is continuously
differentiable in the first quadrant from (21), and
from the continuous differentiability theorem of
differential equations, that is, the Cauchy and
Lipschitz theorem with parameters, we know that
the Poincare

�
map Gm(s) is continuously differ-

entiable in the first quadrant.
(iii) Considering the Poincare

�
map at the position of

image Gm(u∗) of u∗, there are three cases:

(a) When Gm(u∗) � u∗, then u∗ is the fixed point of
function Gm(s).

(b) When Gm(u∗)> u∗, that is, Gm(u∗) − u∗ > 0
because 0< δ < 1, then

lim
s⟶∞

Gm(s) � s 1 −
δs

s + c
􏼠 􏼡 � s 1 − δ −

δc

s + c
􏼠 􏼡

<s(1 − δ)<s.

(26)
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*at is, lims⟶∞Gm(s) − s< 0. So, it has at least one
􏽥u ∈ (u∗, +∞) satisfies Gm(􏽥u) � 􏽥u, according to the
continuous differentiable of the closed interval.

(c) When Gm(u∗)< u∗, let Gm(u∗) � u1 < u∗, we know
that Gm(s) is monotonically decreasing on (0, u∗],
so Gm(u1)>Gm(u∗) � u1, and because
Gm(u∗)< u∗, so there is at least one 􏽥u ∈ (u1, u∗)

which satisfies Gm(􏽥u) � 􏽥u, according to the con-
tinuous differentiable of the closed interval.

In conclusion, Gm(s) has at least one fixed point. *en,
we prove the fixed point is unique.

We assume that system (2) has two fixed points, 􏽥u1 and
􏽥u2, that is to say Gm(􏽥u1) � 􏽥u1 and Gm(􏽥u2) � 􏽥u2. Let 􏽥u1 < 􏽥u2,
we define

d􏽥u1􏽥u2
(u) � u v, 􏽥u2( 􏼁 − u v, 􏽥u1( 􏼁, H −

τ
1 + θH
≤ v≤H.

(27)

*en, take the derivative of the abovementioned
formula:

d􏽥u1􏽥u2
′ (u) � u′ v, 􏽥u2( 􏼁 − u′ v, 􏽥u1( 􏼁

�
r − αv

v

􏽥u2

β􏽥u2 − d − a􏽥u2/b + 􏽥u2( 􏼁
−

􏽥u1

β􏽥u1 − d − a􏽥u1/b + 􏽥u1( 􏼁
􏼢 􏼣.

(28)

Let

g(u) �
u

βu − d − (au/b + u)
. (29)

*en,

g′(u) �
− d − a(u/b + u)2

(βu − d − (au/b + u))2
< 0, (30)

so

g 􏽥u2( 􏼁<g 􏽥u1( 􏼁, (31)

that is,

d􏽥u1􏽥u2
′ (u)< 0, (32)

and

d􏽥u1􏽥u2
H −

τ
1 + θH

􏼒 􏼓>d􏽥u1􏽥u2
(H). (33)

From system (2),

􏽥u1 � μ 􏽥u1( 􏼁 1 −
δμ 􏽥u1( 􏼁

μ 􏽥u1( 􏼁 + c
􏼠 􏼡

� μ 􏽥u1( 􏼁 1 − δ +
δc

μ 􏽥u1( 􏼁 + c
􏼠 􏼡

� μ 􏽥u2( 􏼁 − d􏽥u1􏽥u2
(H)􏼔 􏼕 1 − δ +

δc

μ 􏽥u1( 􏼁 + c
􏼠 􏼡

� μ 􏽥u2( 􏼁 1 − δ +
δc

μ 􏽥u1( 􏼁 + c
􏼠 􏼡 − d􏽥u1􏽥u2

(H) 1 − δ +
δc

μ 􏽥u1( 􏼁 + c
􏼠 􏼡

>μ 􏽥u2( 􏼁 1 − δ +
δc

μ 􏽥u2( 􏼁 + c
􏼠 􏼡 −

􏽥u1d􏽥u1􏽥u2
(H)

