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Recently, 3D model retrieval based on views has become a research hotspot. In this method, 3D models are represented as a
collection of 2D projective views, which allows deep learning techniques to be used for 3D model classification and retrieval.
However, current methods need improvements in both accuracy and efficiency. To solve these problems, we propose a new 3D
model retrieval method, which includes index building and model retrieval. In the index building stage, 3D models in library are
projected to generate a large number of views, and then representative views are selected and input into a well-learned con-
volutional neural network (CNN) to extract features. Next, the features are organized according to their labels to build indexes. In
this stage, the views used for representing 3D models are reduced substantially on the premise of keeping enough information of
3D models. .is method reduces the number of similarity matching by 87.8%. In retrieval, the 2D views of the input model are
classified into a category with the CNN and voting algorithm, and then only the features of one category rather than all categories
are chosen to perform similarity matching. In this way, the searching space for retrieval is reduced. In addition, the number of used
views for retrieval is gradually increased. Once there is enough evidence to determine a 3D model, the retrieval process will be
terminated ahead of time. .e variable view matching method further reduces the number of similarity matching by 21.4%.
Experiments on the rigid 3Dmodel datasets ModelNet10 andModelNet40 and the nonrigid 3Dmodel dataset McGill10 show that
the proposed method has achieved retrieval accuracy rates of 94%, 92%, and 100%, respectively.

1. Introduction

Recently, three-dimensional (3D) models have been widely
used in computer-aided design (CAD), virtual reality (VR),
3D animation and film, medical diagnosis, 3D online games,
machinery manufacturing, and other fields. In particular,
with the development of 3D printing, the application of 3D
models has become an indispensable technical means in all
fields. Since more and more 3D models and digitizing tools
are being developed for an ever-increasing number of ap-
plications, a large number of 3D models have become
available on the Web [1]. .rough the Internet, users can
download free 3D models according to their needs. Modi-
fication and incremental design on these models can not
only reduce product cost and shorten design time, but also
effectively improve product reliability and quality. However,
it is very difficult to find the needed 3D model quickly and

accurately from the massive number of available models. 3D
model retrieval techniques can solve the above problems;
therefore, this technique has become a research hotspot.

One important issue of the 3D model retrieval is to
represent models into descriptors. .e descriptors describe
the 3D model accurately and efficiently to support model
classification, index building, and similarity matching. 3D
model descriptors can be mainly divided into four cate-
gories: geometry-based [2], statistical analysis-based [3],
topology-based [4], and projective view-based descriptors
[5]. For the geometry-based 3D model descriptors, the 3D
model is divided into many grids, and then the features of
the 3D model are extracted by different mathematical
transformations of the grid model. .e earliest work on the
former approach is the 3D ShapeNets [6], which learns a
convolutional deep belief network that outputs probability
distributions of binary occupancy voxel values. After that,
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Maturana and Scherer propose a similar approach, which
builds the VoxNet for real-time object recognition [7]. Li
et al. adopt field probing neural networks (FPNNs) to extract
features of 3D models. In this method, the 3D models are
first represented as volumetric fields, and then the field
probing filters are employed to extract features from them
[8]. Wu et al. propose a novel framework named the 3D
Generative Adversarial Network (3D-GAN), which gener-
ates 3D objects from a probabilistic space by leveraging
recent advances in volumetric convolutional networks and
generative adversarial nets. .is method achieves impressive
performance on 3D object recognition [9].

Statistical analysis-based 3D model descriptors are a
good choice for nonrigid 3D model retrieval. .e earliest
work is the 3D rotation invariant spherical harmonic rep-
resentation of 3D shape descriptors (SHP), which reduces
the dimensionality of the descriptor and provides a more
compact representation [10]. Sun et al. propose the heat
kernel signature (HKS) descriptor to describe the local
characteristics of the nonrigid 3D models. It is based on
diffusion scale-space analysis and characterized by the heat
transfer process of the 3D surface [11]..eHKS descriptor is
invariant under isometric deformations and stable under
perturbations of the model. It has achieved good perfor-
mance in nonrigid 3D model retrieval. However, it is sen-
sitive to the scale changes of the 3D model. Aubry et al.
propose the wave kernel signature (WKS) descriptor to
describe the nonrigid 3Dmodel, which describes the average
probability of quantum mechanics at a position on a non-
rigid 3D model surface. .e WKS descriptor explains the
relationship between the points on the different spatial scales
and the rest of the model surface, and its discriminative
ability is more than that of the HKS descriptor [12]. Zeng
et al. use WKS and HKS to represent the 3D model, then
construct two convolutional neural networks for the HKS
distribution and the WKS distribution separately, and use
the multifeature fusion layer to connect them. .is multi-
feature fusion learning method can achieve good perfor-
mance [13].

