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In this paper, the fractional order models are used to study the propagation of ion-acoustic waves in ultrarelativistic plasmas in
nonplanar geometry (cylindrical). Firstly, according to the control equations, (2 + 1)-dimensional (2D) cylindrical Kadomt-
sev–Petviashvili (CKP) equation and 2D cylindrical-modified Kadomtsev–Petviashvili (CMKP) equation are derived by using
multiscale analysis and reduced perturbation methods. Secondly, using the semi-inverse method and the fractional variation
principle, the abovementioned equations are derived the time-space fractional equations (TSF-CKP and TSF-CMKP). Fur-
thermore, based on the fractional order transformation, the 1-decay mode solution of the TSF-CKP equation is obtained by using
the simplified homogeneous balancemethod, and using the generalized hyperbolic-functionmethod, the exact analytic solution of
TSF-CMKP equation is obtained. Finally, the effects of the phase speed λ, electron number density (through β3) and the fractional
order (α, β,ω) on the propagation of ion-acoustic waves in ultrarelativistic plasmas are analyzed.

1. Introduction

In recent years, plasma physics [1–4] has developed rapidly
in the global environment, electromagnetic propagation,
and especially in the astronomical environment. In many
astronomical environments, matters exist in extremely
dense conditions and are not found in the Earth’s envi-
ronment, and there is a strong interest in understanding the
basic properties of matter under extreme dense conditions.
In some interstellar dense objects (e.g., white dwarfs and
neutron stars), the extreme conditions of matter are caused
by the significant compression of the interstellar medium.
One of these extreme conditions is the presence of high
density degenerate substances in these compact objects.
'ese objects are actually “relics of stars.”'ey have stopped
burning thermonuclear fuel and are no longer able to
generate the thermal pressure needed to support the grav-
itational load of their own mass. 'ese interstellar compact
objects are greatly compressed, and their internal density
becomes very high. 'erefore, the nonthermal pressure is

provided by degenerate fermion kinetic energy and particle
interactions. 'is pressure is not sensitive to temperature,
i.e., the pressure does not go down as the star cools.

Based on observations and theoretical analysis, there are
two types of dense objects that resist gravitational collapse
under the action of cold degenerate fermions/electron
pressure. An example of the first category is a white dwarf
supported by the pressure of degenerate electrons, the in-
terior of which is close to a dense solid (ionic lattice sur-
rounded by degenerate electrons, possibly other heavy
particles or dust), and an example of the second category is a
neutron star supported by the pressure of nuclear degen-
eracy and nuclear interaction, which is close to a giant
atomic nucleus (mixture of nucleon and electron interac-
tions, possibly other elementary particles and condensates).
In such a compact object, the degenerate electron number
density is very high. For example, in a white dwarf, the
degenerate electron number density can reach the order of
1030 cm− 3, which is expected to be degenerated in a white
dwarf of sufficient quality. Electrons become relativistic,
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making stars prone to gravitational collapse, and the de-
clining electron density in neutron stars can even reach the
order of 1036 cm− 3. In the white dwarf and neutron stars, the
energy of an electron Fermi is comparable to the energy of an
electron resting mass, and the speed of an electron can be
comparable to the speed of light in a vacuum [5, 6].

Chandrasekhar [7–9] mathematically explains the
equation of state of degenerate electrons in such interstellar
dense objects, involving two limits, namely, nonrelativistic
and ultrarelativistic limits. 'e degenerate electron equation
of state of Chandrasekhar [7–9] is used viz. Pe∝ n5/3

e

(nonrelativistic limit) and Pe∝ n4/3
e (ultrarelativistic limit),

where Pe is the degenerate electron pressure and ne is the
degenerate electronic number density. We note that the
degenerate electron pressure is only related to the electron
number density and not to the electron temperature. 'ese
close interstellar objects provide us with a cosmic laboratory
that studies the properties of matter (materials) and the
fluctuations and instability in a state of extreme density
degradation in such media.'is has led to the study of linear
and nonlinear ion-acoustic wave properties in ultra-
relativistic plasmas.

Ion-acoustic waves [10–12] are one of the basic wave
processes in plasma. A large number of theoretical and
experimental studies have been conducted on ion-acoustic
waves for a long time. In the early days, many researchers
have extensively studied the nonlinear propagation of ion-
acoustic waves in planar geometry [13, 14], such as the
Korteweg–de Vries (KdV) equation [15] to describe the
propagation of ion-acoustic waves in a one-dimensional
plane geometry in plasma. However, for some practical
situations such as astronomical environment, laboratory,
and space plasma, there is a clear deficiency in one-di-
mensional planar geometry. 'erefore, many scholars have
begun to study the propagation of solitary waves in non-
planar cylindrical geometry. For example, Mamun [16] used
modified Korteweg–de Vries (mKdV) equation to study the
propagation of solitary waves in nonplanar geometry in dust
plasma. Mushtaq [17] found that quantum correction and
lateral perturbation in cylindrical geometry have effects on
solitary wave propagation.