μ 􏽥u1( 􏼁

� 􏽥u2 −
􏽥u1d􏽥u1􏽥u2

(H)

μ 􏽥u1( 􏼁
,

(34)

that is,

􏽥u1d􏽥u1􏽥u2
(H)

μ 􏽥u1( 􏼁
> 􏽥u2 − 􏽥u1 � d􏽥u1􏽥u2

H −
τ

1 + θH
􏼒 􏼓. (35)

It is easy to know that (􏽥u1/μ(􏽥u1))< 1 if H< v∗, so

d􏽥u1􏽥u2
(H)>

􏽥u1d􏽥u1􏽥u2
(H)

μ 􏽥u1( 􏼁
> d􏽥u1􏽥u2

H −
τ

1 + θH
􏼒 􏼓. (36)

It is contradictory with d􏽥u1􏽥u2
(H − (τ/1 + θH)) >

d􏽥u1􏽥u2
(H), so the fixed point is unique.

5

4

3

G
m

(u
)

6

5 10 15 20
u

Gm(u) = u

(a)

G
m

(u
)

2 4 6 8 10 12 14 16 18
u

20

Gm(u) = u

14

12

10

8

6

(b)

Figure 2:*e Poincare
�
map Gm(u) related to the impulsive point series u. *e parameter values are as follows: r � 1.444, α � 0.1, β � 0.15,

d � 0.5, a � 0.5, b � 1, δ � 0.8, and c � 1. (a) H � 12, θ � 0.02, and τ � 6.2. (b) H � 15, θ � 0.01, and τ � 15.4.
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Note 2. When H> v∗ and trajectory ΓA+ is an intersect to
line ΣM, the Poincare

�
map Gm(s) of system (2) has similar

properties to case (a). □

Theorem 2. Let H> v∗, and trajectory ΓA+ does not intersect
line ΣM and trajectory ΓA− intersects the straight line ΣN at
point A31(u31, H − (τ/1 + θH)) and point A32(u32, H−

(τ/1 + θH)), respectively, where u32 > u31. Poincare
�

map
Gm(s) has the following properties:

(i) ;e domain of Gm(s) is (0, u31]∪[u32, +∞), where
Gm(s) is monotonically decreasing on (0, u31] and
monotonically increasing on [u32, +∞).

(ii) Gm(s) is continuously differentiable on (0, u31] and
[u32, +∞), respectively.

(iii) When Gm(u31)≤ u31, there is a unique fixed point on
(0, u31] (see Figure 3(a)). When Gm(u31)> u31, there
is no fixed point (see Figure 3(b)).

Proof

(i) Since E∗(u∗, v∗) is the center point. If H> v∗ and
trajectory ΓA+ does not intersect line ΣM, trajectory
ΓA− intersects the straight line ΣN at two points, that
is, A31(u31, H − (τ/1 + θH)) and A32(u32, H−

(τ/1 + θH)), respectively, where u32 > u31, then we
take any point A+

k (u+
k , v+

k ) in ΣN. If u+
k ∈

(0, u31]∪[u32, +∞), the trajectory of point A+
k will

reach the impulse set M3 at point Ak+1(uk, H), if
u+

k ∈ (u31, u32) the trajectory of point A+
k has no

intersection with the impulse set M3. So, the do-
main of Gm(s) is (0, u31]∪[u32, +∞).
For any u+

k1
, u+

k2
∈ [u32, +∞) and u+

k1
< u+

k2
, from the

uniqueness of the solution of the differential
equation, it can be known that

μ u
+
k1

, v􏼐 􏼑< μ u
+
k2

, v􏼐 􏼑, H −
τ

1 + θH
≤ v≤H, (37)

