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'e centrality plays an important role in many community-detection algorithms, which depend on various kinds of centralities to
identify seed vertices of communities first and then expand each of communities based on the seeds to get the resulting
community structure. 'e traditional algorithms always use a single centrality measure to recognize seed vertices from the
network, but each centrality measure has both pros and cons when being used in this circumstance; hence seed vertices identified
using a single centrality measure might not be the best ones. In this paper, we propose a framework which integrates advantages of
various centrality measures to identify the seed vertices from the network based on the TOPSIS (Technique for Order of
Preference by Similarity to Ideal Solution) multiattribute decision-making technology. We take each of the centrality measures
involved as an attribute, rank vertices according to the scores which are calculated for them using TOPSIS, and then take vertices
with top ranks as the seeds. To put this framework into practice, we concretize it in this paper by considering four centrality
measures as attributes to identify the seed vertices of communities first, then expanding communities by iteratively inserting one
unclassified vertex into the community to which its most similar neighbor belongs, and the similarity between them is the largest
among all pairs of vertices. After that, we obtain the initial community structure. However, the amount of communities might be
much more than they should be, and some communities might be too small to make sense. 'erefore, we finally consider a
postprocessing procedure to merge some initial communities into larger ones to acquire the resulting community structure. To
test the effectiveness of the proposed framework and method, we have performed extensive experiments on both some synthetic
networks and some real-world networks; the experimental results show that the proposed method can get better results, and the
quality of the detected community structure is much higher than those of competitors.

1. Introduction

Many complex systems can be epitomized as complex networks,
in which vertices represent individuals and edges depict the
interrelation of them. At present, complex network analysis has
been applied inmany fields, such as sport competition networks,
biological networks, social networks, and political election
networks. For these complex networks, community structure is
one of their important characteristics. A so-called community is
a group of network vertices; edges among vertices inside the
group are relatively denser, while edges connecting to the re-
mainder part of the network are relatively sparser [1].

Communities are always corresponding to the functional
modules of the real-world systems, such as complexes or
pathways in protein-protein interaction networks or met-
abolic networks, real social groupings with the same oc-
cupations, interests, and so forth in social networks.
'erefore, we can explore the functional characteristics of
the systems via detecting the community structures from the
corresponding networks. Moreover, some previous studies
[2, 3] have shown that networks own some special char-
acteristics at the community level which differ from those at
the individual-vertex level or the level of the entire network.
'erefore, some more interesting properties of the network
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can be captured through detecting communities. In addi-
tion, community detection can help to facilitate many
downstream studies, such as prevention of epidemic
propagation [4], disease detection [5], link prediction [6],
and influence maximization [7]. Overall, the problem of
community detection has attracted many researchers from
different fields in the last decade.

Many community-detection algorithms [8, 9] have been
brought forth; most of them are global ones and suffer from
the high time consumptions in most cases, so the local
approaches have been the hot spot of research recently due
to their efficiency. 'e seed-expanding methods are a typical
kind of local approaches, which firstly identify seeds of
communities utilizing various centrality indexes and then
expand each of communities by absorbing vertices to join.

Most of the seed-expanding algorithms identify the seed
vertices normally using only one single centrality index, but
each centrality index has both pros and cons when being used
in this circumstance; one centrality that performs well on a
kind of networks might embody the poor performance on
another kind of networks. Hence, seed vertices identified by
using a single centrality index, to some extent, are not the best
ones. To take full advantage of every centrality index, we
propose a framework in this paper which integrates multiple
centrality indexes by using the TOPSIS (Technique for Order
of Preference by Similarity to Ideal Solution) [10] multi-
attribute decision-making technology to identify seed vertices.
We take each of the centralities involved as one attribute, rank
vertices according to the scores which are calculated for them
using TOPSIS, and then take vertices with top ranks as the
seeds. To make practice of the framework, we concretize it in
this paper by considering four centrality indexes, namely,
degree centrality, betweenness centrality, eigenvector cen-
trality, and PageRank centrality, as attributes to select seed
vertices from the network. 'en, we expand communities by
iteratively inserting one unclassified vertex to the community
to which its most similar neighbor belongs, and the similarity
between them is the largest among all the pairs of unclassified
and classified vertices. In this procedure, we need to specify
how many seed vertices should be selected; i.e., we need to
know the number of communities a priori. However, to
determine the exact number of communities contained in a
network is still an open question. 'us, we do not invest time
to acquire the exact number of communities, but specify its
upper bound instead according to our previous work [11], and
finally consider a fine-tuning process to merge some small
communities to get the resulting community structure. To
testify the effectiveness of this method, we have conducted
extensive experiments on both some artificial networks and
some real-world networks; the experimental results show that
the proposed framework is effective, and the concretized
method can extract high-quality community structures from
networks steadily.

'e main contributions of our work are as follows:

(i) We propose a seed vertices identification framework
which integrates multiple centrality indexes using
TOPSIS; the seed vertices selected by this method
take full advantage of every centrality index

(ii) Based on the selected seed vertices, we propose a
method to detect communities from networks,
which is a seed-expanding method and can detect
high-quality community structure without needing
to specify the number of communities

(iii) Extensive experiments are carried out to testify the
effectiveness and performance of the proposed
method

'e remainder of this paper is organized as follows.
Section 2 reviews some literature about community detec-
tion, the details of the proposed framework and concretized
method are elaborated in Section 3, Section 4 presents the
experimental results and analysis on both synthetic networks
and real-world networks, and finally we make a conclusion
in Section 5.