'e calculus invented by Newton and Leibniz is a wa-
tershed between modern mathematics and classical math-
ematics. Fractional calculus [18, 19] is a theory of arbitrarily
order differential and integral, and it is uniform with integer
calculus and is a generalization of integer calculus. For
centuries, the theoretical study of fractional calculus has
been very limited, mainly in the field of mathematics. For
example, Euler, Liouville, Riemann, and Caputo all con-
tribute significantly to the field of fractional calculus. Most of
them first introduce fractional order integrals and define
fractional derivatives on this basis. However, after a series of
improvements, the concept of fractional derivatives [20–22]
is more suitable for the modeling of practical problems than
the integer derivatives. Fractional differential equations
[23–25] are also beginning to be used to solve problems in
the fields of biological systems, thermal systems, and me-
chanical systems, and their practicality is getting stronger.
Scholars pay great attention to the fractional calculus theory,

especially the fractional differential equations abstracted
from practical problems. Fractional calculus has attracted
more and more scholars’ research interest. Compared with
the integer order model, the fractional order model can
better describe the dynamic response of the actual system,
improve the performance of the dynamic system, and solve
practical problems. However, in the research of plasma
physics, most of the models are established in integer order
[26, 27]. 'is makes it necessary to establish a fractional
order model to describe and study the propagation of sol-
itary waves in plasma.

With the continuous development of the research on
fractional differential equations [28–30], the solution of
fractional differential equations becomes an important
subject. 'e solution of fractional equations is the key means
to solve and analyze the problem. At present, based on the
method of solving integer differential equations [31–34],
there are many methods for calculating the exact solutions
and numerical solutions of fractional differential equations,
such as (G/G′)-expansion method [35, 36], the first integral
method [37], exp(− φ(ξ)) method [38], and Hirota bilinear
method [31].

'e rest of the paper is organized as follows. In Section 2,
based on the control equations, the multiscale analysis and
perturbation expansion method [39] are used to derive the
CKP equation and CMKP equation of integer order. In
Section 3, applying the semi-inverse method and the frac-
tional variational principle [40], the integer order equations
(CKP and CMKP) are, respectively, transformed into time-
space fractional equations (TSF-CKP and TSF-CMKP). In
Section 4, based on the fractional order transformation, the
exact solutions of the TSF-CKP and TSF-CMKP equation
are obtained by using the simplified homogeneous balance
method [41] and the generalized hyperbolic-function
method [42], respectively. In Section 5, the effects of the
phase speed λ, electron number density (through β3),
temperature ratio σi, and fractional order value α, β, andω
on the ion-acoustic waves propagation in ultrarelativistic
plasmas are studied.

2. Construct of Integer Order Models

We consider the nonlinear propagation of ion-acoustic
waves in ultrarelativistic plasmas. In order to better deal with
the problems studied, we made the necessary assumptions:
the plasma model studied has no external magnetic field
effect, i.e., unmagnetized and no collision effect, i.e., colli-
sionless. 'e plasma studied in this paper consists of two
parts: warm ions and ultrarelativistic degenerate electrons.
At equilibrium, the electrical neutral condition is
ni0 � ne0 � n0, where ni0 is the undisturbed ion number
density and ne0 is the undisturbed electron number density.
Assuming that the electron fluid follows the equation of state
in this form Pe � hc/4(3/8π)1/3n4/3

e , the nonlinear dynamics
of the low frequency electrostatic ion-acoustic waves in such
an ultrarelativistic degenerate dense plasma in 2D cylindrical
geometry can be described by the following set of nor-
malized equations:
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(1)

where σi � 2Ti/TFe is the ratio of ion temperature to Fermi
electron temperature, and TFe � ((3π2ne0)

2/3Z2)/2mekB is
the Fermi electron temperature. β � Kn1/3

eo /kBTFe, where
K � (3/4)Zc, Z is Planck constant divided by 2π, and c is the
speed of light in a vacuum. 'e electron number density ne

and ion number density ni are normalized by n0, ui, and ni

are, respectively, the velocity components of the ion-fluid in
the direction of r and θ, and they are normalized by the ion-
acoustic waves velocity Ci, and Ci � (kBTFe/mi)

1/2 where mi

is the ion mass.'e electrostatic potential ϕ is normalized by
kBTFe/e, where e is the electronic charge. 'e spatial co-
ordinates (r, θ) are normalized by the Debye radius
λD � (kBTFe/4πni0e

2)1/2, the time t is normalized by the ion
plasma period ω− 1

pi � (mi/4πni0e
2)1/2, where kB is the

Boltzmann constant.
Equation (1) is a complex set of nonlinear equations. In

order to study the motion of nonlinear ion-acoustic waves in
ultrarelativistic degenerate plasmas with small amplitude, we
use the reductive perturbation method to simplify the
complex nonlinear equations into differential equations and
retain the most important nonlinear part of the original
equations. First, expand the independent variables as
follows:

R � ϵ(r − λt),

Θ � ϵ− 1θ,

T � ϵ3t,

(2)

where ϵ is a small parameter characterizing the strength of
nonlinearity.

