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Potential damages to existing tunnels represent a major concern for constructing deep excavations in urban areas..e uncertainty
of subsurface conditions and the nonlinear interactions between multiple agents (e.g., soils, excavation support structures, and
tunnel structures) make the prediction of the response of tunnel induced by adjacent excavations a rather difficult and complex
task. .is paper proposes an initiative to solve this problem by using process-based modelling, where information generated from
the interaction processes between soils, structures, and excavation activities is utilized to gradually reduce uncertainty related to
soil properties and to learn the interaction patterns through machine learning techniques. To illustrate such a concept, this paper
presents a simple process-based model consisting of artificial neural network (ANN) module, inverse modelling module, and
mechanistic module. .e ANN module is trained to learn and recognize the patterns of the complex interactions between
excavation deformations, its geometries and support structures, and soil properties. .e inverse modelling module enables a
gradual reduction of uncertainty associated with soil characterizations by accumulating field observations during the construction
processes. Based on the inputs provided by the former twomodules, the mechanistic module computes the response of tunnel..e
effectiveness of the proposed process-based model is evaluated against high-fidelity numerical simulations and field mea-
surements. .ese evaluations suggest that the strategy of combining artificial intelligence techniques with information generated
during interaction processes can represent a promising approach to solve complex engineering problems in
conventional industries.

1. Introduction

With the rapid development of cities, it becomes frequent
that deep excavations constructed for the foundation of
high-rise buildings and/or underground space are next to
existing subway or sewage tunnels [1–4]. As illustrated in
Figure 1, the stress releases caused by excavations inevitably
result in ground movements that can subsequently cause the
deformations of tunnels and structural damages such as
lining cracks and joint dislocations [5]. .ese problems can
impair the operation of subways/sewage systems and even
cause civilian casualties. .erefore, it is critical for engineers
to accurately predict the response of tunnels subjected to
adjacent deep excavations.

Uncertainty is the distinct feature of geotechnical en-
gineering in that soils and rocks created by natural processes
are variable in their composition, behaviour, and distribu-
tions. Such variability of the subsurface conditions, com-
bined with the nonlinear interactions between multiple
agents (e.g., soils, excavation support structures, construc-
tion activities, and tunnel structures), make the prediction of
excavation-induced tunnel response a rather complex and
difficult task. .e latter is currently solved normally by
involving numerical modelling techniques associated with
advanced soil constitutive models [1, 6, 7]. Nevertheless,
constructing a numerical model that can generate reasonable
outcomes requires considerable expertise in numerical
modelling and a systematic material characterization
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program to calibrate soil models. .ese prerequisites, quite
possibly, are unrealistic for many civil engineers. .ere is
another reason why an alternative strategy is needed to
analyse the problem. In the last decade, building information
modelling (BIM) has shown its potential in transforming the
construction industry by facilitating the digitalization and
automation of the full-lifecycle operations (i.e., design,
construction, and maintenance) of buildings and infra-
structures [8, 9]. Accordingly, a large amount of data per-
taining to different stages of structures is collected by BIM
platforms. To exploit such big data and enable dynamic and
automated managements of excavation construction, anal-
ysis models that are capable of self-learning and compu-
tationally efficient are necessary.

.is work proposes an initiative to devise an adaptive
and efficient solution to the engineering problem discussed
above, by harnessing the power generated by process-based
modelling, where information generated during construc-
tion processes is used to reduce the uncertainty associated
with subsurface conditions and recognize the interaction
patterns between soils, structures, and excavation activities,
so that the response of adjacent tunnels can be accurately
predicted. To proof this concept, here we build a simple
process-based model consisting artificial neural network
(ANN) module, inverse modelling module, and mechanistic
module. As will be described in the following, the mecha-
nistic component is responsible for computing the response
of tunnels under given deformations of excavation support
structures. .e latter cannot be easily obtained from con-
ventional mechanical models, as they are influenced by a
large number of variables, including excavation geometries,
excavation support structures, and soil mechanical prop-
erties. Here, we exploit ANN’s advantages in recognizing
patterns of complex interactions involving multiple factors
[10, 11] and use it to predict the deformations of excavation
support structures. To further reduce the uncertainty as-
sociated with the soil properties fed into the ANNmodel, the
module of inverse modelling [12–14] is utilized to search for
an optimal set of soil parameters that can minimize the
difference between measured deformations of excavation