.e topology-based 3D model descriptors analyze the
topological structure of the 3D model to extract the topo-
logical connections and structural relations among different
components. At present, this type of methods mainly in-
cludes attribute adjacency graph (AAG) [14], feature de-
pendency graph (FDG) [15], skeleton graph [16], and Reeb
graph [17, 18]. At present, the trend is to combine the to-
pological structure of the 3D model and multiple views. For
example, Su et al. propose multiview CNN (MVCNN),
which takes multiview images of an object. .is method has
the potential strength of MVCNNs in sketch-based shape
retrieval [19].

.e descriptors based on projective views are the most
promising because they transform 3D models into images,
which allow image processing methods used for retrieval. In
this type of descriptors, the light field descriptor (LFD) is the
most popular because it is robust to transformations, noise,
and model degeneracy [20]. In the LFD, a 3D model is
projected to generate 100 binary images, which are rendered
in different views for each model. .is descriptor represents

3D models better than other descriptors, but its time
complexity is heavy because the image number used for
matching is large. Recently, these methods which combine
the projective views and deep learning have achieved good
performance. In these methods, deep learning models are
trained to extract features from the 2D views and make
classification. For example, Johns et al. propose pairwise
method to bring CNN to generic multiview recognition, by
first decomposing an image sequence into a set of image
pairs, classifying each pair independently, and then learning
an object classifier by weighting the contribution of each pair
[21]. Ma et al. propose a method which extracted 2D Zernike
moments from 2D projective views as the view saliency.
.en the view saliency is used to boost a multiview CNN
(VS-MVCNN) for 3D object recognition [22]. In the
DeepPano, a panoramic view is used to represent the 3D
model, and the CNN is designed to learn deep represen-
tations directly from the panoramic view [23]. .e similar
method is PANORAMA-NN [24], which also uses a pan-
oramic view. In addition, Hegde and Zadeh use FusionNet to
combine the representation of 2D projective views and the
representation of model volume to learn new features, which
yields a significantly better classifier than using either of the
representations in isolation [25]. Qi et al. make a compre-
hensive study on the voxel-based CNNs and multiview
CNNs for 3D object classification [26]. Elhoseiny et al.
explore CNN architectures for combining object classifi-
cation and pose estimation learned with multiview images,
and this method takes a single image as input for its pre-
diction [27]. Kanezaki et al. improve this method by ag-
gregating predictions from multiple images captured from
different viewpoints [28].

We can see that many methods have been effectively
applied to 3D model recognition. However, there are several
problems that need to be solved. First, current methods do
not consider the similarity of 2D views when representing
3D models as 2D views. If cameras around 3D models are
sparse, projective views cannot fully describe 3D models. If
cameras are dense, redundant views will be generated,
resulting in heavy time and space complexity. Second, a fixed
number of projective views are used for similarity matching,
which also leads to high computational complexity. To solve
the above problems, we propose a novel 3D model retrieval
method, which is improved in both index building and
model retrieval. In the index building, 3D models in library
are first converted into 2D projective views using the pro-
posed projection method. .en representative views are
selected from these 2D projective views by the proposed
method based on the K-means. .is method can reduce
redundant views and improve the retrieval accuracy and
efficiency. After that, the representative views are input into
the learned CNN to extract features, which are organized as
indexes by their labels. In retrieval, the input 3D model is
first processed by the same way as that used in the index
building to obtain representative views. .en all represen-
tative views of a model are classified into one category by the
CNN and voting algorithm, and then only the features of one
category rather than all categories are chosen to make
similarity matching with these representative features. In
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addition, we propose a novel similarity matching method, in
which the number of views for retrieval is gradually in-
creased until the evidence is enough to determine a 3D
model. .erefore, model retrieval efficiency is improved
substantially.