According to equation (2), we have
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'e dependent variables ne, ui, ui, vi, and ϕ are expanded
as follows:
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Substituting equations (3) and (4) into equation (1), we
obtain the following equations:
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According to the different power expansions of ϵ, we
obtain
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'e following equations are obtained under the low-
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Under the high-order approximation of ε, we obtain the
(2 + 1) dimensional CKP equation, i.e.,
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Substituting equations (3) and (12) into equation (1), we
obtain the following equations:
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Expanding ϵ in equation (13) from high to low power,
according to the lowest power of ϵ, we obtain
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Under the lower power expansion of ϵ, we obtain the
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Under the highest power expansion of ϵ, we obtain
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z ni1ui2( 􏼁

zR
+

z ni2ui1( 􏼁

zR

+
1
λT

zvi1

zΘ
� 0,

zui1

zT
− λ

zui3

zR
+ ui1

z ui2( 􏼁

zR
+ ui2

z ui1( 􏼁

zR
� −

1
λT

zϕ2
zΘ

−
σi

λT

zni2

zΘ
,

z2ϕ1
zR2 � ne3 − ni3,

zϕ3
zR

+ ne1
zϕ2
zR

+ ne2
zϕ1
zR

+
1
λT

zϕ2
zΘ

+
ne1

λT

zϕ1
zΘ

� β3
zne3

zR
+
β3
λT

zne2

zΘ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Substituting equations (17) and (18) into equation (16),
we obtain the following differential equation:

z

zR

− 2λ
σi − λ2

zϕ1
zT

+
14λ4 + 14σiλ

2 − σ2i
2 σi − λ2􏼐 􏼑

4 ϕ21
zϕ1
zR

− σi − λ2􏼐 􏼑
z3ϕ1

zR3
⎛⎝

−
λ

T σi − λ2􏼐 􏼑
ϕ1 +

2λ2 + σi

σi − λ2􏼐 􏼑
2

zϕ1ϕ2
zR

⎞⎟⎠ −
1

T2 σi − λ2􏼐 􏼑

z2ϕ1
zΘ2

� 0.

(19)

According to equations (17) and (19), we obtain the
(2 + 1)-dimensional CMKP equation, i.e.,

z

zR

zϕ1
zT

+ Cϕ21
zϕ1

zR
+ D

z3ϕ1
zR3 +

1
2T

ϕ1􏼠 􏼡 +
1

2λT2
z2ϕ1
zΘ2

� 0,

(20)

where

C �
σi − λ2􏼐 􏼑 2λ4 + 8σiλ

2 − σ2i􏼐 􏼑 + 14λ4 + 8σiλ
2 − 4σ2i

− 4λ σi − λ2􏼐 􏼑
3
1 + σi − λ2􏼐 􏼑

,

D �
σi − λ2􏼐 􏼑

2

2λ
.

(21)

3. Derivation of Time-Space Fractional
Cylindrical Equations

In Section 2, we derive a series of differential equations of
integer order. However, with the development of scientific
research, compared with the fractional model, the integer
order model has obvious shortcomings in describing
practical problems. Fractional calculus and fractal calculus
have become the hotspots in the fields of mathematics,
physics, and engineering. In order to further study the
nonlinear propagation of ion-acoustic waves in ultra-
relativistic plasmas plasma, in this section, we use the semi-
inverse method and fractional variation principle to derive
the space-time fractional order equations from equations
(10) and (20).

Definition 1 (see [43]). Jumarie’s modified Rie-
mann–Liouville derivative of order α is defined as

D
ω
τ f(τ) �

1
Γ(1 − ω)

􏽚
τ

0
(τ − T)

− ω− 1
[f(T) − f(0)]dT ω< 0,

1
Γ(1 − ω)

􏽚
τ

0
(τ − T)

− ω
[f(T) − f(0)]dT 0<ω< 1,

fω− n(τ)􏼂 􏼃
n

n≤ω< n + 1, n≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Some properties of the modified Riemann–Liouville
derivative are as follows:
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D
ω
τ τ

c
�
Γ(c + 1)

Γ(c + 1 − ω)
τc− ω

c> 0,

D
ω
τ (f(τ)g(τ)) � g(τ)D

ω
τ f(τ) + f(τ)D

ω
τ g(τ),

D
ω
τ f[g(τ)] � fg

′[g(τ)]D
ω
τ g(τ) � f

ω
gf[g(τ)] g′(τ)( 􏼁

ω
.

(23)

According to equation (20), we have

ϕT + a2ϕ
2ϕR + a3ϕRRR + a4ϕ􏼐 􏼑

R
+ a5ϕΘΘ � 0, (24)

where the coefficients ai(i � 2, . . . , 5) refer to equation (20).
Equation (24) can be rewritten as follows:

ϕT + a2ϕ
2ϕR + a3ϕRRR + a4ϕ + D

− 1
a5ϕΘΘ( 􏼁 � 0, (25)

where D− 1 is the fractional integral of R and a4ϕ is invariant
in the process of deriving fractional order equations using
the semi-inverse method and the fractional variational
principle, so it is omitted in the following derivation process.