support structures and those predicted by ANN. .e ad-
vantage of collaborating the two machine learning tech-
niques for engineering practice is reflected in that the inverse
modelling will use field measurements at the early stages of
construction processes to optimize soil parameters, thus
consequently improving the predictions of the ANN model
for later and more critical stages of the same project. .e
development of ANNmodels in the field of civil engineering
normally faces the obstacle of lacking field data for model
training. Aimed at constructing a platform to explore the
potential of ANN models in civil engineering practices, here
we train the ANN model by synthetic cases generated by
numerical simulations. As will be shown in the following,
such ANN model can provide useful information for real-
world applications.

.e rest of the paper is organized as follows. We will first
present the mechanistic model used to compute the response
of tunnels, followed by a description of the construction,
training, and validation of the ANN model, as well as the
inverse modelling module. Finally, the performance of the
proposed hybrid model is evaluated against field measure-
ments obtained from an excavation project next to the
tunnels of a subway in China.

2. Mechanistic Model for Computing
Response of Tunnel due to
Adjacent Excavations

We formulate the mechanistic model based on the strategy
of two-stage analysis [4, 15–17], where free-field soil
movements or stress changes caused by excavation (i.e., the
soil displacements and stress releases that would occur
without the presence of tunnels) are first estimated, and the
response of tunnel is subsequently evaluated by idealizing
the tunnel structure as an elastic beam sitting either on
nonlinear spring (i.e., the so-called Winkler subgrade re-
action hypothesis) or elastic continuum [17, 18] and by
imposing the displacements or stresses fields obtained from
the first stage. Here, we build a displacement-controlled two-
stage model (see Figure 1), as it can deliver more accurate
predictions in particular for shallowly embedded tunnels
where the presence of tunnels can significantly alter ground
stress fields but soil displacements to a limited extent.

2.1. Free-Field Soil Movements Induced by Excavation. A
crucial element in the two-stage model is to estimate the
free-field soil movements caused by excavations. Numerous
studies have indicated that appropriate consideration of
small-strain behaviour of soils (i.e., considerably high
stiffness at very small-strain levels and a nonlinear stiffness
degradation with strain magnitudes) is essential for correctly
predicting the soil movements associated with the con-
struction activities of braced excavations [19–21]. Accord-
ingly, we adopt the following closed-form expressions for
the free-field soil movements proposed by Mu and Huang
[22], which are obtained by fitting finite element (FE)
simulations with a soil constitutive model that considers
small-strain behaviour:
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Figure 1: Schematics showing the influence of deep excavations on
adjacent tunnels.
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where us and ws denote the soil movements along the vertical
direction and horizontal direction perpendicular to the
retaining wall (the horizontal displacements parallel to the wall
are often negligible); x, y, and z are spatial coordinates of soils
(see Figure 1); and the variables L andH denote the length and
depth of the excavation, respectively,D is the embeded depth of
the retaining wall, while R � L[0.069 ln(H/L) + 1.03]/2 is
a composite geometry factor. .e coefficient ax, bx, cx, az, bz,
and cz are functions of soil spatial coordinates and excavation
geometries, and their specific expressions can be found in Mu
and Huang [22]. It should be emphasized that the soil dis-
placement field of equation (1) is a function of the maximum
deflection of earth retaining wall umax defined in Figure 1. .e
latter quantity will be predicted by the ANN model described
later.