2. The Proposed Methodology

2.1. $e Overall Scheme. As shown in Figure 1, the whole
process of the proposed method can be divided into three
steps: (1) 3Dmodel representation and CNN training; (2) 2D
representative view extraction and index building; (3) model
retrieval. In the first step, 3D models are first converted into
2D projective views, and then these 2D projective views are
used to train the CNN. In this part, a projection method is
proposed to generate views. In the second step, 3D models
are first converted into 2D projective views using the same
projection method as that used in training. .ese views are
then selected by the proposed method based on the K-
means. .e views which are closest to the centers of their
own categories are selected as the representative views.
Finally, these representative views are input into the learned
CNN for feature extraction and index building. In the third
step, the input can be an image or a 3D model. If the input is
an image, the classification and retrieval are carried out
directly. If the input is a 3D model, representative views are
generated first by our projection method and representative
view selection method, and then the representative views are
input into learned CNN for classification and feature ex-
traction. All representative views of the 3D model can be
classified into the same category through the voting algo-
rithm. Finally, the result model is found through the variable
view matching method.

2.2. 3D Model Representation and CNN Training.
Nowadays, CNNs have been used widely for object detec-
tion, scene recognition, texture recognition, and fine-
grained classification. .e CNN is also used in the proposed
method because the CNN outperforms other methods in our
task, and the views projected from 3D models can be large
enough to learn a good CNN.

2.2.1. Multiview Representation of 3D Model. It is a key step
to represent 3D models into 2D projective views. .e main
two factors in obtaining the projective views are the selection
of projection method and rendering mode. .rough ex-
periments, we adopt the projection method based on region
division and rendering method based on multilight sources.
.e steps are described as follows:

(1) Model preprocessing: the purpose of model pre-
processing is to normalize the 3D model by limiting
it to the unit sphere. First, the maximum and
minimum values in the three coordinate directions
are obtained by collecting the boundary information
of the model and traversing the coordinates of all
points. .en, the scaling and the position center of
the model are calculated. Finally, the model is

translated and scaled. .e model preprocessing is
shown in Figure 2.

(2) Selection of projective points: cameras are deployed
on the sphere centered on the center of the 3D
model. .e spherical surface is divided into four
uniform regions, with one camera deployed at the
center of each region. Any other cameras are located
in the bisectors which pass through the center. .e
angle between the bisectors is equal. .e cameras
placed on the bisectors are located in the middle
points between the center points and the boundaries.
.e lens of each camera should point to the sphere
center..e placement of the camera in each region is
shown in Figure 3.

(3) Model rendering: in order to increase the information
quantity contained in projective views and reduce the
negative impact from the shadow of the model, we
adopt the Phong Lighting Model [29] to render the
model. Firstly, an ambient light of low intensity is
used, and then six fixed weak light sources at the
points (0, 0, 1), (0, 0, −1), (0, 1, 0), (0, −1, 0), (1, 0, 0),
and (−1, 0, 0) are deployed. At last, a brighter point
source is set at the position of each camera, which is
turned on when views are acquired..e six weak light
sources and their locations are shown in Figure 4.

In the proposed method, 40 projective views are used. A
comparison of the proposed method and the LFD is shown
in Figure 5, where the view generated by our method is
shown in Figure 5(a) and that by the LFD is shown in
Figure 5(b). We can see that the projective view obtained by
our method is a grayscale image with information entropy of
0.462. In contrast, the projective view of the LFD is a binary
image with information entropy of 0.287. .erefore, our
method contains more detailed features.

2.2.2. CNN Training. In recent years, CNNs are widely used
for image classification. At present, there are a lot of CNNs,
such as the VGG, GoogleNet, ResNet, and DenseNet. It is
reported that the ResNet can achieve the good performance
on ImageNet. .e ResNet adopts a unique “shortcut con-
nection” which can effectively avoid gradient disappearance
and ensure the training accuracy [30]. In our experiments,
the ResNet50 achieved better performance than other types
of deep neural networks, so it was used for feature extraction
and classification..e ResNet50 consists of 49 convolutional
layers and one fully connected layer. .e structure of the
ResNet50 is shown in Table 1.

2.3. Index Building. It is very important to build indexes for
improving the efficiency of model retrieval. In this section,
representative view selection is presented first, and then the
index building based on the CNN is introduced.