Assuming ϕ(T, R,Θ) � PR(T, R,Θ), where PR(T, R,Θ)

is a potential function, and substituting it into equation (25),
we obtain the potential equation as follows:

PRT + a2P
2
RPRR + a3PRRRR + a5PΘΘ � 0. (26)

'en, the function of equation (26) can be written as

J(P) � 􏽚
X

dR􏽚
Y

dΘ􏽚
Z

dT P b1PRT + b2a2P
2
RPRR􏼐􏼔

+ b3a3PRRRR + b4a5PΘΘ􏼁􏼕,

(27)

where bi(i � 1, 2, . . . , 4) are Lagrangian multipliers which
can be obtained later.

Applying integration by parts to equation (27) and
taking PR|X � PR|Z � PΘ|Y � PRRR|X � 0, we have

J(P) � 􏽚
X

dR􏽚
Y

dΘ􏽚
Z

dT − b1PRPT −
1
3
b2a2 PR( 􏼁

4
􏼔

+ b3a3 PRR( 􏼁
2

− b4a5 PΘ( 􏼁
2
􏼕.

(28)

Using the variation of equation (28), integrating each
term by parts and applying the variation optimum condi-
tion, we obtain

F R,Θ, T, P, PR, PΘ, PT, PRR( 􏼁 �
zF

zP
−

z

zT

zF

zPT

􏼠 􏼡

−
z

zR

zF

zPR

􏼠 􏼡 +
z2

zR2
zF

zPRR

􏼠 􏼡 −
z

zΘ
zF

zPΘ
􏼠 􏼡

� 2b1PRT + 4b2a2P
2
RPRR + 2b3a3PRRRR + 2b4a5PΘΘ � 0.

(29)

Equation (29) is equivalent to equation (26), by com-
paring the coefficients, we obtain the Lagrangian multiplier
bi(i � 1, 2, 3, 4, 5), i.e.,

b1 �
1
2
,

b2 �
1
4
,

b3 �
1
2
,

b4 �
1
2
.

(30)

According to equation (30), the Lagrangian form of
equation (25) is as follows:

L PT, PR, PRR, PΘ( 􏼁 � −
1
2
PRPT −

1
12

a2 PR( 􏼁
4

+
1
2
a3 PRR( 􏼁

2
−
1
2
a5 PΘ( 􏼁

2
.

(31)

Similarly, the Lagrangian form of the fractional form of
equation (25) is given by

L1 D
ω
TP, D

α
RP, D

β
ΘP, D

αα
R P􏼐 􏼑 � −

1
2
D

ω
TPD

α
RP −

1
12

a2 D
α
RP( 􏼁

4

+
1
2
a3 D

αα
R P( 􏼁

2

−
1
2
a5 D

β
ΘP􏼐 􏼑

2
,

(32)

where Dαα
R P � Dα

R(Dα
RP).

'erefore, we obtain the function of the fractional form
of equation (25):

JL1
(P) � 􏽚

X
(dR)

α
􏽚

Y
(dΘ)

β
􏽚

Z
(dT)

ω
L1 D

ω
TP, D

α
RP, D

β
ΘP, D

αα
R P􏼐 􏼑.

(33)

According to Agrawal’s method [44], equation (33)
changes to the following form:

δJL1
(P) � 􏽚

X
(dR)

α
􏽚

Y
(dΘ)

β
􏽚

Z
(dT)

ω zL1

zDω
TP

􏼠 􏼡δD
ω
TP􏼢

+
zL1

zDα
RP

􏼠 􏼡δD
α
RP +

zL1

zDαα
R P

􏼠 􏼡δD
αα
R P

+
zL1

zD
β
ΘP

⎛⎝ ⎞⎠δD
β
ΘP

⎤⎥⎥⎦.

(34)

Applying the following fractional integration by parts
[44],
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􏽚
b

a
(dτ)

i
f(x)D

i
xg(x) � Γ(1 + i) g(x)f(x) |

b
a􏽨

− 􏽚
b

a
(dx)

i
g(x)D

i
xf(i)􏼣,

f(x), g(x) ∈ [a, b],

(35)

we obtain the following equation:

δJL1
(B) � 􏽚

X
(dR)

α
􏽚

Y
(dΘ)

β
􏽚

Z
(dT)

ω
− D

ω
T

zL1

zDω
TP

􏼠 􏼡􏼢

− D
α
R

zL1

zDα
RP

􏼠 􏼡 − D
β
Θ

zL1

zD
β
ΘP

⎛⎝ ⎞⎠ + D
αα
R

zL1

zDαα
R P

􏼠 􏼡⎤⎥⎥⎦.