2. Related Work

Many community-detection algorithms have been proposed
in the last decades. 'e hierarchical clustering methods are
the ones developed in the early period; GN [1, 12] and FastQ
[13] are the representative algorithms of this kind. 'e
former works in a divisive way, which iteratively removes the
edge with the largest betweenness from the network, until all
the edges are removed; the latter operates in an agglom-
erative approach, which takes every vertex as a single-
member community first and then repeatedly merge two
communities until all the vertices are assigned to the same
community. WMW [14] defines a new dynamic structural
similarity index and applies it to a heuristic agglomerative
hierarchical algorithm which not only merges clusters with
maximal similarity, but also merges clusters that do not meet
the parameterized community definition to extract com-
munities. In addition to this, some algorithms try to inte-
grate the divisive way and agglomerative approach to detect
communities. For instance, He et al. [15] proposed a method
identifying stepwise communities from temporal networks,
which divides the communities of the previous time step into
small modules first, then constructs a small network by
taking each module as a node, and next extracts commu-
nities for the current time step from the newly constructed
network. Besides this, the works in [16, 17] are also the
algorithms of this type; they all split the network into small
vertex groups and then merge some of them into larger ones
to get the resulting community structure. In general cases,
the outputs of the hierarchical clustering methods are a
dendrogram; the hierarchy corresponding to the largest
modularity is taken as the final result.

'e modularity [12] is an index proposed by Newman
and Girvan along with algorithm GN; it is always used to
measure the strength of the community structure; the larger
value of modularity indicates the higher quality of the result.
Its physical meaning leads to another kind of algorithms,
which try to detect communities via optimizing the mod-
ularity function to seek its maximum value. For example,
FastQ iteratively joins a pair of communities whose merging
can lead to the largest modularity increase. Louvain [18]
proposes a vertex moving strategy which calculates the
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modularity gain of moving a vertex from its own community
to the adjacent one, moves every vertex into the community
with the largest positive gain, and then takes each com-
munity as a super-vertex with self-loop and repeats the
vertex moving process until every vertex cannot be moved.
CONCLUDE [19] maps vertices into a Euclidean space by
computing the centrality for each edge using non-
backtracking random walks of finite length, then computes
all-pair distances among vertices in the Euclidean space, and
adopts those distances as weights of edges, and finally uses
Louvain to acquire community structure via maximizing the
modularity. Besides this, evolutionary algorithms have also
been exploited to detect communities by taking the mod-
ularity function as the objective to be optimized [20].

In 2007, Raghavan et al. utilized the information
propagation mechanism and proposed the LPA (Label
Propagation Algorithm) [21], which assigns a unique label
for each vertex in the network initially; then, every vertex
updates its own label to be the one which occurs most
frequently among its neighbors, with ties being broken
uniformly randomly. In this way, vertices can quickly reach a
consensus on their labels, and vertices with the same label
form a community at last. LPA is very simple and easy to
implement and can work with high efficiency, as it has a near
linear time complexity. Just because of these advantages,
several variations have also been proposed since then. LPAm
[22] modifies the label-update rule to maximize the mod-
ularity of the detected community structure; its result is
more deterministic than that of the basic LPA. Xie and
Szymanski [23] enhanced LPA by introducing new label-
update rule and label propagation criterion, considering
only the vertices whose labels need to be updated, and for
each of those vertices, considering the neighborhood
strength when determining its new labels. 'ese consider-
ations improve not only the efficiency by avoiding unnec-
essary updates, but also the qualities of the result community
structure. Chin and Ratnavelu [24] used the number of
mutual neighbors to get themain communities first and then
exploited an improved LPA with some independent con-
straints to insert the remainder vertices into communities.

'e density-based methods migrate the concept of
“density” used in clustering analysis to the problem of
community detection and use this concept to detect com-
munities from the network. SCAN [25] defines the concepts
of “direct structure reachability,” “structure reachability,”
and “structure connectivity” to detect communities, hubs,
and outliers, where a community is a structure connected
clustering. SCAN++ [26] introduces a new data structure
and reduces the number of density evaluations by com-
puting the density for the two-hop-away adjacent vertices
only, so that it works with a lower time consumption.
Another kind of density-based methods is based on the
density peak clustering algorithm, Fdp [27]. For instance,
IsoFdp [28] maps vertices in the network as points in a low-
dimensional manifold and then gets communities by clus-
tering through Fdp. LCCD [29] exploits Fdp to identify the
structural centers from the network and then acquires the
results by expanding communities from the center vertices
to the borders using a local search approach.

Network dynamics based methods simulate the dynamic
procedure on the network to detect communities. Walktrap
[30] performs random walk to compute the structural
similarity between vertices and between communities and
then repeatedly merges a pair of communities under the
guidance of the distance which is defined using the similarity
to acquire the resulting community structure. RWA [31]
calculates the probability of a vertex belonging to each
community based on random walks and then expands each
of communities by absorbing the vertex which has the largest
probability to belong to it. Attractor [32] proposes the
concept of distance dynamics to detect communities. 'e
distance influences the interaction between vertices, and the
interaction will always change the distance; such interplays
render vertices in the same community to converge together
and those in different communities diverge each other
gradually. BiAttractor [33] extends the distance dynamics to
bipartite networks for detecting two-mode communities.

As aforementioned, most of these algorithms are global
ones; high time complexity is one of their disadvantages, but
local methods can overcome this downside. 'e seed-
expanding methods are a typical kind of local approaches,
which identify seeds of communities first utilizing various
centrality indexes and then expand the communities by
absorbing vertices to join according to some rules. For in-
stance, the aforementioned IsoFdp [28] identifies seed
vertices by finding points which are vertices mapped into a
low-dimensional manifold with density peaks and then
assigns other vertices to the nearest seeds. RWA [31] uses the
degree centrality to select seed vertices from the network; it
takes local maximum degree vertices as seeds of commu-
nities and then expands each of communities by adding the
vertex which is most likely to belong to it repeatedly. Shang
et al. [34] proposed a community-detection algorithm which
uses the degree centrality index to select the core vertices,
then expands communities to include neighbor vertices
which have larger similarity with the core vertex, and finally
integrates some communities based on the proposed
modularity density increment. ECES [35] identifies core
vertices using a proposed index, core-dominance, which is
defined for every vertex as the sum of the extended Jaccard
similarity between the vertex and other vertices, and then
adds vertices whose membership degree to the community is
larger than a given threshold into the community. K-rank-D
[36] employs a decision graph about PageRank centrality
and minimum distance to select seed vertices, which have
larger centrality values and are dispersedly located in the
network, and then uses K-Means to cluster other vertices.