2.3.1. Representative View Selection Based on K-Means.
.e 2D view number and the projection angle have an
impact on the representation of 3D models. In current
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methods, a large number of cameras are evenly distributed
on the surface of the unit sphere to obtain 2D views..is way
does not take the differences in model surface complexity
into account. In fact, the part of the 3D model with large
surface complexity needs more views to represent, while the
part with small surface complexity can be well represented
with fewer views. .e 2D views projected by current
methods have a large number of similar views, which cause
amounts of redundancy. .erefore, it is necessary to keep
only one view from similar views to make views more
representative. In this paper, we propose a method to extract
2D representative views. In this method, the K-means is
adopted to classify views into different categories according
to their similarity, and then one representative view is
chosen from each category. In this way, different 3D models
may yield different numbers of 3D views.

As an unsupervised classification method, clustering clas-
sifies datasets without labels into several clusters [31]. One
widely used algorithm for clustering is the K-means [32]. Its
advantages are simplicity and local minimum convergence
properties. However, it has a shortcoming that the number of
clusters should be set manually. For each 3D model, the pro-
posedmethod based on theK-means is implemented as follows:

Step 1: convert the 3D model into 40 2D projective
views by the projection method proposed in Section
2.2.1

Step 2: cluster these 2D projective views using the K-
means
Step 3: select the views which are closest to the centers
of their own categories as the representative views

When the 2D views are clustered by the K-means, the
number of categories Kmust be determined first. According
to the experiment, 10–20 views can obtain good perfor-
mance. .erefore, K is roughly set as 10–20, and then the
elbow [33] method is used to determine the final value of K.
If the 2D views of a 3D model are divided into K categories,
K 2D representative views are obtained for the represen-
tation of a 3D model.

2.3.2. Index Building Based on CNN. .e indexes of 3D
models are built by inputting the 2D representative views
into the ResNet50 and then organizing the output features
according to their categories. As for input model Modeli, its
representative views Wi1, Wi2, . . . , Win are first generated.
.en, these representative views are input into the learned
ResNet50. .e outputs of the 49th layer of ResNet50 are
features of these representative views, denoted by
Fi1, Fi2, . . . , Fin. .e outputs of the 50th layer of ResNet50
are the labels of these representative views. In this method,
the task of 3D model classification is transformed into the
classification of views. .e index building process is shown
in Figure 6.

2.4. Model Retrieval. .e task of similarity matching is to
find the most similar 3D model in the dataset according to
the input. .e input can be an image or a 3D model. If the
input is an image, the features are directly extracted and the
category is determined through the learned CNN. In a
category, the output 3D model is found via the following
equation:

i � argmin
i,j

dis W, Fij , (1)

where dis() is the function to compute the Euclidean
distance, W is the features of the input image, Fij is the
features of jth view of the ith model, 1≤ i≤ m, m is the
number of models in a category, 1≤ j≤ ni, and ni is the
number of representative views of the ith model. .e
model i is the output result.

If the input is a 3D model, the model retrieval is realized
in three steps: (1) generating 2D representative views; (2)
inputting these views into CNN for feature extraction and
classification. All representative views of a model may not be
classified into the same category because of misclassification,
so we adopt voting algorithm to determine one category for
views of a model; (3) performing similarity matching. In
order to improve the matching efficiency, we propose a
similarity matching method which uses variable view
numbers.

Let Category Vector denote category vector with the cth
element indicating the number of views classified into the
cth category. Category_Vector is initialized as follows:

Camera

Figure 3: Placements of the cameras.
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Complexity 5



Category_Vector � [0, 0, . . . , 0], (2)

where Category_Vector is a c-dimensional vector corre-
sponding c categories in a model library. When a repre-
sentative view is assigned to the cth category, this vector is
updated by

Category_Vector[c] � Category_Vector[c] + 1. (3)

Finally, the category of the model is determined by

c � argmaxCategory_Vector[c]
c

. (4)

After classification, the retrieval procedure is summa-
rized in Algorithm 1. In order to improve retrieval efficiency,
we design a flexible retrieval strategy: (1) if the distance
between an input view and a view of a model in the library is
small enough, i.e., dis< η, we can make sure that this model
is what we need (output model); (2) if there are Cthreshold
representative views belong to the same model in the same
category, we can make sure that this model is what we need
(output model); (3) if representative views are matched with
different models of the same category, the cumulative dis-
tance value is calculated. If the cumulative distance value of a
model is the minimum, the model is the output model.