2.2.TunnelResponseSubjected toPrescribeSoilDisplacements.
With the soil displacement fields described above, we further
evaluate the tunnel response by idealizing it as an elastic
beam that complies with Euler–Bernoulli beam theory:

d4u
dy4 +

k

EI
u − us(  � 0,

d4w
dy4 +

k

EI
w − ws(  � 0,

(2)

where u and w are the vertical and horizontal displacements of
the tunnel, us and ws are the soil displacements prescribed by
equation (1), EI is the bending stiffness of tunnel, and y is the
axial direction of the tunnel. .e variable k in equation (2)
denotes modulus of subgrade reaction (i.e., the stiffness of the
springs connected to the beam, see Figure 2). To consider the
influences of the burial depth and size of tunnel on soil reactions,
the expression proposed by Yu et al. [23] is adopted here:

k �
3.08
η

Es

1 − v2s

����
EsB

EI
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. (3)

In equation (3), B is the tunnel diameter, Es and ]s are
Young’s modulus and Poisson’s ratio of soils, and η is a
correction coefficient that depends on the burial depth of
tunnel z:

η �

2.18, z/B≤ 0.5,

1 +
1

1.7(z/B)
, z/B> 0.5.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

We use the finite difference method to solve the gov-
erning equation of equations (2) and (3). As depicted in
Figure 2, the tunnel along its longitudinal axis is equally
divided into small beam elements with their lengths given by
h � S/n, where n is the number of elements and S is the
length of the tunnel. As equation (2) involves fourth-order
derivatives, two virtual joints are added to both ends of the
tunnel so that equation (2) can be approximated by the
central difference scheme:

wi+2 − 4wi+1 + 6wi − 4wi− 1 + wi− 2 � 4λ4h4
wsi − wi( , (5)

where λ �
�����
k/4EI

4
√

is the flexibility eigenvalue of the beam
equation and the assembly of the governing equation for
each beam elements leads to the following discretized form
of the equation of motions for the tunnel:

[K] w{ } � F{ }, (6)

where the vector w{ } � [w0, w1, . . . , wi, . . . , wn− 1, wn] con-
tains the nodal displacements of the tunnel, while F{ } �

[kws(0), kws(1), . . . , kws(i), . . . , kws(n− 1), kws(n)] contains the
corresponding nodal force determined under the assump-
tion that shear forces and moments acting on both ends of
the tunnel are negligible (i.e., the axial dimension of the
tunnel is much greater than the size of the excavation). .e
matrix [K] in equation (6) is the generalized system stiffness
expressed as
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(n+1)×(n+1)

. (7)

2.3. ANN Model for Predicting Retaining Wall Deflection.
.e key input of the mechanistic model described in the
previous section is the maximum deflection of earth
retaining wall umax (i.e., see equation (1)). .e ANN model
aimed at predicting this quantity, including the structure of
the neural network, its training, and validation, is discussed
as follows.

2.3.1. Neural Network Structure. An ANN model generally
has a layered structure consisting of input layer, hidden
layers, and output layer [10]. .e input layer contains pa-
rameters that are relevant to the problem at hand and can be
determined relatively reliably, while the output layer con-
tains information that is normally unknown and to be
predicted by the ANN model. .e input and output layers
are connected by intermediate hidden layers made up of
nodes interconnected to each other. Differential weights (i.e.,
strength) can be assigned to the connections between nodes
to reflect different patterns of the correspondence between
input parameters and output variables.