3. The Proposed Method

As aforementioned, the proposed framework and method
identify the seed vertices from the network by utilizing the
TOPSIS multiattribute decision-making technology first,
then take each of the selected seeds as a community, expand
communities by attracting the unclassified vertex which is
most similar to the one being classified into a certain
community to join that community iteratively, and then
employ a community-merging procedure to agglomerate
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some of the initial communities to acquire the final result at
last. 'e pseudocode outlining the framework is listed in
Algorithm 1, which implements the above steps loyally.

3.1. Selection of Seed Vertices Based on TOPSIS. In Algo-
rithm 1, the function call TOPSIS() uses the TOPSIS
multiattribute decision-making technology to select seed
vertices. TOPSIS is one of the typical multiattribute deci-
sion-making technologies, which was proposed by Hwang
and Yoon in 1981, and has become one of the most popular
multiattribute decision-making methods.

It considers a finite set of attributes and takes each at-
tribute as a potential choice to search for the optimal al-
ternative, which is the solution with the largest distance to
the negative ideal one and the shortest distance to the
positive ideal one. In decision-making process, some attri-
butes are profit ones, which make positive contributions to
the solution, whereas some indicate cost, which have neg-
ative impacts on the solution. 'e positive ideal solution
achieves the maximum of the profit and the minimum of the
cost, while the negative ideal solution maximizes the cost
and minimizes the profit on the contrary. In Algorithm 1, we
take each of the centralities as an attribute, utilizing the
TOPSIS to select the seed vertices by integrating multiple
centralities. 'e steps of the procedure are listed in
Algorithm 2.

In this algorithm, steps 1 through 6 are the general
procedure of TOPSIS multiattribute decision-making
technology, step 7 selects the top-K vertices with the largest
score values which is calculated by using the TOPSIS
technology, and the selected seed vertices are returned at the
last step. All the steps in this algorithm are intuitive and
almost self-explanatory, needing no further interpretation.

Every centrality reflects the vertex importance from a
certain perspective; this algorithm integrates all the cen-
tralities involved to calculate a score for each vertex. 'is
score can make full utilization of the structural character-
istics of the vertex and the network; thus, the seed vertices
which are selected according to the score are the best ones in
principle if the appropriate centralities are considered.

3.2. Expansion of Seed Communities. After the seed vertices
are selected using the TOPSIS technology, we first take each
of the seed vertices as a separate community and then ex-
pand the seed communities by absorbing the unclassified
vertices into them iteratively. In Algorithm 1, the function
call Expanding() is responding for the community-expan-
sion procedure.

In real-world systems, a community is always corre-
sponding to a group of entities having some common
characteristics; hence vertices in the same community tend
to be more similar to each other than to vertices located in
the other communities. Inspired by this, we expand the
communities using the similarity between vertices as a
criterion. Specifically, we iteratively select the most similar
pair of vertices—one of them has been classified into a
community and the other one is still unclassified into any
community—and insert the unclassified one into the

community to which its most similar buddy belongs, until
every vertex has a definite community affiliation. 'is
procedure is implemented as the pseudocode shown in
Algorithm 3.

In this algorithm, operations in steps 1 and 2 are the
preparations for community expansion, step 3 selects a pair of
vertices with the largest similarity between the classified
vertices and the unclassified vertices, step 4 inserts the selected
unclassified vertex into the community in which its most
similar classified partner has been, and step 5 repeats the
“select-insert” operations until every vertex has been assigned
to a certain community. At that time, the initial community
structure is obtained and returned by the last step.

'e similarity between vertices plays an important role
in the community-expansion procedure. Here, we calculate
the similarity between vertices u and v as the following
equation:

sim(v, w) �
|Γ(v)∩ Γ(w)|

min d(v), d(w){ }
, (1)

where Γ(v) and Γ(w) denote the sets of neighbors of vertices
v and w, respectively, and d(v) and d(w) denote the degree
of the two vertices, respectively.

3.3. Merging of the Initial Communities. After calling the
function Expanding(), we obtain the initial community
structure. However, just as mentioned before, because of the
hardness of determining the exact number of communities,
we specify the upper bound of the seed number when
running Algorithm 2; this leads to the result that Algo-
rithms 2 and 3 detect more communities than expected. In
addition, we also find that some communities are too small
to make sense in practice. To overcome these problems, we
add postprocessing to merge some initial communities to
acquire the resulting community structure; the function call
merge() in Algorithm 1 accomplishes this task.