3. Experiments and Results

.e experiments are conducted on an Intel i5 8400 +GTX
1060 PC..e proposed method is implemented based on the
MXNET framework. .e ResNet50 is used to build model
indexes and implement model classification. .e proposed
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Table 1: .e structure of ResNet50.

Layer name Output size 50-layer

Conv1 112×112 7× 7, 64, stride 2
56× 56 3× 3 max pool, stride 2

Conv2_x 56× 56
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Conv3_x 28× 28
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

Conv4_x 14×14
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

Conv5_x 7× 7
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1× 1 Average pool, 1000-d fc, softmax
FLOPs 3.8×109
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method is evaluated on the following two aspects: model
classification and model retrieval.

3.1. Model Classification Evaluation. In this section, we
compare the proposed method with the state-of-the-art
methods. .e evaluation is made on the following 3D model
databases: McGill 3D Shape Benchmark [34] (a nonrigid 3D
model dataset) and ModelNet10 and ModelNet40 [35] (two
rigid 3D model datasets). Table 2 shows the detail infor-
mation of these datasets.

We follow the training and testing splitting included in
ModelNet10 and ModelNet40. ModelNet10 consists of 4899
models in 10 categories, and 3991 are used as the training
dataset and 908 models are used as the test dataset. Mod-
elNet40 consists of 12311 models in 40 categories, and 9843
are used as the training dataset and 2468 models are used as
the test dataset. In the McGill, there are 255 models. 179 3D
models are randomly selected for training and the remaining
76 3D models as the test dataset.

.e model pretrained with the data of ImageNet is used
as initialization parameters of the ResNet50. .e learning
rate is set as 0.01. .e batch_size is set as 32 according to
GPU size and training efficiency. In order to make the loss
function converge quickly, the epoch is set as 200.

3.1.1. Representative View Selection. In the proposed pro-
jection method, each 3D model is presented as 40 views. In
order to improve the efficiency of classification and retrieval,
representative views are selected from the 40 projective
views by the method proposed in Section 2.3.1. .e number
of representative views K has a great influence on the
classification accuracy. In experiments, K is set as 5, 10, 20,
and 30, respectively. Misclassified models of the proposed
method given different K are shown in Table 3.

In the McGill, whatever K is, there is no misclassified
model. .e number of misclassified models in ModelNet10
and ModelNet40 decreases as K becomes larger. When K is
5, the number of misclassified models is the largest. When K
is more than 20, the number of misclassified models is
decreasing slowly. According to this result, we set the range
of K as [10, 20].

.e performance of the proposed method under different
datasets and different conditions is shown in Table 4. Taking
ModelNet10 as an example, there are 908 models in its
training set, and each model has 40 2D views before repre-
sentative view selection. .en the number of 2D views is
36320 (908× 40). After representative view selection, each
model has about 14 2D views, so the number of 2D views is
12742. .e classification accuracy remains the same before
and after the representative view selection method is used.

We can see from Table 4 that our representative view
selection method does not cause performance degradation on
McGill and ModelNet10. .e classification accuracy on
ModelNet40 only decreases by 0.9% after our representative
view selection. It should be noted that our representative view
selection can significantly reduce the number of views to
about 1/3. A smaller number of views lead to higher efficiency
of the 3Dmodel classification and retrieval..e experiment in

the following section adopts representative views for model
classification and retrieval. For each model, about 14 pro-
jective views are enough to obtain a good performance.

3.1.2. Comparison of Classification Algorithms Based on
Views. We compare the proposed method with several
traditional methods, and the results are shown in Table 5.
We can see that our proposed method has achieved the best
performance in ModelNet10, with a recognition accuracy of
94.10%. In addition, it has achieved a recognition accuracy of
92% in ModelNet40, which is just 0.9% lower than that of
VS-MVCNN. Although VS-MVCNN outperforms the
proposed method, it needs 80 views.

Our proposed method can achieve 100% recognition
accuracy in McGill (shown in Figure 7). .is indicates that
the proposed method performs well on both rigid and
nonrigid 3D datasets.