.e input layer of our ANN model is presented in
Figure 3 and Table 1. .ese parameters are selected based on
their influences on the deflections of earth retaining wall and
whether they can be altered during the construction (i.e., to
dynamically optimize the original design). .ese attributes
can be categorized into three groups (see), including ex-
cavation geometries, mechanical properties of excavation

support structures, and soil properties. To digitalize soil
properties into forms suitable for the ANN model, we adopt
the hardening soil small (HSS) model [24] as a theoretical
template to describe the mechanical characters of soils, as
such constitutive model explicitly incorporates small-strain
behaviour and is extensively validated by engineering
practice [25, 26]. .e HSS model has 8 mechanical pa-
rameters, which add the unit weight of soil and soil layer
thickness up to 10 parameters for each soil stratum. .e
number of inputs for an ANN model is normally fixed,
which poses difficulty for applying the same ANNmodel for
projects with different numbers of soil layers. To address this
issue, we divide soils within the range of retaining wall (i.e.,
the portion of soils that can significantly impact the retaining
wall deflections) into a given number of artificial soil layers
(currently 10 layers are employed) in that an actual soil
stratum is represented by multiple sublayers with the same
soil properties.

.e finally constructed neural network has an input layer
of 111 parameters that are connected to a single output of
retaining wall deflection by two hidden layers. Each of these
hidden layers has 30 nodes to ensure the generalizability of
the model.

2.3.2. Neural Network Training. To help the ANN model
correctly recognize the patterns of the interactions between
excavation support structures and surrounding soils, a large

. . . . . . . . . . . .
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Figure 2: Schematics showing the idealization of tunnel structure as an elastic beam and the simplification of tunnel-soil interaction as beam
sitting on elastic springs.
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number of reliable samples are required to train the model.
Ideally, the types of data used to train the ANN model shall
be the same as those involved while utilizing ANN to actually
predict. Accordingly, the best training information comes
from actual engineering projects where the ANN model is
intended to apply, including accurate descriptions of ex-
cavation geometries, the sizes and materials of support
structures, the HSS model parameters for each of soils layers
encountered, and finally a reliable measurement of retaining
wall deflections. Unfortunately, reported case studies that
contain both information pertaining to the inputs and
outputs of the ANN model is currently not enough for
training the model. As a workaround, we train the ANN
model through synthetic samples generated by two-di-
mensional finite element (FE) simulations. Training our
ANN model by synthetic examples leads to two additional
advantages. First, the generated datasets can cover the wide
ranges of each input attribute (e.g., the ranges of excavation
depth, soil strength, and structure stiffness) possibly en-
countered in engineering practice. Second, compared with
actual field data, the datasets generated by numerical

simulations tend to be free of noises associated with factors
excluded by the ANN model (like man power and the
management levels), thus helping the ANN concentrate on
the correlation between its inputs and outputs.

Totally, 1943 synthetic samples are generated by varying
ANN input parameters randomly but within typical ranges
encountered in engineering practice (e.g., the space between
lateral braces varies from 3m to 12m and excavation length
varies from 20m to 80m). Examples of employed training
samples (note that soil parameters are excluded due to space
limitations) are shown in Table 2.

We use the backpropagation algorithm coded in PyTorch
module to train our ANN model, and this supervised learning
process involves five epochs of forward activation towards
outputs and backward errors propagation of adjusting con-
nection weights. .e activation function utilized for ANN
nodes is rectified linear unit (ReLu), the optimizationmethod is
Adam, and the cost function is average sum-of-squares error
(MSE). Among all synthetic samples, 70% is used to train the
ANNmodel, while the rest is reserved as the validation set used
by the learning algorithm.

Table 1: ANN input layer.

Excavation geometries Mechanical properties of support
structures

Soil properties (parameterized through
HSS model)

Excavation depth Bending stiffness of retaining wall,
EI Shear modulus at very small strains

Excavation width Axial stiffness of retaining wall, EA Cohesion

Embedded depth of retaining wall Poisson’s ratio of retaining wall
material Angle of internal friction

Excavation depth divided by the layers of struts Axial stiffness of struts, EA etc.
Vertical distance between excavation bottom and the
nearest lateral support
Averaged vertical and lateral space between struts