We need some criterion to determine which commu-
nities should be merged; as the exact number of commu-
nities is unknown, the termination of the merge procedure
cannot depend on that number. Here, we associate these
problems with the metric measuring the quality of the
resulting community structure. For measuring the quality of
the community structure, the modularity (denoted asQ) [12]
is a widely used index, which is defined as follows. For a
community structure containing k communities CS� {C1,
C2, . . ., Ck}, we define a k× k matrix e, whose element eij is
the fraction of edges between communities Ci and Cj to the
total edges in the network.We denote the sum of row i in e as
ai � 

k
j�1 eij, which is the ratio of edges associated with

vertices located in community Ci to the total edges in the
network, and all the ai’s constitute a k-dimensional vector a.
'en, the modularity is defined as

Q � 
k

i�1
eii − a

2
i . (2)

In the proposed framework, we do not directly use the
modularity as the community-merge criterion. Instead, we
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employ an approach which is similar to the procedure of Fast
Q [13] to calculate the increase of the modularity leading to
by joining a pair of communities and select the two com-
munities with the largest modularity increase to perform the
merge operation. According to the literature [13], the
modularity increase ΔQ of merging communities Ci and Cj is

ΔQ � 2 eij − aiaj , (3)

which can be calculated efficiently. Furthermore, we ter-
minate the merging procedure when the largest modularity
increase ΔQ is not positive anymore, because joining the two
communities with the negative modularity increase will
deteriorate the quality of the resulting community structure.

On the basis of the above discussion, the community-
merging procedure is shown in Algorithm 4. In this algo-
rithm, steps 1 and 2 are both the preparations for com-
munity merging, step 3 calculates the modularity increases
for all pairs of communities, step 4 selects the pair of
communities with the largest modularity increase, step 5
performs the real merging operation for the two selected
communities, step 6 recalculates matrix e and vector a to
reflect the merging effect and prepares for calculating the
modularity increase in the next iteration, and step 7 repeats
steps 3 through 6 until it cannot select any pair of the
communities with the positive modularity increase. Finally,
the resulting community structure is obtained and is
returned by the last step.

3.4. Time Complexity. 'e proposed framework is consti-
tuted by four steps of operations; hence, its time con-
sumption is also comprised of costs of the four steps. In
Algorithm 1, function call TOPSIS() selects seed vertices
using TOPSIS multiattribute decision-making strategy; it is
implemented in Algorithm 2, in which all of steps 1, 2, and 4
take O(nk) times to accomplish. Step 3 can be completed in
O(k log n) by organizing the attributes in a max-heap data
structure, step 5 takes O(n) times, and steps 6 and 7 can also
utilize a max-heap to accomplish the tasks with the cost of
O(n log n) and O(K log n), respectively. In general,
k≪K≪ n, so the time complexity of TOPSIS() is O(n log n).

'e operation in step 2 of Algorithm 1 is intuitive and
can be done in O(K). For function call Expanding(), the
operations are listed in Algorithm 3. 'is is an iterative
procedure; in each iteration, its time consumption is con-
centrated in step 3; it takes approximately O(log n) times to
select the most similar pair of vertices. Each iteration selects
one unclassified node and inserts it into the corresponding
community; therefore, the total time complexity of the
community-expansion procedure is O(n log n).

As to function call merge(), Algorithm 4 describes its
logic. It begins with K initial communities; then the ini-
tialization cost of step 1 is O(K). 'e matrix e and vector a
can be calculated by traversing edges of the network; step 2
takes O(m) times. Step 3 calculates modularity increases;
only adjacent communities need to be considered, they can
be calculated via visiting intercommunity edges in O(m/K)
in average, and step 4 selects the pair of communities to be
merged with cost of O(log (m/K)) consequently. 'e

merging operation in step 5 can be executed in O(1), and the
update of e and a can be performed with O(K) time con-
sumption. In the worst case, steps 3–6 need to be repeated K
times; therefore, the time complexity of merge procedure is
O(m) +O(m/K · K) +O(K) +O(K2)∼O(m).

In summary, the total time consumption of the proposed
framework is O(n log n) +O(n log n) +O(m)∼O(m).

4. Experiments and Results

4.1. Networks and Comparison Systems. To testify the ef-
fectiveness and the performance of the proposed framework,
we have conducted extensive experiments on both some of
artificial networks and some of real-world networks. 'e
artificial networks are generated using the LFR benchmark
network creator [37], which has some options to control the
characteristics of the generated networks. In our experi-
ments, we adjust those options to produce three series of
networks; the details of the options are listed in Table 1, in
which μ is a key option to adjust the ratio of edges which are
associated with every vertex connecting outside of its
community to the total edges associated with that vertex; the
smaller values of μ will produce networks with well-sepa-
rated communities, while the larger μ will lead to fuzzier
boundaries among communities. In this section, we vary the
values of μ from 0.1 to 0.9 by increasing 0.1 each time to
generate the three series of networks.

In addition to the experiments on artificial networks, we
have also carried out extensive experiments on 11 real-world
networks, whose statistical information is listed in Table 2.

Up to now, our proposal is a framework rather than a
specific community-detection method, because centralities
which should be employed in Algorithm 1 for performing
the TOPSIS procedure are not specified. To carry out the
experiments, we need to concretize the framework to be a
community-detection method. In theory, the combination
of any number of centralities can be integrated into the
framework. Here, we consider four widely used indexes,
namely, the degree centrality, the betweenness centrality (for
vertex), the eigenvector centrality, and the PageRank cen-
trality to carry out experiments; C in Algorithms 1 and 2
contains the four centralities, and the value of k is 4 nat-
urally. Clearly, all the four centralities are profit attributes for
the identification of seed vertices. For the other two pa-
rameters, K is the upper bound of the community number;
we relax it to be

�
n

√
, the same as the strategy we used in our

previous work [11], and w to be an all 1 vector; i.e., w � {1, 1,
. . ., 1}.

Besides this, we have also compared the results which are
detected by our proposed method with those which are
extracted by 6 state-of-the-art community-detection algo-
rithms, namely, Fast Q [12], LPA [21], Walktrap [30],
Attractor [32], IsoFdp [28], andWMW [14]; all of them have
been introduced in Section 2. 'e comparison results will be
presented and analyzed in Section 4.3.

