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To solve the consensus problem of fractional-order multiagent systems with nonzero initial states, both open- and closed-loop
PDα-type fractional-order iterative learning control are presented. Considering the nonzero states, an initial state learning
mechanism is designed.*e finite time convergences of the proposed methods are discussed in detail and strictly proved by using
Lebesgue-p norm theory and fractional-order calculus. *e convergence conditions of the proposed algorithms are presented.
Finally, some simulations are applied to verify the effectiveness of the proposed methods.

1. Introduction

Fractional-order multiagent systems (FOMASs) is com-
posed of multiple agents, which can coordinate with each
other to perceive the external environment, and apply
fractional-order calculus principle. Due to the autonomy,
fault tolerance, flexibility, scalability, and collaboration
capabilities of the FOMASs, it can be applied to the in-
telligent environment perception and intelligent operation,
such as air formation control, traffic vehicle control, data
convergence, sensor networks, and so on [1–4]. In order to
realize the wide application of FOMASs, it is necessary to
design the coordinated control effectively, including con-
sensus control, formation control, coalescence control, and
rendezvous control. And the consensus problem is the
basic problem in FOMASs distributed coordination con-
trol. Its purpose is to design an appropriate distributed
consensus control protocol based on the neighbor states of
the agent and its own state information, so that the states of
all the agents converge to the same value at a specific
position or a certain moment.

*e consensus problem of FOMASs was studied in [5]
for the first time, in which the relationship between the
consensus problem of FOMAS and the number of agents

and fractional orders was discussed, and some control
strategies were given to improve the convergence speed of
the FOMASs. In the same year, Cao and Ren [6] also applied
the consensus theory to the formation control problem of
FOMASs. Since then, the research and application of
FOMASs consensus problems have been emerging, in-
cluding linear fractional-order multiagents [7–10] and
nonlinear fractional-order multiagents [11–14]. Song and
Cao [7] used the stability theory of FOSs and linear matrix
inequality to study the consensus problem of linear
FOMASs. And then they further considered the robust
consensus problem of linear FOMASs when the fractional
order satisfies α ∈ (0, 2)[8]. Yu et al. [9] used the algebraic
graph theory tool and the Lyapunov method to study the
consensus problem of nonlinear FOMASs with a leader-
following structure. Similarly, in [10, 11], the adaptive
control and the sampling data control were designed to solve
the consensus problem of nonlinear and linear FOMASs
with and without leader-following structure, and some
sufficient and necessary conditions related to fractional
order, coupling gain, and Laplacian matrix spectrum were
obtained to ensure that the system can achieve consensus.
For the study of nonlinear FOMASs, there are also literatures
[12–14].
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However, most of the research just consider the as-
ymptotic convergence problem of FOMASs, which means
the tracking errors of the fractional-order agents gradually
converge to zero as time increases. On some special occa-
sions, such as industrial automatic production lines, the
asymptotic convergence cannot meet the actual demands. As
we all know, fractional-order iterative learning control
(FOILC)methods for repetitive running systems can achieve
complete tracking problems in finite time [15,16]. In [17,18],
both distributed Dα- and PDα-type FOILC were proposed
and applied to linear FOMASs with fixed topology. Fur-
thermore, for the linear time-varying integer-order system,
Luo et al. proposed a FOILC framework with initial state
learning and presented sufficient and necessary conditions
for open-loop and closed-loop Dα-type FOILC. But for
FOMASs, it has not been researched using open and closed
FOILC.

In the literature [17], the consensus problem of FOMASs
is discussed using FOLIC. However, the authors just con-
sidered the zero initial states of FOMASs, which must ensure
the strict positioning of the initial state during the iteration
process. In this paper, for linear time-varying FOMASs with
fixing the initial states over the directed graph, we design
several fractional iterative learning controllers with the
initial states learning algorithms. *e contributions are
summarized as follows. First, considering the nonzero initial
state of FOMASs, we propose three different forms of
fractional-order iterative learning updating laws. Second, an
initial state learning algorithm together with the FOILC
updating laws is designed. Finally, the convergences of the
proposed algorithm are discussed and the convergence
conditions are presented. *e theoretical analysis and
simulation experiments verify the effectiveness of the pro-
posed method.*e results show that both the tracking errors
and the nonzero initial states can tend to zero in finite time
as the iterative number increases.

*e remainder of this paper is organized as follows.
Section 2 overviews the related theories related to this
article, including the graph theory, the definition of frac-
tional calculus, and the problem formulation. *e algo-
rithm design and analysis employing FOILC with initial
learning are discussed in Section 3. Section 4 demonstrates
the simulation results to verify the effectiveness of the
proposed methods. And briefly, conclusions are presented
in Section 5.

2. Preliminaries

In this part, first, we introduce some basic definitions,
lemmas, and properties, which will be used in the following
sections.