and by the definition of the Poincare
�

map we get
Gm(u+

k1
)<Gm(u+

k2
). *erefore, Gm(s) is monoton-

ically increasing on [u32, +∞).
When u+

k1
, u+

k2
∈ (0, u31], and where u+

k1
< u+

k2
. *e

trajectories start from point A+
k1

(H − (τ/1 + θ
H), u+

k1
) and point A+

k2
(H − (τ/1 + θH), u+

k2
) will

pass through the isocline L2 which intersects the ΣN
at point A+

k11
(H − (τ/1 + θH), u+

k11
) and point

A+
k21

(H − (τ/1 + θH), u+
k21

), respectively. *en,
u+

ki1
(i � 1, 2) ∈ [u32, +∞) and u+

k11
> u+

k21
. It can be

seen from the uniqueness of the solution of the
differential equation that Gm(u+

k1
)>Gm(u+

k2
);

therefore, Gm(s) is monotonically decreasing on
(0, u31].

(ii) From (21), we can know that w(u, v) is continuously
differentiable in the first quadrant; from the con-
tinuous differentiability theorem of differential
equations, that is, the Cauchy and Lipschitz theorem
with parameters, we know that the Gm(s) is

continuously differentiable on (0, u31] and
[u32, +∞), respectively.

(iii) Considering the Poincare
�

map at the position of
image Gm(u31) of u31, there are two cases:

(a) When Gm(u31)≤ u31 (see Figure 3(a)), we as-
sume Gm(u31) � u1 ≤ u31, and we know that
Gm(s) is monotonically decreasing on (0, u31],
so Gm(u1)≥Gm(u31) � u1, and because
Gm(u31)≤ u31, so there is a point 􏽥u ∈ (u1, u31],
and it satisfies Gm(􏽥u) � 􏽥u, according to the
continuous differentiability of the closed
interval.

(b) When Gm(u31)> u31 (see Figure 3(b)), there is
no 􏽥u ∈ (0, u31] which satisfies Gm(􏽥u) � 􏽥u.

For any uk ∈ (u32, +∞), the trajectory of point
Ak(uk, H − (τ/1 + θH)) is tangent to the straight line ΣM at
point A+

k(u+
k , H); A+

k (u+
k , H − (τ/1 + θH)) will be pulsed to

Ak+1(uk+1, H − (τ/1 + θH)). Easy to get uk+1 < u+
k < uk, that

is, uk+1 ≠ uk, so there is no u ∈ (u32, +∞) and satisfies
Gm(􏽥u) � 􏽥u.

In a word,whenGm(u31)≤ u31, there is a unique fixed point
on (0, u31]. When Gm(u31)> u31, there is no fixed point. □

4. The Order-k(k≥ 1) Periodic Solution of the
Semicontinuous Dynamic System (2) and
Its Stability

From*eorem 1, we know that system (2) has a unique fixed
point under certain conditions. *at is, system (2) has a
unique order-1 periodic solution, and the following are the
dynamic properties of system (2).

Theorem 3. H< v∗ and Gm(u∗)> u∗ are established, then
the order-1 periodic solution of system (2) is globally as-
ymptotically stable.

Proof. From (iii) of *eorem 1, we know that when
Gm(u∗)> u∗⊗, Gm(s) has a unique fixed point 􏽥u on
(u∗, +∞), i.e., Gm(􏽥u) � 􏽥u. For any point p+

0(H − (τ/1 + θ
H), u+

0 ) in ΣN, where u+
0 > u∗, the trajectory of the point p+

0
will intersect the impulse set, then reach the point
p+
1(H − (τ/1 + θH), u+

1 ), which is Gm(u+
0 ) � u+

1 , repeating
the abovementioned process:

Gm Gm u
+
0( 􏼁( 􏼁 � G

2
m u

+
0( 􏼁, (38)

that is,

Gm u
+
1( 􏼁 � u

+
2 . (39)

Furthermore,

u
+
n � G

n
m u

+
0( 􏼁, n � 1, 2, . . . . (40)

*e following two cases are discussed below according to
the size of u+

0 :

1) When u∗ < u+
0 ≤ 􏽥u, since Gm(u∗)> u∗ and Gm(s) is

monotonously increasing on (u∗, +∞), let Gm(u+
i ) �

u+
i+1, then

6 Complexity



u
+
0 <Gm u

+
0( 􏼁 � u

+
1 ≤Gm(􏽥u) � 􏽥u,

u
+
0 <Gm u

+
0( 􏼁<Gm u

+
1( 􏼁 � Gm

2
u

+
0( 􏼁≤Gm(􏽥u) � 􏽥u.