4.2. Evaluation Metrics. In our experiments, we use two
indexes to measure the quality of the detected community

Complexity 5



structures: one is the modularity Q [12] and the other is the
NMI (Normalized Mutual Information) [46]; both of them
are widely used to evaluate the performance of the com-
munity-detection algorithms.

'e modularity has been defined as equation (2); we
reformulate it here as

Q � 
k

i�1
eii − 

k

i�1
a
2
i , (4)

where the first term 
k
i�1 eii is the ratio of edges inside of

communities and the second term 
k
i�1 a2

i is the expected
value for the same ratio, which is calculated on a null model
graph. Such graph is constructed by taking the same vertices
of the original network and keeping the same degree dis-
tributions for every vertex, but edges between vertices are
connected randomly.'at is to say, the modularity measures
the quality of the detected community structure from the

perspective that how far it deviates from a random graph, the
further it departs from the random graph, the stronger the
community structure is, the larger Q is to be, and the ef-
fective value of Q is in the range of [0, 1].

'e NMI is defined for two partitions CS� {C1, C2, . . .,
Ck} and P� {P1, P2, . . ., Pk′}; it is calculated as follows:

NMI �
−2

k
i�1 

k′
j�1 nijlog nij · n/nC

i · nP
j 


k
i�1 nC

i log nC
i /n(  + 

k′
j�1 nP

j log n
p
j /n 

, (5)

where nij � |Ci∩ Pj|, nC
i � |Ci|, and nP

j � |Pj|, separately.
In practical usage, partitions P and CS are always cor-

responding to the ground-truth community structure and
the detected one, so the NMI measures the ability of a
community-detectionmethod from the perspective that how
much its detected community structure is close to the
ground truth. 'e value of NMI also ranges in [0, 1], larger
being better.

Input: G(V, E), the network; K, the upper bound of the community number; C, k centrality functions; w, k−dimensional vector
of weight for centralities.

Output: CS: the detected community structure.
(1) Select the K seed vertices using TOPSIS multiattribute decision-making technology: S⟵TOPSIS (G, C, K, w)
(2) Take each vertex v ∈ S as the first seed of a community: CSseed⟵ {{v} | v ∈ S};
(3) Expand communities in the community structure CSseed: CSinit⟵Expanding (G, CSseed)
(4) Merge some of the initial communities in CSinit to acquire the resulting community structure: CS⟵merge (G, CSinit)
(5) return CS

ALGORITHM 1: 'e steps of the proposed framework.

Input: G(V, E), the network; K, the upper bound of the community number; C, k centrality functions; w, k−dim weight vector
for centralities.

Output: S, the set of seed vertices.
(1) Organize all the vertices with the k centrality functions c1, c2, . . ., ck (cj ∈ C, j� 1, 2, . . ., k) as an attribute matrix P:

P �

p11 p12 · · · p1k

p21 p22 · · · p2k

⋮ ⋮ ⋱ ⋮
pn1 pn2 · · · pnk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where n� |V| is the vertex number, pij � cj(i) (i� 1, 2, . . ., n; j� 1, 2, . . ., k).

(2) Normalize each column of matrix P, and weight it as aij � (pij/
�������


n
r�1 p2

rj


) · wj (i� 1, 2, . . ., n; j� 1, 2, . . ., k), to yield a new

attribute matrix A: A �

a11 a12 · · · a1k

a21 a22 · · · a2k

⋮ ⋮ ⋱ ⋮
an1 an2 · · · ank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3) Calculate the positive and the negative ideal solutions s
p
j and sn

j for attribute j: s
p
j �

max aij | i � 1, 2, . . . , n , j ∈ Ap,

min aij | i � 1, 2, . . . , n , j ∈ Ac,

⎧⎨

⎩

sn
j �

min aij | i � 1, 2, . . . , n , j ∈ Ap,

max aij | i � 1, 2, . . . , n , j ∈ Ac.

⎧⎨

⎩

where Ap and Ac represent the sets of profit attributes and cost attributes, respectively.
(4) Calculate the distances for each vertex i to its positive ideal solution and negative ideal solution: distpi �

�������������


k
j�1 (aij − s

p
j )2


,

distni �
�������������


k
j�1 (aij − sn

j )2


.
(5) Calculate a score for each vertex indicating the relative closeness to the ideal solution: scorei � distni /(dist

n
i + distpi ).

(6) Rank all the vertices in descending order by the score calculated in step 5.
(7) Select K vertices with the top-K scores:S⟵Top_K(V, score, K)
(8) return S

ALGORITHM 2: TOPSIS: seed vertices selection using the TOPSIS multiattribute decision-making technology.
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4.3. Experiments onArtificial Networks. We have carried out
experiments on three series of artificial networks to test the
effectiveness of the proposed method. As aforementioned,
the artificial networks are produced using the LFR bench-
mark network generator; the options which are used to
generate the networks are listed in Table 1. Among them, the
mixing parameter μ is a critical one, which adjusts the
fraction of edges associated with every vertex connecting
outside of its community. In this group of experiments, we
change the values of μ from 0.1 to 0.9 by increasing 0.1 each
time, generate 10 networks for each value of μ, and keep the
same settings for other options of LFR network generator.
We run our method and the comparison algorithms on each
of them and take the average of NMI as the final metric to
evaluate the performance of the proposed method and the
comparison algorithms. 'e comparison results are shown
in Figures 1(a)–1(c), respectively.