(36)

Optimizing the variation equation (38) and taking
δJF(B) � 0, we obtain the Euler–Lagrange equation as

− D
ω
T

zL1

zDω
TP

􏼠 􏼡 − D
α
R

zL1

zDα
RP

􏼠 􏼡 − D
β
Θ

zL1

zD
β
ΘP

⎛⎝ ⎞⎠ + D
αα
R

zL1

zDαα
R P

􏼠 􏼡 � 0.

(37)

Substituting equation (32) into equation (37), we have

D
ω
TD

α
RP + a2 D

α
RP( 􏼁

2
D

αα
R P + a3D

αααα
R P + a5D

ββ
Θ P � 0.

(38)

To find the fractional derivative of the independent
variable R on both sides of equation (38), we have

D
α
R D

ω
TD

α
RP + a2 D

α
RP( 􏼁

2
D

αα
R P + a3D

αααα
R P􏼐 􏼑 + a5D

α
RD

ββ
Θ P � 0.

(39)

Letting Dα
RP � ϕ and substituting it into equation (39),

we obtain

D
α
R D

ω
Tϕ + a2ϕ

2
D

α
Rϕ + a3D

ααα
R ϕ􏼐 􏼑 + a5D

ββ
Θ ϕ � 0. (40)

'erefore, we obtained the TSF-CMKP equation as
follows:

D
α
R D

ω
Tϕ + a2ϕ

2
D

α
Rϕ + a3D

ααα
R ϕ +

1
2T

ϕ􏼒 􏼓 +
1

2λT2D
ββ
Θ ϕ � 0.

(41)

Similarly, using the semi-inverse method and fractional
variation principle, the TSF-CKP equation can be derived as
follows:

D
α
R D

ω
Tϕ + AϕD

α
Rϕ + BD

ααα
R ϕ +

1
2T

ϕ􏼒 􏼓 +
1

2λT2D
ββ
Θ ϕ � 0.

(42)

Remark 1. When ω � α � β � c � 1, equations (41) and (42)
are the integer order equations. In some cases, we can think
of integer order equations as a special case of fractional order
equations. 'erefore, the fractional model can better de-
scribe the nonlinear propagation of ion-acoustic waves in
ultrarelativistic plasmas.

4. Solutions of TSF-CKP Equation and TSF-
CMKP Equation

In order to better explain the physical phenomena repre-
sented by fractional differential equations, it is necessary to
obtain exact or numerical solutions of fractional differential
equations. In this section, first of all, fractional derivatives
are transformed into classical derivatives by fractional
transformations. Secondly, we obtain the 1-decay mode
solution of TSF-CKP equation by using the simplified ho-
mogeneous balance method [41]. Finally, using generalized
hyperbolic-function method [42], the exact analytic solution
of TSF-CMKP equation is obtained.

4.1. 1-Decay Mode Solution for TSF-CKP Equation. 'e
fractional transforms are introduced as follows [45]:

t �
p1T

ω

Γ(1 + ω)
,

r �
p2R

α

Γ(1 + α)
,

θ �
p3Θβ

Γ(1 + β)
,

(43)

where pi(i � 1, 2, 3, 4) are constants. Based on the above-
mentioned transforms, we have

zωϕ
zTω � p1

zϕ
zt

,

zαϕ
zRα � p2

zϕ
zr

,

zβϕ
zΘβ

� p3
zϕ
zθ

.

(44)

Substituting equation (44) into (41) and taking ϕ � u, we
obtain

ut + a1uur + a3urrr( 􏼁r +
1

2nt1/ω
ur +

1
2λn2t2/ω

uθθ � 0, (45)

where n � [Γ(1 + ω)]1/ω.
We consider the homogeneous balance between uur and

urrr, according to the simplified homogeneous balance
method, which means that an undetermined function Ω(ϕ)

and its partial derivatives Ωr are replaced by a logarithmic
function A(lnφ) and its derivatives A(lnφ)r, respectively.
'erefore, we suppose that the form of the solution of
equation (45) is as follows:

u(r, t, θ) � ϱ(lnφ)rr + u0, (46)

where ϱ is a constant, φ(r, θ, t) is an undetermined function,
which can be obtained later, and u0 is a particular solution of
equation (45).

Substituting equation (46) into equation (45), since u0 is
a particular solution, i.e.,

Complexity 7



z

zr

zu0

zt
+ a1u0

zu0

zr
+ a3

z3u0

zr3
􏼠 􏼡 +

1
2nt1/ω

u0r +
1

2λn2t2/ω
u0θθ � 0, (47)

we obtain

z

zr

zu

zt
+ a1u

zu

zr
+ a3

z3u

zr3
􏼠 􏼡 +

1
2nt1/ω

ur +
1

2λn2t2/ω
uθθ

� ϱ
z2

zr2
(lnφ)rt +

a1A

2
(lnφ)

2
rr + a2u0(lnφ)rr + a3(lnφ)rrrr +

1
2nt1/ω

(lnφ)r +
1

2λn2t2/ω
(lnφ)θθ􏼢 􏼣

� ϱ
z2

zr2
φrt + a1u0φrr + a3φrrφ2

rφ
5 − 3φ2

rrφ
6 − 6φ4

rφ
4

φ
􏼢

+
− φrφt + a1A/2φ2

rr − a2u0φ2
r − 4a3φrrrφr − 3a3φ2

rr − 1/2λn2t2/ωφ2
θ

φ2

+
− a1Aφrrφ2

r + 12a3Aφrrφ2
r

φ3 +
a1A/2φ4

r − 6a3φ4
r

φ4 􏼣.