2.1. Graph 
eory. Consider N multiagents with the same
dynamic. *e direct graph G � V ,E,M{ } is used to describe
the information transfer between multiagents, where V �

v1, . . . , vN􏼈 􏼉 is the node set, E⊆V × V is the edge set, and
M � (aik)N×N is the adjacency matrix of the direct graph.
(k, i) ∈ E⊆V × V is a direct edge of the agents k and i. *e set

of neighbors of the ith agent is denoted by Ni � k ∈ V : (k,{

i) ∈ E}. *e matrix element aik > 0 represents node k passing
information to node i; otherwise, aik � 0. Here, the com-
munication topology graph has no self-loop phenomenon,
namely, ai,i � 0. D � diag di, i ∈ SN􏼈 􏼉 is defined as the de-
gree matrix, where di � 􏽐

N
k�1 ai,k, and L � D − M is the

Laplacian matrix of the direct graph.

2.2.
eNorm. In this paper, the vector Euclidian norm and
its induced matrix norm is defined as ‖ · ‖. Im ∈ Rm×m is the
identity matrix. Cm[0, T] is defined as a function set and the
mth derivative ofCm[0, T]∧ # is continuous over a finite time
interval [0, T]. R and N are the sets of real and natural
numbers. SN � 0, 1, . . . , N{ }. Denote the Kronecker product
by ⊗ , for some matrices A,B, C, and D, the following
properties will be satisfied such that

k(A⊗B) � kA⊗B � A⊗ kB, (1)

(A+B)⊗C � A⊗C + B⊗C, (2)

(A⊗B)(C⊗D) � AC⊗BD, (3)

‖A⊗B‖ � ‖A‖ · ‖B‖. (4)

Definition 1. Assuming the continuous vector function
f: [0, T]⟶ Rnf(t) � [f1(t), f2(t), . . . , fn(t)]T, the Leb-
esgue-p norm of f(t) is defined as

‖f(t)‖p � 􏽚
T

0
max
1≤i≤n

|f
i
(t)|􏼒 􏼓

p

dt􏼢 􏼣

(1/p)

, 1≤p<∞. (5)

Lemma 1 (see [19]). Assuming the functions g(t) ∈ Lq[0, T]

and h(t) ∈ Lp[0, T], then the convolution generalized Yong
inequality of the functions g(t) and h(t) is

‖(g∗h)(t)‖r ≤ ‖g(t)‖q‖h(t)‖p, (6)

where 1≤ p, q, r≤∞, (1/r) � (1/p) + (1/q) − 1, and
(g∗h)(t) � 􏽒

t

0 g(t − τ)h(τ)dτ is the convolution integral of
g(t) and h(t). In particular, if r � p, the inequality is con-
verted to ‖(g∗h)(t)‖p ≤ ‖g(t)‖1‖h(t)‖p.

2.3. Fractional Calculus

Definition 2 (see [21]). *e [21, 22] Riemann–Liouville
fractional integrals of f(t) with order α ∈ (0, 1) are defined
as

t0
D

− α
t

f(t) �
1
Γ(α)

􏽚
t

t0

(t − τ)
α− 1

f(τ)dτ, t> t0( 􏼁,

tD
− α
t f(t) �

1
Γ(α)

􏽚
T

t
(τ − t)

α− 1
f(τ)dτ, (t<T),

(7)

where Γ(·) is gamma function. *e left- and right-sided
Caputo derivatives are
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C
t0

D
α
t f(t) � t0

D
− ([α]− α+1)
t

d[α]+1

dt
[α]+1 f(t)􏼢 􏼣, t> t0( 􏼁,

C
t D

α
Tf(t) � tD

− ([α]− α+1)
T

d[α]+1

dt
[α]+1 f(t)􏼢 􏼣, (t<T),

(8)

where α ∈ R+ and [α] means the integral part of α.

Lemma 2 (see [20]). Suppose the functions f(t),g(t) are
continuous in [0, T], and C

t D
α
Tf(t), C

0 D
α
Tg(t)(t ∈ [0, T])

exist, then the fractional integration by parts is

􏽚
T

0

C
t D

α
Tf(t)􏼐 􏼑g(t)dt � 􏽚

T

0
f(t)

C
0 D

α
Tg(t)􏼐 􏼑dt. (9)

Definition 3 (see [20, 23]). *e Mittag–Leffler function can
be described as

Eα,β(z) � 􏽘
∞

k�0

z
k

Γ(αk + β)
α> 0, β> 0, z ∈ C

n×n
( 􏼁. (10)

Particularly, when β � 1, we can obtain

Eα,1(z) � Eα(z) � 􏽘
∞

k�0

z
k

Γ(αk + 1)
, α> 0, z ∈ C

n×n
( 􏼁.

(11)

Lemma 3 (see [20]). Let Φα,β(A, t) � tβ− 1Eα,β(Atα)t ∈
[0, +∞)α> 0, β> 0, z ∈ Cn×n; then we have
C
τD

1− α
t f(t)Φα,1(A, t − τ) � Φα,α(A, t − τ), 0< α< 1,

d
dτ
Φα,1(A, t − τ) � − Φα,α(A, t − τ)A, α> 0, A ∈ C

n×n
.