In Figure 1(a), the proposed method detects the exact
community structures which perfectly match with the
ground truth from networks with μ≤ 0.4; hence, its NMI
values are maximal, 1, which are the same as those of
Walktrap and IsoFdp. In the range of 0.5≤ μ≤ 0.6, although

its NMI values are smaller than those of Walktrap and
IsoFdp, they are still larger than those of Fast Q, LPA, and
Attractor, and the values are rather large. Regarding com-
parison algorithms, Fast Q performs the worst during
μ< 0.5; its NMI values are the smallest on the networks.
When μ≥ 0.5, its performance is only better than that of
LPA. LPA also extracts the exact community structures from
networks with μ≤ 0.3, but the quality of its detected results
drops dramatically when μ> 0.4; the reason might be that
vertices in the networks have more edges connecting outside
of its communities along with the increase of μ. 'us, LPA
tends to update the labels of vertices to be the incorrect ones,
leading to low-quality results. For Attractor, it reveals
community structures which are identical to the ground
truth as well from networks with μ≤ 0.3 and performs the
best when μ≥ 0.7, but its NMIs are smaller than those of our
method in the range of 0.3< μ≤ 0.6, indicating its perfor-
mance is not stable. For algorithmWMW, its performance is
slightly higher than those of our method when μ� 0.6 only;
in most cases, our method is better. Walktrap and IsoFdp
perform the best on the networks when μ≤ 0.6; their values
are the largest among all the algorithms.

Input: G(V, E), the network; CSinit, the initial community structure
Output: CS, the resulting community structure

(1) Initialize the community structure CS to be CSinit:
CS⟵CSinit

(2) Calculate matrix e and vector a for community structure CS.
(3) Calculate the modularity increase ΔQij for any pair of communities Ci and Cj:

for Ci ∈CS, Cj ∈CS(i< j) do
ΔQij⟵ 2(eij − aiaj)

end
(4) Select the pair of communities with the largest modularity increase:

r, s⟵ arg maxi,j{ΔQij}
(5) Merge the two selected communities if the modularity increase is positive:

if ΔQrs> 0 then
k⟵ |CS|; Ck+1⟵Cr∪Cs;
CS⟵CS∪ {Ck+1}− {Cr, Cs}

end
(6) Update matrix e and vector a to reflect the effect of the merge.
(7) Repeat steps 3–6, until step 4 cannot select any pair of communities whose merge leads to the positive modularity increase.
(8) return CS

ALGORITHM 4: Merge: merging of some of the initial communities.

Input: G(V, E), the network; CSseed, the seed communities
Output: CSinit, the initial community structure

(1) Initialize the initial community structure CSinit to be CSseed: CSinit⟵CSseed
(2) Collect the vertices remain unclassified: U⟵V− v | v ∈ Ci, Ci ∈ CSinit, i � 1, 2, . . . , |CSinit| 

(3) Select the most similar pair of vertices, one of them has been assigned to a certain community, the other one is still unclassified: u,
i⟵ arg · maxv,j sim(v, w) | v{ ∈U, w ∈Cj, Cj ∈CSinit}

(4) Insert the selected unclassified vertex into the corresponding community: Ci←Ci∪ {u}; U⟵U− {u}
(5) Repeat steps 3 and 4 until all the vertices are inserted into some communities, at that time, U� ϕ
(6) return CSinit

ALGORITHM 3: Expanding: community expansion by absorbing the unclassified vertex to join the community to which the most similar
buddy of that vertex belongs.
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In Figure 1(b), the performance of FastQ andWalktrap is
almost the same as those in Figure 1(a); the former performs
the worst and the latter performs the best on networks
during μ≤ 0.6; the quality of FastQ is only better than that of
LPA and the NMI values of Walktrap are smaller than those
of Attractor on networks during μ≥ 0.7. 'e trend of the
curve for Attractor is also almost the same as that in
Figure 1(a), except for the fact that the value of NMI is larger
than that of our method when μ� 0.4 in Figure 1(b). For
LPA, it performs best on networks during μ< 0.6, which is
identical to Walktrap, and even better than Walktrap when
μ� 0.6. But it also detects the poor results from networks
during μ≥ 0.7 for the same reason as those in Figure 1(a).
Different from Figure 1(a), WMW’s performance is not
better than that of the proposed method on all of the net-
works. On this series of networks, although the results
detected by the proposed method are not the best, they are
rather large while μ≤ 0.6, which indicates that the detected
community structure is still acceptable.

In Figure 1(c), most of the algorithms perform similarly
to those in Figure 1(b), except for Attractor. On this series of
networks, Attractor gets the worst results when μ< 0.5; this
is contrary to that in Figure 1(b). For our method, its
performance is also like that in Figure 1(b); the NMI values
are not the best on all the networks, but its values are rather
high, even larger than 0.9 when μ< 0.6. 'ey are still larger
than those of LPA, FastQ, and IsoFdp while μ> 0.6. 'ese
results once again suggest that all the results discovered by
our method are acceptable.

Besides this, comparing curves of our method in
Figures 1(a)–1(c) shows that the scale of the network has
little influence on the quality of the detected results, and the
proposed method can detect the high-quality community
structure steadily.

4.4. Experiments on Real-World Networks. We have also
conducted experiments on 11 real-world networks, which
have been listed in Table 2. 'ese networks can be cate-
gorized as two groups: the first group involves the first 4
networks, whose ground-truth community structures have
been known in advance; the second one includes the
remaining 7 networks, which have no publicly accepted
ground-truth community structures.

4.4.1. Networks with Ground-Truth Community Structure.
We have known the ground-truth community structure of
this group of networks; therefore, we evaluate the perfor-
mance of the proposed method and comparison algorithms
using both the modularity and the NMI. 'e values of these
two indexes detected by the algorithms are recorded in
Table 3.