3.1.3. Classification Result Analysis. .e confusion matrix of
the proposed method in ModelNet10 is shown in Figure 8.
We can see that the proposed method can achieve an ac-
curacy of 100% in classes of bed, chair, and monitor, an
accuracy of more than 90% in the classes of bathtub, desk,
sofa, and toilet, and an accuracy of less than 90% in classes of
dresser, night_stand, and table (respectively, 88%, 84%, and
83%). .e accuracy in table class is the worst, with 15% of
models being misclassified as desk class and 2% of models
being misclassified as night_stand class. .e reason is that
the models in table class and the models in desk class are
extremely similar to each other.

We can see from Figure 9 that the models in the dresser
class and night_stand class are extremely similar, which
leads to misclassification. .e misclassification of these
models does not matter for users because the two models are
either the same or similar enough.

.e advantage of our method is that it can obtain high
accuracy given a small number of views. Especially on
McGill, the recognition accuracy is 100%. .e reason is that
there are great differences between the classes on McGill,
and multiple views can better represent 3D models from
different angles, leading to superior performance. However,
on ModelNet10 and ModelNet40, the proposed method
does not have good performance on some classes, such as the
table class and desk class, or night_stand class and dresser
class. .e reason is that there is no obvious difference be-
tween the classes of ModelNet10, as well as ModelNet40. It is
easy to make mistake for any classification method.

3.2. Retrieval Experiment. Our retrieval method is based on
the classification results. .e input is classified before
similarity matching. .e advantage is that similarity is
calculated between the input and the models in one category
rather than all categories, so it can greatly reduce the
searching scope and computation complexity. In the fol-
lowing section, the similarity matching method is evaluated
and analyzed on the rigid datasets and the nonrigid dataset,
respectively.
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3.2.1. Retrieval Experiment for Rigid Datasets. Our shape
descriptors are compared against the spherical harmonics
descriptor (SPH) [10], LFD [20], 3D ShapeNets [6], DeepPano
[23], PANORAMA-NN [24], View Inter-Prediction GAN

(VIPGAN) [36] and Ma et al.’s method [37]. .e result of the
mean average precision (MAP) is shown in Table 6.We can see
that theMAP of our proposedmethod is obviously higher than
those of other methods. .ere are two reasons for this: (1)
classification is made before retrieval because the accuracy of
the proposed classificationmethod is high enough to ensure the
good retrieval accuracy, and (2) the voting mechanism is
adopted. Some views of an input model are easily misclassified
due to their high similarity..rough voting mechanisms, these
misclassified views can be reclassified correctly.

.e precision-recall curves are shown in Figures 10 and 11.
We can see that our method outperforms other state-of-the-art
methods. .e precision-recall curve of the proposed method is
stable, while those of othermethods gradually decrease with the
increase of recall. Taking Figure 10 as an example, when the
recall rate is less than 0.2, the PANORAMA-NN andMa et al.’s

Table 4: Views and classification accuracy (%).

McGill ModelNet10 ModelNet40
Before After Before After Before After

Views 960 362 36320 12742 98720 34526
Accuracy 100 100 94.10 94.10 92.90 92.0

input: Wl is the features of representative views of input model, l � 1, 2, 3, . . . , p ,
Fij is the features of jth view of the ith model in dataset,
m is the number of models in a category,
ni is the number of representative views of the ith model,
η is the minimum distance,
Distance_Vector is the distance vector, Distance_Vector � [0, 0, . . . , 0],
Count is the counting vector, it is used to record the number of views that are classified into each category,

Count � [0, 0, . . . , 0]

output: isearched,
isearched � −1;
η � 1.5;
for (1≤ l≤ 14)

{
kmin � 0;
dismin � 1000000;
for (1≤ i≤ m)

{
dis � min

j
dis(Wl, Fij) (j� 1, 2, . . ., dis< η);

if (dis< η) {isearched � i; return; }
Distance_Vector[i] � Distance_Vector[i] + dis;
if (dis< dismin){kmin � i; dismin � dis;

}
}
Count(kmin) � Count(kmin) + 1;
for(1≤ i≤m)

{
if (Count(i) � Cthreshold) {isearched � i; return; }

}
}
if (isearched � −1) i � argmin

i
Distance_Vector[i];

return isearched;

ALGORITHM 1: Similarity matching algorithm.