(41)

Repeating the abovementioned process, we can obtain

u
+
0 <Gm u

+
0( 􏼁< · · · <G

n
m u

+
0( 􏼁< · · · < 􏽥u. (42)

From the monotonous boundedness of the sequence,
we can obtain

lim
n⟶+∞

Gm
n

u0
+

( 􏼁 � 􏽥u. (43)

(2) When 􏽥u< u+
0 < +∞, from the known conditions,

􏽥u � Gm(􏽥u)<G u
+
0( 􏼁. (44)

Furthermore,

􏽥u � Gm(􏽥u)<Gm
2

u
+
0( 􏼁<G u

+
0( 􏼁. (45)

By mathematical induction,

􏽥u � Gm(􏽥u)< · · · <Gm
n ∈ u

+
0( 􏼁<G

n− 1
m u

+
0( 􏼁< · · · .

(46)

*us,
lim

n⟶+∞
G

n
m u0

+
( 􏼁 � 􏽥u. (47)

(3) When 0< u+
0 < u∗, since Gm(u∗)> u∗ and Gm(s) is

monotonously decreasing on (0, u∗), so for any
u+
0 ∈ (0, u∗) there is Gm(u+

0 )>Gm(u∗)> u∗. So, we
can conclude thatGm(u+

0 )> u∗, andwe can convert this
to two cases based on the size of Gm(u+

0 ). When
u∗ <Gm(u+

0 )< 􏽥u, this is the same as case (1) above;
when Gm(u+

0 )> 􏽥u, this is the same as case (2) above. In
both cases,

lim
n⟶+∞

G
n
m u0

+
( 􏼁 � 􏽥u. (48)

*e order-1 periodic solution of system (2) is globally
asymptotically stable. □

Theorem 4. When H< v∗, Gm(u∗)< u∗ and G2
m(u∗)< u∗

are true, and then the semicontinuous dynamical system (2) has a
stable order-1 periodic solution or order-2 periodic solution.

Proof. Take a point p+
0(u+

0 , H − (τ/1 + θH)) on the phase set,
here u+

0 > 0, since E∗ is the center of system (2). *e trajectory
that goes through point p0

+ must intersect
(Tex translation failed) at point p1(u1, H), where u1 � μ(u+

0 ,

H). p1 will reach pointp+
1(u+

1 , H − (τ/1 + θH)) by an impulse,
so Gm(u+

0 ) � u+
1 , repeating this process to get the sequence

u
+
n � G

n
m u

+
0( 􏼁 � Gm G

n− 1
m u

+
0( 􏼁􏼐 􏼑, (n � 1, 2 . . .), (49)

When u∗ ≤ u+
0 < +∞, we can know that Gm(s) is

monotonically increasing on [u∗, +∞) and there is no fixed
point on [u∗, +∞) from (i) of *eorem 1. *erefore, there
must be a positive integer i, which satisfies

u
+
i− 1 � Gm u

+
i− 2( 􏼁< u

∗
,

u
+
i � Gm u

+
i− 1( 􏼁<Gm u

∗
( 􏼁< u

∗
.

(50)

When 0< u+
0 < u∗, the trajectory through the initial point

p+
0(u+

0 , H − (τ/1 + θH)) will pass through the isocline L2
and intersects (Tex translation failed) at point p0′(u0′, H−

(τ/1 + θH)), where 0< u0′ < u∗; this translates into the
abovementioned situation.