On these networks, the proposed method detects ei-
ther the largest modularity Q or NMI, or both of them,
suggesting that the proposed method can detect the high-
quality community structure from these networks; its
performance on the karate club network and the football
game schedule network is not the best only in terms of
NMI. For those two networks, only IsoFdp and Attractor
obtain the largest NMI on the karate club network and the
football game schedule network once, respectively. Fast Q,
Walktrap, LPA, and WMW cannot manage to acquire the
results with the largest measures any time. 'is com-
parison already reflects the superiority of the proposed
method to some extent; it can detect the high-quality
community structures from networks and performs better
than comparison algorithms.

In addition, as the scale of this group of networks is not
too large, we can visualize the results intuitively. Below, we

Table 2: 'e details of the 11 real-world networks used in our experiments.

Network Vertices Edges # of communities Reference
Karate club 34 78 2 [1]
Dolphin social network 62 159 4 [38]
Scientists collaboration 118 197 6 [1]
Football game schedule 115 613 12 [1]
Les Mis. 77 253 — [39]
Jazz 198 2742 — [40]
E. Coli 423 519 — [41]
E-mail 1133 5451 — [42]
PolBlogs 1490 19090 — [43]
Yeast 2361 7182 — [44]
PGP 10680 24316 — [45]

Table 1: 'e options of LFR network generator used for producing the 2 series of artificial networks. n is the number of vertices; dmax and
〈d〉 are the maximum and the average degree of vertices; expd and expcom are the exponents of the power-law distributions followed by the
degree and the community size; Cmin and Cmax are the minimum and maximum number of vertices in a community; dG is the density of the
network; μ is the mixed parameter, which controls the ratio of edges for each vertex connecting outside of the community to the total edges
associated with that vertex.

Network n dmax 〈d〉 expd expcom Cmin Cmax dG μ
LFR_1000 1000 50 20 −2 −1 20 100 0.03800–0.04000 0.1–0.9
LFR_5000 5000 50 20 −2 −1 20 100 0.00770–0.00790 0.1–0.9
LFR_10000 10000 50 20 −2 −1 20 100 0.00386–0.00388 0.1–0.9
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present and analyze the detected community structure on
each of these networks individually.

(1) 9e Karate Club Network. 'is is a most commonly used
network in the study of community detection. 'e 34
vertices represent 34 members of a karate club, and 78 edges
represent relationships among these members. Due to a
dispute that has arisen between the administrator and the
instructor, the club eventually split into two fractions,
forming the ground-truth community structure as shown in
Figure 2(a).

'e community structure detected by the proposed
method from this network is shown in Figure 2(b). Com-
pared with the ground-truth community structure, the
proposed method detects 4 communities from the network.
Although it deviates from the ground truth in some way, it
corresponds to a larger modularity than the ground truth. In
other words, the quality of the detected result is higher than
that of the ground truth.

(2) 9e Dolphin Social Network. 'is network contains 62
vertices and 159 edges; vertices represent dolphins living in
Doubtful Sound, New Zealand, and edges represent the co-
occurrences of pairs of dolphins being observed more often.
'e ground-truth community structure of this network
contains four communities, which is shown in Figure 3(a).

Figure 3(b) presents the community structure detected
by the proposed method from this network, which contains
5 communities. It also differs from the ground truth; vertices
“ccl,” “zap,” “double,” “sn89,” and “sn100” are assigned in an
additional community in Figure 3(b), in which the first three
vertices form a clique; they connect more tightly to each
other than to the remainder of the network; therefore, they
are separated from the network as an independent com-
munity; for the last two vertices, they are located at the
boundary between two communities in Figure 3(a) origi-
nally, and among three communities now. Hence, they are
easy to be misclassified; our method allocates them into the
newly formed three-vertex community. Measuring from the
perspective of evaluation metrics, the values of both the
modularity Q and the NMI corresponding to the detected
result are the largest among all the comparison algorithms,
which shows the superiority of the proposed method over
comparison algorithms to some extent.

(3) 9e Football Game Schedule Network. 'is network is a
schedule of American college football matches held in 2000.
'e 115 vertices represent 115 football teams participating in
the games in 2000 season, and the 613 edges represent the
total of 613 games played between those teams. All the teams
were arranged in 12 conferences; therefore, there are 12
communities contained in the ground-truth community
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Figure 1: Comparison of results detected by the proposed method and comparison algorithms. (a) 'e results detected from the networks
containing 1000 vertices. (b)'e results extracted from the networks containing 5000 vertices. (c)'e results discovered from the networks
containing 10000 vertices.

Table 3: 'e modularity and the NMI detected from networks with ground-truth community structure by the comparison algorithms and
the proposed method.

Network Metric Ground-truth FastQ Walktrap IsoFdp LPA Attractor WMW Proposal

Karate Q 0.371 0.381 0.353 0.371 0.385 0.405 0.398 0.417
NMI — 0.693 0.504 1.00 0.622 0.640 0.538 0.696

Dolphin Q 0.519 0.492 0.489 0.505 0.464 0.495 0.503 0.528
NMI — 0.719 0.632 0.744 0.710 0.691 0.802 0.930

Football Q 0.601 0.550 0.603 0.599 0.589 0.601 0.533 0.605
NMI — 0.751 0.954 0.982 0.945 0.989 0.954 0.966

Collaboration Q 0.739 0.749 0.733 0.668 0.638 0.707 0.668 0.751
NMI — 0.867 0.818 0.825 0.741 0.857 0.743 0.877

'e largest values on each network are in bold.
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structure of this network, which is as illustrated in
Figure 4(a).

'e proposed method detects communities from this
network also with a high degree of success; it divides the
network into 10 communities, which is exhibited in
Figure 4(b), in which two communities involving vertices
“60” and “70” are combined into the larger ones containing
vertices “6” and “10,” respectively. 'is might be because the
two communities are relatively small; teams inside them
tend to play more games with teams located in those two
communities to which vertices “6” and “10” belong, re-
spectively. 'erefore, they are combined into the two larger
ones, consequently. Except for this, the other 10 commu-
nities detected by the proposed method perfectly match to
those in the ground truth. In terms of modularity, the de-
tected result of our method is the largest among those of all
comparison algorithms, reflecting the good performance of
our method.