Table 2: 3D model datasets.

3D model dataset Models Classes
McGill 255 10
ModelNet10 4899 10
ModelNet40 12311 40

Table 3: Misclassified models given different K.

K 5 10 20 30
McGill 0 0 0 0
ModelNet10 77 62 56 55
ModelNet40 212 191 182 183

Table 5: Classification accuracy compared with other methods (%).

Algorithm Views ModelNet10 ModelNet40
DeepPano [23] 1 88.66 82.54
PANORAMA-NN [24] 1 91.10 90.70
Pairwise [21] 12 93.20 91.10
FusionNet [25] 60 93.11 90.80
VS-MVCNN [22] 80 93.50 92.90
Ours 14 94.10 92.00
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method perform better than our method. However, when the
recall rate is larger than 0.9, the precision rates of the two
methods decrease rapidly. In particular, the precision rate of
Ma et al.’s method decreases to 0.1 when the recall rate is close

to 1..e precision-recall curves of the DeepPano andVIPGAN
are similar to that of the proposed method when the recall rate
is less than 0.9. However, their precision rates decrease rapidly
when the recall rate is close to 1. .e SPH performs the worst.
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Figure 7: Classification results on McGill.
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Table 6: .e comparison of the proposed method and other methods (MAP, %).

Algorithm
Dataset

ModelNet10 ModelNet40
SPH [10] 45.9 34.4
LFD [20] 49.8 40.9
3D ShapeNets [6] 69.2 59.9
DeepPano [23] 84.2 76.8
PANORAMA-NN [24] 87.4 83.5
VIPGAN [36] 90.6 89.2
Ma et al. [37] 93.1 84.3
Ours 94.1 92.0
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.eLFD is slightly better than the SPH..e 3D ShapeNets is in
the middle of these eight methods. .e precision rates of these
three methods decrease from 1 to 0 with the increase in recall.

3.2.2. Retrieval Experiment for Nonrigid Dataset. .e used
nonrigid dataset is McGill. We compare our proposed
method to the heat kernel signature (HKS) [11], the wave
kernel signature (WKS) [12], the CBoFHKS [38], the dis-
criminative autoencoder-based shape descriptor (DASD)
[39], the multifeature fusion learning (MFFL) [13], and the
learning-based multiple pooling fusion (LMPF) [40]. Table 7
shows the retrieval results measured by the Nearest
Neighbor (NN), First Tier (FT), Second Tier (ST), and
Discounted Cumulative Gain (DCG).

We can see from Table 7 that our proposed method
achieves the best performance on the NN, FT, ST, and DCG
measures. And the performance of the proposed method on
the nonrigid dataset is better than that on the rigid dataset.
.e reason is that we use the well-trained CNN to classify the
models in McGill. .e classification accuracy is 100%, so the
retrieval accuracy is also 100%. In summary, our method
obtains good performance on both rigid and nonrigid
datasets.

3.2.3. Retrieval Efficiency Analysis. Experiments show that
similarity matching consumes the most time during 3D
model retrieval. TakingModelNet10 as an example, there are
908models in the test set and 3991models in the training set.
Each model has 40 views, so the test set contains 36320 views
and the training set contains 159640 views. If all views are
used for similarity matching, the time complexity is large.
Table 8 shows the comparison of the number of views before
and after representative view selection in ModelNet10.

We can see that the view number in the test set decreases
from 36320 to 12742 and the view number in the training set
decreases from 159640 to 56613 through representative view
selection. .e view number is reduced by 2/3 after repre-
sentative view selection, so this method can effectively re-
duce redundant views and greatly improve the retrieval
efficiency.

In ModelNet10, the training set consists of 3991 models,
and these models are divided into 10 classes, with each class
consisting of 399 models on average. After applying rep-
resentative view selection, the number of similarity
matching is reduced from 638400 (40× 399× 40) to 78204
(14× 399×14) (reduced by 87.8%).

.e variable view matching method can further improve
the matching efficiency. In this paper, η is defined as the
similarity of two views generated by two adjacent projective
points of the same model. We call η as adjacent view dis-
tance. .e smaller η is, the higher the accuracy is. We take
ModelNet10 as an example to analyze η under our projection
method. Adjacent projection points are shown in Figure 12.