*is means that, for any u+
0 ∈ (0, +∞), there is always be

a positive integer i which satisfies

Gm u
∗

( 􏼁<G
i
m u

+
0( 􏼁< u

∗
(i≥ 1). (51)

So, we only need to take account of the initial point
p+
0(u+

0 , H − (τ/1 + θH)), where u∗ ≤ u+
0 <Gm(u∗). Since

Gm(s) is monotonically decreasing on [Gm(u∗), u∗], so

Gm Gm u
∗

( 􏼁, u
∗

􏼂 􏼃 ⊂ Gm u
∗

( 􏼁, u
∗

􏼂 􏼃. (52)
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(b)

Figure 3:*e Poincare
�
map Gm(u) related to the impulsive point series u. *e parameter values are as follows: r � 1.444, α � 0.1, β � 0.15,

d � 0.5, a � 0.5, b � 1, δ � 0.8, and c � 1. (a) H � 18, θ � 0.02, and τ � 16.2. (b) H � 24, θ � 0.01, and τ � 17.36.
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Let Gm(u+
0 )≠ u+

0 and G2
m(u+

0 )≠ u+
0 , that is, the trajectory

with the initial point p+
0 is not the order-1 periodic solution

or order-2 periodic solution of system (2). We consider the
following four situations:

Case I: u∗ ≥ u+
0 >Gm

2(u+
0 )>Gm(u+

0 )≥Gm(u∗).
According to the monotonicity of the Poincare

�
map,

u
+
2 � Gm u

+
1( 􏼁>Gm u

+
2( 􏼁 � u

+
3 >Gm u

+
0( 􏼁 � u

+
1 . (53)

Furthermore,

u
+
4 � Gm u

+
3( 􏼁<Gm u

+
0( 􏼁 � u

+
0 . (54)

*us, there is

u
∗ ≥ u

+
0 > u

+
2 > u

+
4 > u

+
3 > u

+
1 ≥Gm u

∗
( 􏼁. (55)

Proved by mathematical induction,

u
∗ ≥ u

+
0 > u

+
2 > · · · > u

+
2n > u

+
2n+2 > · · · > u

+
2n+1

> u
+
2n− 1 > · · · > u

+
1 ≥Gm u

∗
( 􏼁.

(56)

Case II: u∗ ≥ u+
1 > u+

0 > u+
2 ≥Gm(u∗).

Because Gm(s) is monotonically decreasing on
[Gm(u∗), u∗]. We can obtain

u
+
3 � Gm u

+
2( 􏼁>Gm u

+
0( 􏼁 � u

+
1 >Gm u

+
1( 􏼁 � u

+
2 ,

u
+
4 � Gm u

+
3( 􏼁<Gm u

+
1( 􏼁 � u

+
2 <Gm u

+
2( 􏼁 � u

+
3 .

(57)

*en,

u
∗ ≥ u

+
3 > u

+
1 > u

+
0 > u

+
2 > u

+
4 ≥G u

∗
( 􏼁, (58)

so

u
∗ ≥ · · · > u

+
2n+1 > u

+
2n− 1 > · · · > u

+
3 > u

+
1 > u

+
0

> u
+
2 > u

+
4 > · · · > u

+
2n > · · · ≥G u

∗
( 􏼁.

(59)

Case III: u∗ ≥ u+
1 > u+

2 > u+
0 ≥Gm(u∗). In the same way,

we can deduce

u
∗ ≥ u

+
1 > u

+
3 > . . . > u

+
2n− 1 > . . . > u

+
2n+1 > u

+
2n

> . . . > u
+
2 > u

+
0 ≥Gm u

∗
( 􏼁.

(60)

Case IV: u∗ ≥ u+
2 > u+

0 > u+
1 ≥Gm(u∗).

We can perform the procedure similar to Case I, which
can yield\

Gm u
∗

( 􏼁≤ u
+
2n+1 < u

+
2n− 1 < · · · < u

+
1 < u

+
0

< u
+
2 < · · · < u

+
2n < u

+
2n+1 < · · · ≤ u

∗
.

(61)

Considering Cases I and III, there must exist 􏽥u ∈
(u∗, Gm(u∗)) so that

lim
n⟶∞

u2n
+

� lim
n⟶∞

u2n− 1
+

� 􏽥u, (62)

which means that system (2) has a stable order-1 periodic
solution.