(48)

Setting the coefficient of φ− 4 be zero, yields ϱ � 12a3/a1,
so equation (46) can be rewritten as follows:

u(r, t, θ) � ϱ(lnφ)rr + u0 �
12a3

a1
(lnφ)rr + u0. (49)

Equations (48) and (49) can be simplified as follows:

ut + a1uur + a3urrr( 􏼁r +
1

2nt1/ω
ur +

1
2λn2t2/ω

uθθ

�
12a3

a1

z2

zr2
1
φ2 φ φt + a2u0φr + a3φrrr +

1
2nt1/ω

φ􏼒 􏼓
r

+
1

2n2t2/ω
φθθ􏼒 􏼓􏼔􏼨

− φtφr + 4a3φrφrrr + a3φ
2
rr −

a1A

2
φ2

rr + a1u0φ
2
r +

1
2n2t2/ω

φ2
θ􏼒 􏼓􏼣􏼩 � 0.

(50)

'e function φ(r, θ, t) satisfies the homogemeity equa-
tion, i.e.,

φ φt + a1u0φr + a3φrrr +
1

2nt1/ω
φ􏼒 􏼓

r
+

1
2n2t2/ω

φθθ􏼔 􏼕

− φtφr + 4a3φrφrrr + a3φ
2
rr −

a1A

2
φ2

rr + a1u0φ
2
r +

1
2n2t2/ω

φ2
θ􏼒 􏼓 � 0.

(51)

Equations (49) and (51) are called the nonlinear trans-
formation of equation (45), if φ(r, θ, t) is a solution of
equation (51), substituting it into equation (49), we obtain
the exact solution of equation (45). Next, using the nonlinear
transformation, we will find the exact solutions of equation
(45).

In view of the homogemeity of (51), we assume that the
form of the solution of (51) is as follows:

φ(r, t, θ) � 1 + e
H(t)r− 􏽒

t

0
a3H[t]3+a6H[t][ ]dt

, (52)

where a6 � a1u0 − ((1/2nt1/ω) + a2u0r)r and B(t) can be
obtained later.
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Substituting equation (52) into equation (51), we obtain

e
η

H′ +
1

2nt1/ω
+ a1u0r􏼒 􏼓H􏼔 􏼕(1 + Hr)􏼚 􏼛

+ e
2η

H′ +
1

2nt1/ω
+ a1u0r􏼒 􏼓B􏼔 􏼕 � 0.

(53)

According to equation (53), we obtain an ODE as
follows:

H′ +
1

2nt1/ω
+ a1u0􏼒 􏼓H � 0. (54)

Solving equation (54), we have

H(t) � ke
(ω/2n(ω− 1))t(ω− 1)/ω − 􏽒 a2u0rdt

, (55)

where k is an arbitrary constant.
Substituting equation (55) into equation (52), we obtain

a solution of equation (51):

φ(r, t, θ) � 1 + e

􏼠ke
(ω/2n(ω− 1))t(ω− 1)/ω − 􏽒 a2u0rdt

􏼡r− 􏽚
t

0
⎡⎣a3k

3
e
3 ke

(ω/2n(ω− 1))t(ω− 1)/ω − 􏽒 a2u0rdt

􏼠 􏼡
+ a4ke

ke
(ω/2n(ω− 1))t(ω− 1)/ω − 􏽒 a2u0rdt

⎤⎦dt

.

(56)

Substituting equation (56) into equation (46), we obtain
an exact 1-decay mode solution of the 2D time-space CKP
equation as follows:

u(r, t, θ) �
12a3e

η η2r + ηη2r + ηrr + ηηrr − eηη2r( 􏼁

a1 1 + eη( )2
+ u0,

(57)

where

η � ke
(ω/2n(ω− 1))t(ω− 1)/ω− 􏽒 a2u0rdt

􏼠 􏼡r − 􏽚
t

0
a3k

3
e
3 (ω/2n(ω− 1))t(ω− 1)/ω− 􏽒 a2u0rdt􏼐 􏼑

+ a4ke
(ω/2n(ω− 1))t(ω− 1)/ω − 􏽒 a2u0rdt

􏼢 􏼣dt,

r �
p2R

α

Γ(1 + α)
, θ �

p3Θβ

Γ(1 + β)
, t �

p1T
ω

Γ(1 + ω)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(58)

4.2. Exact Analytic Solution for TSF-CMKP Equation.
Similarly, based on the fractional transforms of equation
(43), we have

zωϕ
zTω � p1

zϕ
zt

,

zαϕ
zRα � p2

zϕ
zr

,

zβϕ
zΘβ

� p3
zϕ
zθ

.