(4) 9e Scientists Collaboration Network. 'is network de-
scribes the coauthor relationships of some scientific articles,
in which 118 vertices represent 118 scientists working at the
Santa Fe Institute and 197 edges indicate that 197 pairs of
scientists have collaborated on one article at least. According
to the different specialities of scientists, this network is
naturally divided into 6 communities, which are displayed in
Figure 5(a). Feeding this network into the proposed method,
we obtain the community structure as shown in Figure 5(b).

Compared to the ground-truth community structure,
the proposed method detects 8 communities from this
network rather than 6 in Figure 5(a); it isolates two ad-
ditional communities from the network. 'ese two com-
munities correspond to two relatively small subgraphs;
both of them are almost formed by 3 or 4 cliques; i.e.,
vertices inside them connect to each other more tightly,
and their inner edges are much denser than outer ones.
'erefore, detecting them as independent communities is
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Figure 3: 'e dolphin social network. (a)'e ground-truth community structure. (b)'e community structure detected by our proposedmethod.
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Figure 2:'e karate club network. (a)'e ground-truth community structure. (b)'e community structure detected by the proposedmethod.
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reasonable. Besides this, 6 vertices (vertices “102,” “103,”
“104,” “106,” “107,” and “108”) are classified into the in-
correct communities in Figure 5(b); this is because these
vertices are also positioned at the boundary between two
communities; vertex “78” in the opposite community has
larger influence than vertex “105” in their original com-
munity. Consequently, vertices “102,” “103,” and “104”
tend to be attracted by “78” to join its community; then, the
misclassification of vertices “106,” “107,” and “108” cannot
be avoided. Certainly, this result corresponds to both the
largest modularity and NMI among all the comparison
algorithms, indicating that the detected result on this
network has the highest quality and approaches the
ground-truth mostly.

4.4.2. Networks without Ground-Truth Community
Structure. 'is group of networks has no publicly accepted
ground-truth communities; therefore, we only use the
modularity as the measure metric to evaluate the perfor-
mance of the proposed method. We take each of them as the
input to each comparison algorithm and the proposed
method to acquire the community structures from them and
then calculate the corresponding modularity using equation
(4). 'e obtained values are filed in Table 4 and visualized
intuitively in a bar chart which is illustrated in Figure 6.

On this group of networks, the proposed method
obtains the largest modularity on 6 of the 7 networks,
suggesting that the detected results on the 6 networks are
the best among the comparison algorithms. Only on
another network, the quality of the detected result is not
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Figure 5: 'e collaboration network of scientists at the Santa Fe Institute. (a) 'e ground-truth community structure. (b) 'e community
structure detected by our proposed method.
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Figure 4:'e network of college football game schedule. (a)'e ground-truth community structure. (b)'e community structure detected
by our proposed method.
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the highest, but it is still the second best. For comparison
algorithms, only FastQ obtains the largest modularity on
network E. Coli once; the detected modularity of Walk-
trap, IsoFdp, LPA, Attractor, and WMW on any network
is not the largest. Furthermore, their values of the
modularity are smaller than those of our method with a
larger difference on most of networks. IsoFdp even cannot
manage to extract the effective results from networks E.
Coli, PolBlogs, and YeastL, because these networks are not
connected, whereas IsoFdp can only extract communities
from the connected networks. 'is result manifests the
effectiveness of the proposed framework; the proposed
method can detect the high-quality community structures
steadily from networks and outperform the competitors
significantly.

5. Conclusion

In the seed-expanding based community-detection
methods, the selection of seed vertices is vital to the quality

of the resulting community structure. Many algorithms
exploit the centrality to select seed vertices from the network,
but each centrality describes the importance of each vertex
from different perspectives; it has both upsides and
downsides simultaneously when it is used in such a scenario.
'erefore, seed vertices identified using one single centrality
are always not the best ones. We attempt to integrate
multiple centralities’ utilization via the TOPSIS multi-at-
tribute decision-making technology in this paper, and
propose a framework to consider multiple centralities by
treating each of them as an attribute, ranking vertices
according to the scores which are calculated by using
TOPSIS, and taking top-rank vertices as the seeds. 'en, we
also develop a strategy to expand communities based on the
selected seeds by attracting the most similar neighbors of
vertices inside communities to join.

Next, we get a concretized community-detectionmethod
from the proposed framework by considering four concrete
centralities. We have performed the experiments about this
method on both some synthetic networks and some real-
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Figure 6: 'e bar chart of the modularity detected by comparison algorithms and the proposed method from networks without publicly
accepted ground-truth community structure.

Table 4: 'e modularity detected from networks without ground-truth community structures by comparison algorithms and the proposed
method.

Network FastQ Walktrap IsoFdp LPA Attractor WMW Proposal
Les Mis. 0.499 0.519 0.510 0.510 0.481 0.532 0.553
Jazz 0.439 0.438 0.435 0.377 0.276 0.416 0.442
E. Coli 0.778 0.746 — 0.691 0.727 0.685 0.774
E-mail 0.510 0.531 0.531 0.398 0.480 0.423 0.568
PolBlogs 0.427 0.426 — 0.413 0.323 0.423 0.431
YeastL 0.573 0.529 — 0.376 0.517 0.484 0.620
PGP 0.854 0.789 0.726 0.765 0.770 0.710 0.874
'e largest values on each network are in bold.

12 Complexity



world networks; the effectiveness of the proposed framework
is tested by the experimental results, which also manifests
that the concretized method can detect high-quality com-
munity structure from networks steadily.
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