Excavation
geometries

Support
structure

properties

Soil
properties

Shear modulus

Struts axial stiffness

Wall axial stiffness

Wall bending stiffness

Wall deflection

Input layer
111

Output layer
1

Hidden layer 1
30

Hidden layer 2
30

Excavation depth

Embedded depth

Excavation width

Cohesion

Friction angle

Figure 3: Layered structure of the proposed neural network.
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2.3.3. Neural Network Validation. To assess the perfor-
mance of the trained model, we compare the retaining wall
deflections predicted by ANN and those computed by FE
simulations for 46 different combinations of variables other
than those used for synthetic samples. Figure 4 shows that
the maximum wall deflection predicted by the ANN model
reasonably agrees with that calculated by the high-fidelity
numerical simulations, with the mean relative error of
12.2%. .e ANN model is further examined against data
from three actual excavation projects [27–29], where soil
parameters and wall defection measurements are all re-
ported. As shown in Table 3, the model predictions and field
measurements match reasonably. .e latter fact suggests
that although the ANN model is trained by synthetic
samples, it is capable of predicting the deformations of
excavation support structures in actual engineering practice.

2.4. Inverse Model for Reducing Uncertainty with Soil
Parameters. Among all input parameters of the constructed
ANNmodel, those related to the mechanical properties of soils
have the highest degree of uncertainty attributed to natural
variations of soils and the disturbance effects associated with
coring, transporting, and trimming soil specimens before they
are tested in laboratories. On the contrary, while soils in the
field preserve the highest integrity, currently there lacks the-
oretical frameworks capable of estimating soil constitutive
parameters by directly interpreting in situ measurements. To
more accurately determine soil parameters and predict
retaining wall deflections, we combine the proposed ANN
model with inverse modelling, which automatically searches
for accurate descriptions of soil properties by minimizing the
difference between measured retaining wall deflections and
those computed by the ANN model. .e most important
advantage of collaborating the two machine learning tech-
niques for engineering practice is that the inverse modelling
can use field measurements at early stages of construction
activities to optimize soil parameters, thus improving the
predictions of the ANNmodel for later andmore critical stages
of the same project.

.e inverse modelling is achieved here through a
nonlinear optimization algorithm based on an objective
function of the least-squares form:

S � 
m

i

yi − yi
′(b)( 

2ωi, (8)

where b contains the soil parameters to be determined; y and
y′ denote the vectors of field observations and ANN

predictions, respectively; the number of observation re-
sponse is m; the symbol ωi denotes weight assigned to dif-
ferent observations based on their reliability and accuracy
and here given by the inverse of the error variance that
corresponds to each observation, i.e., ωi � 1/σ2i [13]. An
optimal set of soil parameters that minimizes the objective
function of equation (9) is automatically searched by a
modified Gauss–Newton algorithm with additional damp-
ing and Marquardt parameters [30, 31].

We use two statistic indexes related to the optimization
algorithm to determine whether certain soil parameters can
be accurately and uniquely determined through the inverse
modelling scheme described above:

CSSj �

����������������

1
m



m

i�1

zyi
′

zbj

bj

��
ωi

√
 

2



. (9)

CSSj is the so-called composite scaled sensitivity used to
indicate the degree of the overall influences of the jth soil
parameters on all observable responses (i� 1 to m) selected
entering into the inverse model, such as retaining wall
deflections. It should be emphasized that even for the same
parameters, CSS can vary when different field observations
are involved, and therefore, the value of CSS can effectively
identify the possibility of reducing the uncertainty associated

Table 2: Examples of synthetic samples employed to train the ANN model.