(59)

Substituting equation (59) into equation (42), we obtain

ϕt + a2ϕϕr + a3ϕrrr( 􏼁r +
1

2nt1/ω
ϕr +

1
2λn2t2/ω

ϕθθ � 0, (60)

where n � [Γ(1 + ω)]1/ω.
Using the generalized hyperbolic-function method, we

assume that solutions of equation (60) are the super position

of different powers of the sech function, tanh function, and
their combinations, i.e.,

ϕ(r, θ, t) � 􏽘
L

l�0
αl(r, θ, t)tanhl

[Ψ(r, θ, t)]

+ 􏽘

J

j�0
κj(r, θ, t)sech[Ψ(r, θ, t)]tanhj

[Ψ(r, θ, t)],

(61)

where αl, κj, and Ψ(r, θ, t) are all differentiable functions,
while L � 1 and J � 0 are determined via the balance of the
highest-order contributions in equation (60). Substituting
equation (61) into equation (60), along with the simplifi-
cations, we have

Ψ(r, θ, t) � β0(θ, t) + rβ1(θ, t),

α1 � α1(θ, t), κ0 � κ0(θ, t),
(62)
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where the functions β0 and β1 ≠ 0 are both differentiable;
supposing that α1 ≠ 0 and κ0 ≠ 0 and equating to zero
the coefficients of like powers of tanhΨ, sechΨ, etc., we
obtain

α21 � −
a3

a2
β21,

κ20 � −
− a3 + 4a2a3

2a2
2

β21,

α0 � 0,

β0 �
nλt1/ωβ1θ

2

2
−
λβ1θ

2t

2
,

β1 � const≠ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

α1 � iϖ
��
a3

a2

􏽲

β1, ϖ � ±1,

κ0 � iϖ

����������
− a3 + 4a2a3

2a2
2

􏽳

β1, ϖ � ±1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(64)

Using this algorithm, we obtain the exact analytical
solution of equation (60):

ϕ(r, θ, t) � iϖβ1

����������
− a3 + 4a2a3

2a2
2

􏽳

sech
nλt1/ωβ1θ

2

2
−
λβ1θ

2t

2
+ rβ1􏼠 􏼡⎡⎣

+

��
a3

a2

􏽲

tanh
nλt1/ωβ1θ

2

2
−
λβ1θ

2t

2
+ rβ1􏼠 􏼡􏼣,

(65)

where the independent variable (r, θ, t) satisfies the fol-
lowing transformation:

r �
p2R

α

Γ(1 + α)
,

θ �
p3Θβ

Γ(1 + β)
,

t �
p1T

ω

Γ(1 + ω)
.

(66)

5. The Property of the Ion-Acoustic Waves in
Ultrarelativistic Plasmas

In this section, in order to further understand the propa-
gation characteristics of ion-acoustic waves in astrophysical
ultrarelativistic degenerate plasmas (especially in white
dwarfs and neutron stars). Based on exact analytical solu-
tions, we have studied the effects of the phase speed λ and
electron number density (through β3) on the propagation of
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Figure 1: 'e values of the parameters are as follows. (a) β1 � 1.2, β3 � 1.4, ω � 1, and ϖ � 1. (b) β1 � 1.2, β3 � 1.6, ω � 1, and ϖ � 1. (c)
β1 � 1.2, β3 � 1.8, ω � 1, and ϖ � 1. (d) β1 � 1.2, β3 � 2, ω � 1, and ϖ � 1.
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Figure 3: 'e values of the parameters are as follows. (a) β1 � 1.2, λ � 1.3, ω � 1, and ϖ � 1. (b) β1 � 1.2, λ � 1.2, ω � 1, and ϖ � 1.
(c) β1 � 1.2, λ � 1.1, ω � 1, and ϖ � 1. (d) β1 � 1.2, λ � 1, ω � 1, and ϖ � 1.
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Figure 2: 'e values of the parameters are as follows. (a) β1 � 1.2, β3 � 1.4, ω � 1, and ϖ � 1. (b) β1 � 1.2, β3 � 1.6, ω � 1, and ϖ � 1.
(c) β1 � 1.2, β3 � 1.8, ω � 1, and ϖ � 1. (d) β1 � 1.2, β3 � 2, ω � 1, and ϖ � 1.
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ion-acoustic waves in astrophysical ultrarelativistic degen-
erate plasmas. In particular, due to the establishment of
fractional order models, we studied the effect of fractional
order (α, β,ω) on the propagation of ion-acoustic waves,
which is rare in previous studies.

5.1. Study of the Effects of Electron Number Density (through
β3) on Ion-Acoustic Waves Propagation. First, we take the
variable Tas the determined value and draw the figures of the
ion-acoustic waves under the axis of the independent var-
iables R and Θ.