For Cases I and IV, there are two points 􏽥u1 ≠ 􏽥u2 and

lim
n⟶∞

u2n− 1
+

� 􏽥u1,

lim
n⟶∞

u2n
+

� 􏽥u2.
(63)

*is shows that system (2) has a stable order-2 periodic
solution with the initial points ( 􏽥u1, H − (τ/1 + θH))

and( 􏽥u2, H − (τ/1 + θH)).
*eorem 4 illustrates that system (2) has a stable order-1

or order-2 periodic solution under certain conditions.
However, sufficient and necessary conditions for global
stability are not given. *en, we give below theorem. □

Theorem 5. Let H1 < v∗ and Gm(u∗)< u∗, then the neces-
sary and sufficient conditions for the global stability of the
order-1 periodic solution of system (2) is G2

m(u+)< u+, for any
u+ ∈ (0, u∗].

Proof. Sufficiency: It can be seen from*eorem 4 that when
Gm(u∗)< u∗, there exists 􏽥u ∈ (Gm(u∗), u∗) which satisfies
Gm(􏽥u) � 􏽥u.

For any u+ ∈ (􏽥u,u∗), let u+
1 � Gm(u+) and u+

2 � Gm(u+
1 ) �

G2
m(u+) because of G2

m(u+)<u+<u∗, and from the mono-
tonicity of Gm(u), we can get 􏽥u>u+

1 >Gm(u∗); furthermore,
u∗>u+

2 >u+
4 >􏽥u>u+

3 >u+
1 >Gm(u∗), so u∗ >u+

2n>􏽥u>u+
2n+1>

Gm(u∗).
By the monotonic boundness of the sequence,

lim
n⟶∞

u2n
+

� lim
n⟶∞

u2n+1
+

� 􏽥u. (64)

*erefore, the order-1 periodic solution of system (2) is
globally asymptotically stable.

Necessity:
We assume that the order-1 periodic solution of system

(2) is globally asymptotically stable. *en, the following part
proves that G2

m(u+)< u+ is right for any u+ ∈ [􏽥u, u∗], which
is proved by the counterevidence method below.

If G2
m(u+)< u+ is not true for any u+ ∈ [􏽥u, u∗], then there

exists a maximum u0 ∈ [􏽥u, u∗], which satisfies Gm
2(u0)≥ u0.

For any ε> 0, there exist u1 and G2
m(u1)< u1, which is true

for any 􏽥u − ε< u1 < 􏽥u + ε from *eorem 4. From the con-
tinuity of G2

m(u) on the interval [u0, u1], it follows that there
is at least one number u

→ ∈ [u0, u1] and Gm
2( u

→
) � u

→, which
indicate that the trajectory with ( u

→
, H − (τ/1 + θH)) as the

initial point is the order-2 periodic solution, and this is
contradictory. □

Theorem 6. If Gm(u∗)< u∗ and there exist u+
m �

min u+: Gm(u+) � u∗􏼈 􏼉, when G2
m(u∗)< u+

m, then system (2)
has an order-3 periodic solution.

Proof. If Gm(u∗)< u∗, there is a unique order-1 periodic
solution in (Gm(u∗), u∗), i.e., Gm(􏽥u) � 􏽥u, where 􏽥u ∈
(Gm(u∗), u∗). Since the Poincare

�
map is continuous over

the closed interval (0, 􏽥u], and Gm(􏽥u) � 􏽥u, then there exist
u+

m ∈ (0, 􏽥u) and Gm(u+
m) � u∗. Furthermore, G3

m(u+
m) �

G2
m(u∗)<u+

m; on the contrary, lim
x⟶0

G3
m(x)>x; according to

the nature of the continuous function on the closed interval,
at least one value of u

→ satisfies Gm
3( u

→
) � u

→. *is means
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that system (3) has an order-3 periodic solution with an
initial point of ( u

→
,H − (τ/1+θH)).