Excavation
geometries Retaining wall properties Internal brace properties

Depth
(m)

Width
(m)

EI
(106 kN×m2/m)

EA
(106 kN/m)

Embedded depth
(m)

Vertical space
(m)

Lateral space
(m)

EA
(106 kN)

Wall deflection
(mm)

4.9 40 1.507 18.1 30.1 4.0 4 3 1.33
20 40 1.507 18.1 15.0 2.9 3 3 35.54
5 60 1.667 20.0 30.0 3.6 4 2 5.39
21 80 1.667 20.0 14.0 4.23 9 16 46.20

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Co
m

pu
te

d 
by

 F
EM

 (m
m

)

Predicted by ANN (mm)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Figure 4: Comparison between maximum retaining wall deflec-
tions computed by finite element simulations and predicted by the
ANN model.
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with particular parameters with respect to given types of field
measurement. .e second useful statistic index is the pa-
rameter correlation coefficient:

PCCij �
Vij
�����
ViiVjj

 , (10)

which measures the degree of correlation between the ith and
jth parameters. A pair of parameters that are highly corre-
lated to each other, indicated by high PCC values, usually
cannot be simultaneously determined through the inverse
modelling scheme described above, as the uniqueness of the
solution cannot be ensured. Vij in equation (10) denotes the
component of the variance-covariance matrix:

[V] �
S

m − n

zy′
zb

 

T

[ω]
zy′
zb

 ⎛⎝ ⎞⎠

− 1

, (11)

where n denotes the number of parameters to be deter-
mined; S is the value of the objective function defined in
equation (8); and [zy′/zb] is a matrix containing the gra-
dient of the observation with respect to soil parameters,
while [ω] is a diagonal matrix with its component given by
ωi defined above.

3. Evaluation ofMechanistic-Machine Learning
Hybrid Model

3.1. Determining Input Parameters for ANN Model. .e
excavation project located in Hangzhou, China [32], pro-
vides an unique opportunity to assess the proposed model
for analyzing the response of tunnel subjected to adjacent
excavation. In this case study, the deep excavation extends to
the depths of 15m to 18.55m below ground surface and is
beside the tunnels of a subway’s north and south lines. .e
smallest distance between the excavation and the tunnels is
only 7m, while the averaged horizontal space is around 9m.
.e length of the excavation parallel to the tunnels is 245m.
.e depth of the tunnel crown varies from 9.3m to 13.3m,
and the diameter of the tunnel is 6.2m. To reduce the ex-
cavation-induced impacts on the tunnels, the part of the
excavation next to the tunnels adopts a composite retaining
wall of 1000mm thick diaphragm wall and cast-in-place
piles, and the embedded depth of the retaining wall is 6m.
.e internal supports consist of three layers of reinforced
concrete struts. According to these in situ conditions, the
geometries of the excavation that are fed into the ANN
model are obtained (i.e., see those depicted in Figure 5, note
that the width of the excavation is 70m and the horizontal
space between struts is 6m). .e mechanical properties of
excavation support structures used in the ANN model are
summarized in Table 4, as reported in the case study. Here,

we increase the thickness of the diaphragm wall to 1500mm
to consider the strengthening effects due to the additional
cast-in-place piles.

.e subsurface at the site is composed of three strata,
among which the first layer is categorized as sandy silt (SM),
while the second and third layers are clayey silt (CM), as
shown in Figure 5. Table 5 summaries the hardening soil
small parameters for the first two layers (i.e., those within the
range of the retaining wall) calibrated from laboratory
measurement [32]. .ese soil properties are adopted in the
ANN model.

3.2. Model Performance. Figure 6 compares the measured
deflection profiles of retaining wall against the maximum
deflections predicted by the ANNmodel that corresponds to
two consecutive stages of the excavation (i.e., excavate to
13m and 16m depths). Because of the large number of
variables involved in this problem, we consider the ANN
prediction still acceptable, although it tends to overestimate
the wall deformations. .e maximum discrepancy is around
8mm occurred for the excavation to the shallower depth,
and the prediction is improved as the construction proceeds
in that the difference between measured and predicted
maximum wall deflection reduces to 5mm as the excavation
reaches 16m.