As shown in Figure 1, within a certain value range, as the
value of β3 increases, the peak of the ion-acoustic wave
continuously decreases, and eventually the peak almost
disappears, and only a valley exists. As the value of β3 in-
creases, the amplitude of the ion-acoustic wave continues to
decrease, which indicates that the loudness of the ion-
acoustic wave continues to decrease. 'erefore, the plasma
systemmakes the ion-acoustic waves damp with the increase
of electron number density.

'en, we take the variableΘ as the determined value and
draw the figures of the ion-acoustic waves under the axis of
the independent variables R and T.

As shown in Figure 2, the ion-acoustic waves will un-
dergo radial displacement over time, which is ignored by the
one-dimensional model. With the increase of β3, the trend of
the peaks and troughs is the same as that shown in Figure 1.

Similarly, the ion-acoustic waves will decay with the increase
of β3.

5.2. Study of the Effects of the Phase Speed λ on Ion-Acoustic
Waves Propagation. As shown in Figures 3 and 4, it can be
concluded that within a certain value range, as the value of
the phase velocity λ decreases, the peak of the ion-acoustic
waves continuously decreases, and finally the peak almost
disappears, and only a trough exists, and the amplitude of
ion-acoustic waves is decreasing. Although the specific
change values are different, the trend of this change is similar
to the effect of the electron number density on the propa-
gation of ion-acoustic waves, which is precisely because of
σi � λ2 − β3, so the phase speed also affects the propagation
of ion-acoustic waves.

5.3. Study of the Effects of the Fractional Order Values on Ion-
Acoustic Waves Propagation. Taking the variables T and Θ
as definite values, Figure 5(a)–5(d) are, respectively, the
figures of ion-acoustic waves when the fractional order value
is 1, 1/2, 1/3, and1/4.

As shown in Figure 5, the properties of peaks, troughs,
and amplitudes of ion-acoustic waves are different under
different fractional orders, and Figure 5(b) with fractional
order value is 1/2, which is more special.

Next, we focus on the properties of ion-acoustic waves
when the fractional order is 1/2 and compare it with the case
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Figure 4: 'e values of the parameters are as follows. (a) β1 � 1.2, λ � 1.3, ω � 1, and ϖ � 1. (b) β1 � 1.2, λ � 1.2, ω � 1, and ϖ � 1.
(c) β1 � 1.2, λ � 1.1, ω � 1, and ϖ � 1. (d) β1 � 1.2, λ � 1, ω � 1, and ϖ � 1.
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Figure 5: 'e values of the parameters are as follows. (a) β1 � 1.2, β3 � 1.4, λ � 1.3, ω � 1, and ϖ � 1. (b) β1 � 1.2, β3 � 1.4, λ � 1.3, ω � 1,
and ϖ � 1. (c) β1 � 1.2, β3 � 1.4, λ � 1.3, ω � 1, and ϖ � 1. (d) β1 � 1.2, β3 � 1.4, λ � 1.3, ω � 1, and ϖ � 1.
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Figure 6: Continued.
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of integer order. Figure 6(a)–6(e) are all the figures when the
fractional order is 1/2, and Figure 6(f ) is the figure when the
fractional order is 1, i.e., the figure of integer order.

As shown in Figure 6, when the fractional order value is
1/2, as the β3 decreases, the peak first increases and then
decreases, the amplitude first increases and then decreases, and
the trough gradually decreases. When β3 � 2 and β3 � 2.4, the
peaks in the integer order figures gradually disappear and a
deep trough appears, but the peaks in the fractional figures do
not disappear but increase. 'is reflects the influence of the
fractional order values on the ion-acoustic waves in ultra-
relativistic plasmas, indicating that it is practical to study the
fractional order models in ion-acoustic waves.

6. Conclusion

In this paper, the 2D CKP equation and the 2D CMKP
equation in integer order are derived. Compared with the
model in one-dimensional plane geometry, the study of
models in nonplanar geometry is more in line with the
actual situation of the laboratory, space environment, and
so on. We extended these equations to the fractional order
domain for the first time and obtained the TSF-CKP
equation and the TSF-CMKP equation. Compared with
the integer order model, the fractional order model can

better describe the propagation of ion-acoustic waves in
ultrarelativistic plasmas and solve practical problems.
Based on the fractional order transformation, the 1-decay
mode solution for the TSF-CKP equation is obtained by
using the simplified homogeneous balance method, and
using the generalized hyperbolic-function method, the
exact analytic solution of TSF-CMKP equation is obtained.
Next, we use the obtained exact solution to analyze the
effects of the phase speed λ, electron number density
(through β3), and fractional order (α, β,ω) on the prop-
agation of ion-acoustic waves in ultrarelativistic plasmas.
In particular, the different effects of the fractional order of
1/2 and 1 on the propagation of ion-acoustic waves are
analyzed. 'ese results have potential value for studying
the propagation characteristics of ion-acoustic waves in
the ultrarelativistic plasmas.
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Figure 6: 'e values of the parameters are as follows. (a) β1 � 1.2, β3 � 1.4, ω � 1, and ϖ � 1. (b) β1 � 1.2, β3 � 1.6, ω � 1, and ϖ � 1.
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