Experiments show that the adjacent view distances of
any two views are different. In the same category, the
minimum adjacent view distance is chosen as the repre-
sentative to form the list of adjacent view distance. Table 9
shows the average adjacent view distances when different

numbers of models are selected for each category. Taking the
bathtub class as an example, when the model number is 1,
the minimum adjacent view distance is 1.705. When the
model number is 20, the average adjacent view distance is
1.995. .e adjacent view distance of the table class is the
smallest and that of the bed class is the largest. .e reason is
that the model complexity is different. .e models in the
table class are simple, while the models in the bed class are
more complex than others. .e last row of Table 9 shows the
average adjacent view distance of all categories with model
numbers of 20, 10, 5, and 1. We can see that when the
number of models is 1, the average adjacent view distance is
the smallest with 1.6418. When the number of models is 20,
the average adjacent view distance is the biggest at 1.8572. In
order to improve the efficiency and accuracy of 3D model
retrieval, η is set as 1.5.

In Algorithm 1, there are three conditions to finish
similarity matching. .e view numbers used under the three
conditions are 1, 5, and 14, respectively, i.e., Cthreshold is set as
5..e results onModelNet10 are shown in Table 10, where η
is 1.5. For example, in bathtub, there are 3 models under
condition 1..at is to say, these 3 models can be retrieved by
only using one view. And there are 4models under condition
2 and 43 models under condition 3. If we do not use the
variable view matching, all models are retrieved by using 14

Table 7: Performance comparison on McGill.

Method NN FT ST DCG
HKS [11] 0.8190 0.6220 0.7440 0.8270
WKS [12] 0.9140 0.7750 0.8660 0.9140
CBoFHKS [38] 0.9010 0.7780 0.8760 0.8910
DASD [39] 0.9880 0.7820 0.8340 0.9550
MFFL [13] 0.9710 0.9050 0.9810 0.9630
LMPF [40] 0.9810 0.8610 0.9594 0.9579
Ours 1.0000 1.0000 1.0000 1.0000

Table 8: .e number of views before and after representative view
selection.

Dataset
Before After

Total Average Total Average
Test set 36320 40 12742 14
Training set 159640 40 56613 14

Adjacent projection points

Figure 12: Adjacent projection points.
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views. In ModelNet10, if we use variable view matching, the
number of all views is 10267 (132 + 405 + 9730), while that of
the traditional method is 12742. .e number of views is
reduced by 2475. .at is to say, the average number of views
for retrieval of eachmodel is reduced to 11..rough variable
viewmatching, the average number of similarity matching of
each model is approximately 61446 (11× 399×14). Com-
pared with only using representative view selection method,
the number of similarity matching is further reduced by
21.4%.

4. Conclusion

With the increase of 3D models, the degradation of retrieval
accuracy and efficiency becomes a serious problem for 3D
model retrieval systems. An efficient 3D model retrieval
method is proposed in this paper. .e efficiency of the
proposed method is improved in three aspects: (1) Efficient
indexes are built through the representative view selection
and the feature extraction with the CNN. And then features
are organized via their labels. In this way, the 3D models are
represented more efficient and the number of used views is
reduced substantially. (2).e number of similarity matching
is reduced by classification before retrieval. In retrieval, 2D
views of the input model are classified into one category with

the CNN and voting mechanism, and then, only the features
of this category, rather than all categories, are chosen to
make similarity matching. (3) Variable view matching
method is proposed. .e retrieval of some models can be
terminated ahead of time. .e accuracy of our proposed
method is improved in two aspects: (1) .e classification of
input models is made before retrieval. Our classification
method obtains good performance, so the retrieval accuracy
and efficiency are guaranteed. (2) .e voting mechanism is
used to classify input 3D models. .rough the voting
mechanisms, the misclassified views can be reclassified
correctly.

Although the proposed 3D model retrieval method
demonstrates great improvement in both accuracy and ef-
ficiency, similar 3D models are easy to be misclassified.
.erefore, we will study how to improve the discrimination
of model representation in our future work.

Data Availability

Previously reported ModelNet10 and ModelNet40 data are
used to support this study and are available at http://
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support this study and are available at http://www.cim.
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paper.
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