Among the resources that may result in the mismatches
described above, the uncertainty embedded with the char-
acterization of soil properties is a primary contributor. .e
fact that the deformations of the excavation support
structures predicted by the ANN model are greater than
those observed suggests the possibility that soil specimens
have been disturbed and consequently weakened before they
are tested. To minimize the influences of the uncertainty
associated with the parameters for soils, we employ the
inverse modelling described in the previous section. To
constrain the number of parameters to be determined and
consequently enhance inverse modelling performance, for
each layer we only directly optimize two parameters, the
reference stiffness modulus E50 and the reference shear
strain threshold c0.7, i.e., one controls the soil behaviour at
large smalls and the other for small strains. .e statistic
indexes associated with these two candidates show that they
can noticeably affect the retaining wall deflections and are
not strongly correlated with each other. .e stiffness pa-
rameters G0, Eoed, and Eur are indirectly optimized as we
assume that they keep constant proportions to E50, while
other parameters are not changed as they have relatively
insignificant influences on the deformations of excavation
support structures. .e field measurement entering into the
inverse modelling is the retaining wall deflections corre-
sponding to the excavation depth of 13m (i.e., observation

Table 3: Comparison between measured maximum deflections of retaining wall in case studies and ANN predictions.

Case number 1 2 3
Measurements (mm) 48.30 20.40 23.52
ANN predictions (mm) 47.60 23.35 20.76
Relative error (%) 1.45 14.45 11.72
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from the earlier stage of construction). .e optimized soil
parameters are listed in Table 3.

.e ANN predictions based on those updated soil pa-
rameters are included in Figure 6. .e results clearly show
that the soil parameters optimized by solely using the ob-
servations from early construction stages also lead to a good
prediction of the response at later and more critical stages of
construction. Moreover, Figure 6 emphasizes that, with a
reasonable set of soil parameters, the trained ANN model
can reasonably represent the deformations of the earth
retaining wall.

By inputting the maximum deflections of earth retaining
wall into the mechanistic model, the response of the two
tunnels next to the excavation can be computed. .e
measured vertical and horizontal displacements of the

tunnels that correspond to the excavation depth of 16m are
shown in Figure 7 (only the maximum displacements are
reported), together with results obtained by using the
proposed analytical model. .e mechanical and geometrical
properties of the tunnel structure used in the computation
are listed in Table 3. Moreover, the length of the tunnels is set
to 1000m so that the shear forces and moments acting on
both ends of the tunnels can be neglected. Young’s modulus
and Poisson’s ratio for the soils surrounding the tunnels (i.e.,
see equation (3)) are converted from the optimized G0
(considering the rather small soil movements around the
tunnel) and ]ur of the top sandy silty layer, i.e., where the
tunnel is embedded.

It is seen from Figure 7 that three types of maximum
retaining wall deflections are used to compute tunnel

Clayey silt
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6.2m

2m

5m
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16m

6m

16m

20m

1000mm thickness
diaphragm wall

Cast-in-place pile

North line South line
Sandy silt

Figure 5: Schematics showing the excavation and tunnel geometries in the case study of Hangzhou, China.

Table 4: Mechanical properties of excavation support and tunnel structures in the case study of Hangzhou, China.

Retaining wall Strut Tunnel
EI
(106 kN×m2/m)

EA
(106 kN/m) Poisson’s ratio EA (106 kN) Diameter (m) .ickness (m) Young’s modulus (GPa) Poisson’s ratio

8.44 45 0.2 21.6 6.2 0.35 28 0.2

Table 5: Soil parameters before and after inverse analysis.