In a similar way, if Gk− 1
m (u∗)< u+

m, where Gm(u+
m) � u∗,

then system (2) has an order-k(k≥ 2) periodic solution. □

5. Simulations

Figures 4(a) and 4(b), respectively, show the order-1 peri-
odic solutions simulated under the two conditions of
Figures 2(a) and 2(b), in which the blue line represents the
trajectory when the order periodic solution is not reached
and the red line represents the trajectory when the order
periodic solution is reached. *is suggests that populations
of phytoplankton and fish can be kept within a stable range
with the impulsive feedback control.

We simulated the order-1 periodic solution and order-2
periodic solution in the case of Figure 3(a) (see Figure 5). In the
simulated Poincare

�
map, we found the order-1 periodic

solution (the intersection point of the red and yellow line and
blue line in Figure 5(a)) and the order-2 periodic solution (the
intersection point of the black line and red and yellow line in
Figure 5(a)). Figure 5(b) shows the motion trajectories of the
order-1 periodic solution and the order-2 periodic solution, in
which the blue line is the motion trajectory of the order-2
periodic solution and the red and yellow line is the motion
trajectory of the order-1 periodic solution.

Figures 6(a) and 6(b) are schematic diagrams of the
number of phytoplankton and the number of fishes and time
t in the order-2 periodic solution in Figure 5(b), respectively.
Figures 6(c) and 6(d) are schematic diagrams of the
planktonic quantity and the fish quantity and time t in the
order-1 periodic solution in Figure 5(b), respectively. As it is
revealed in the figure, the number of fish in the order-2
periodic solution and the order-1 periodic solution both
change periodically, with a period of one. *e number of
phytoplankton in the order-2 periodic solution and the
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Figure 4: (a) *e path curve of Figure 2(a) starting from the points (13,7); H � 12, θ � 0.02, and τ � 6.2. (b) *e path curve of Figure 2(b)
starting from the points (17,7), H � 22, θ � 0.01, and τ � 17.36. *e parameters fixed as r � 1.444, α � 0.1, β � 0.15, d � 0.5, a � 0.5, b � 1,
δ � 0.8, and c � 1.
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Figure 5: *e positions of the order-1 periodic solution and order-2 periodic solution were found in the case of Figure 3(a).
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Figure 6:*e time series of phytoplankton density (a) and fish density (b) under order-2 periodic solution of Figure 5(b), and the time series
of phytoplankton density (c) and fish density (d) under order-1 periodic solution of Figure 5(b).
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Figure 7: Continued.
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order-1 periodic solution are both changing periodically, in
which the number of plankton in the order-2 periodic so-
lution has a period of two. *e period of the number of
phytoplankton in the order-1 periodic solution is one.

In Figure 7, the blue and red lines indicate the trajectory of
the system with or without pulses. *is shows that the number
of phytoplankton and fish can be kept in a stable range.

As can be revealed in Figure 8, different initial points will
eventually converge to the same order-1 periodic solution
and tend to be stable. *is indicates the global asymptotic
stability of the order-1 periodic solution.

6. Conclusion

How to rationally develop and utilize fishery resources has
become an essential issue for the sustainable development of

lake resources. In this paper, we introduce the impulse
feedback control into the phytoplankton-fish model. It is of
great significance to study the dynamics of phytoplankton
and fish.

Compared with [1], we use the Poincare
�
map as a tool

to give a more comprehensive qualitative analysis and to
prove the dynamics of the phytoplankton-fish model, for
example, the necessary and sufficient conditions for the
global asymptotic stability of the order-1 periodic solution
and the existence conditions of the order-k(k≥ 2) periodic
solution.

For the biological significance, the order-k(k≥ 1) peri-
odic solution of system with state impulsive feedback control
indicates that the number of phytoplankton and fish pop-
ulations can maintain periodic oscillations under certain
conditions with proper capture of fish, that is, the number of
phytoplankton and fish can be kept in a stable range. *ese
results have some reference values to the dynamic changes in
aquatic ecosystem research of fish and phytoplankton.
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