Stratum
Original Optimized

Sandy silt Clayey silt Sandy silt Clayey silt
.ickness (m) 20 16 20 16
Unit weight (kN/m3) 19.3 18.9 19.3 18.9
Eref
50 (MPa) 15.00 9.00 3.09 1.85

Eref
oed (MPa) 15.00 9.00 3.09 1.85

Eref
ur (MPa) 60.00 50.00 12.36 10.3

Gref
0 (MPa) 200.00 184.00 41.19 37.9

c0.7 2.00×10− 4 4.00×10− 4 4.12×10− 5 8.23×10− 5

c (kPa) 5 6 5 6
φ (°) 34 18.5 34 18.5
M 0.8 0.8 0.8 0.8
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displacements, including the actual field measurements and
ANN predictions based on the original and optimized soil
parameters. .e first observation from Figure 7 is that the
computed results based on the measured wall deflection
agree well with the measured tunnel response, thus sug-
gesting that the mechanistic model can reasonably predict
the tunnel displacements provided that the retaining wall
deflection is accurately determined. By comparing the
tunnel response computed by using the ANN predictions
with the original and optimized soil parameters, the adap-
tivity and learning ability achieved by collaborating two
machine learning techniques is emphasized in that by col-
lecting observations at early stages of the excavation project,
and the soil characterization updated by inverse modelling
can form the basis of a new ANN prediction of the retaining
wall deformations and consequently gradually improve the
prediction regarding the response of adjacent tunnels.

4. Conclusion

An accurate prediction of the response of adjacent tunnels is
critical for the plan, design, and construction of deep ex-
cavations in congested urban areas. .e uncertainty and
variability inherent to the subsurface compositions, extent,
and behaviour and the nonlinear interactions between
multiple agents (e.g., excavation support structures, soil
strata, and tunnel structures) are the two primary resources
leading to the complexity and difficulty of this task. .is
paper proposes an initiative to tackle this problem using
process-based modelling, where information extracted from
the construction processes of deep excavation is used to
recognize the interaction patterns between multiple agents
and to reduce the uncertainty associated with subsurface
conditions, such that the response of tunnels induced by
adjacent deep excavations can be accurately predicted. To
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Figure 7: Comparison between measured and predicted tunnel displacements caused by adjacent excavation.
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proof the concept, we propose a simple process-based model
composed of mechanistic module, artificial neural network
(ANN) module, and inverse modelling module. .ese
components are specialized in addressing particular chal-
lenging aspects of the targeted engineering problem but are
interrelated forming a collaborative group. Specifically, the
mechanistic component is responsible for computing the
response of tunnel in accordance with the deflections of
earth retaining wall. To predict the latter information, the
ANN model is built aimed at learning and recognizing the
patterns involved in the interactions between excavation
geometries, excavation support structures, and soil prop-
erties. .e inverse modelling module is included to reduce
the uncertainty associated with soil parameters entering into
the ANN model, which enables automatic learning and
update of soil properties with the accumulation of infor-
mation generated during construction processes. .e main
conclusions that can be drawn from this work include the
following:

(1) While being trained by synthetic samples, the ANN
model can reasonably predict the maximum de-
flections of retaining wall measured in actual engi-
neering projects.

(2) .e mechanistic model can reasonably predict the
displacements of tunnels caused by adjacent exca-
vations provided that the deflections of earth
retaining wall can be accurately estimated.

(3) .e quality of the ANN prediction highly depends on
the characterization of soil parameters. Inverse
modelling based on the ANN model can reduce the
uncertainty associated with soil parameters and
consequently improves the prediction of retaining
wall deformations and tunnel displacements.

Lastly, it should be noted that the work presented here
merely represents the first step towards accurately predicting
the influences of deep excavations on adjacent tunnels by
harnessing the power of process-based modelling. Despite
the promising features exhibited by the ANN model trained
by synthetic cases, the information obtained from real-world
engineering projects is indispensable and the best dataset for
training the model. For this purpose, next step that may be
undertaken is to integrate the proposed model into BIM
platforms such that (1) the ANNmodel can be trained by big
data collected from actual deep excavation projects, (2) the
uncertainty associated with site-specific soil properties can
be reduced by inverse modelling with the accumulation of
field observations, and (3) deep excavations can be managed
dynamically and adaptively to protect nearby tunnels.
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.e data of field measurements, results generated by finite
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