(12)

Lemma 4 (see [23]). For the initial value problem
C
t0

D
α
t x(t) � Ax(t) + Bu(t),

x t0( 􏼁 � x0.

⎧⎨

⎩ , A ∈ C
n×n

, B ∈ C
n×p

, 0< α< 1.

(13)

*e Volterra-type nonlinear integral equation can be
obtained as

x(t) � Φα,1(A, t)x0 + 􏽚
t

t0

Φα,α(A, t − τ)Bu(τ)dτ. (14)

Property 1. If f(t) ∈ C(t0,∞), then D1− αDαf(t) � f(1)(t),

α ∈ (0, 1), where f(1)(t) � (d/dt)f(t).

3. Problem Description

Considering N homogeneous fractional-order linear time-
delay MASs, it is assumed that each agent is completely
nonregular and has repeated operational characteristics in a

finite time interval. At the ith iteration, the dynamics of the
jth agent can be described as follows:

C
0 D

α
t xi,j(t) � Axi,j(t) + Bui,j(t),

yi,j(t) � Cxi,j(t),

⎧⎨

⎩ (15)

where t ∈ [0, T], C
0 D

α
t xi,j(t) is the left-sided α-order deriv-

ative of xi,j(t), α ∈ (0, 1). xi,j(t) ∈ Rm is the state vectors,
ui,j(t) ∈ Rm1 and yi,j(t) ∈ Rm2 are the input and output
vectors, respectively, and A,B,C are constant matrices with
m × m, m × m1, and m2 × m.

*e expected trajectory yd(t) on the finite-time interval
[0, T] is generated by the virtual leader and it is described as

C
0 D

α
t xd(t) � Axd(t) + Bud(t),

yd(t) � Cxd(t),

⎧⎨

⎩ (16)

where ud(t) is the desired control input, and it is continuous
and unique control input.

If the virtual leader is the agent 0, the new graph can be
expressed as G � 0∪V ,E, M􏼈 􏼉, where E and M are the new
edge set and the new adjacency matrix of G. *e purpose is
to design appropriate FOILC algorithms that enable each
agent in the network topology to track the leader’s trajectory
over a finite time interval.

ξi,j(t) is defined as the distributed information of the jth
agent, which is measured or received from other agents at
the ith iteration. Consider

ξi,j(t) � 􏽘
k∈Nj

aj,k yi,k(t) − yi,j(t)􏼐 􏼑 + sj yd(t) − yi,j(t)􏼐 􏼑,

(17)

where aj,k is the entry of adjacency matrixM, sj � 1 if the jth
agent can obtain the desired trajectory, and sj � 0 otherwise.

*e tracking error of the jth agent is defined as
ei,j(t) � yd(t) − yi,j(t). *en, equation (17) can be reor-
ganized as

ξi,j(t) � 􏽘
k∈Nj

aj,k ei,j(t) − ei,k(t)􏼐 􏼑 + sjei,j(t).
(18)

Define column stack vectors in the ith iteration

xi(t) � xi,1(t)
T

, xi,2(t)
T
, . . . , xi,N(t)

T
􏽨 􏽩

T
,

ei(t) � ei,1(t)
T
, ei,2(t)

T
, . . . , ei,N(t)

T
􏽨 􏽩

T
,

ui(t) � ui,1(t)
T
, ui,2(t)

T
, . . . ,ui,N(t)

T
􏽨 􏽩

T
,

ξi(t) � ξi,1(t)
T
, ξi,2(t)

T
, . . . , ξi,N(t)

T
􏽨 􏽩

T
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

According to (19), (18) can be reorganized in a compact
form

ξi(t) � (L + S)⊗ Im( 􏼁ei(t), (20)

where L is the Laplacian matrix of graphG, Im is unit matrix,
and S � diag sj, j ∈ SN􏽮 􏽯.
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Similarly, equation (15) can be rearranged as
C
0 D

α
t xi(t) � IN ⊗A( 􏼁xi(t) + IN ⊗B( 􏼁ui(t).

yi(t) � IN ⊗C( 􏼁xi(t).

⎧⎨

⎩ (21)

3.1. Open-Loop PDα-type FOILC. For FOMASs described by
(15), considering the nonzero initial state, the open-loop
PDα-type FOILC algorithm with initial state learning is
proposed as follows:

ui+1,j(t) � ui,j(t) + ΓP1ξi,j(t) + ΓD1
C
0 D

α
t ξi,j(t),

xi+1,j(0) � xi,j(0) + BΓD1ξi,j(0).

⎧⎨

⎩ (22)

Similar to (20), the updating law (22) can be rewritten as

ui+1(t) � ui(t) + (L + S)⊗ΓP1( 􏼁ei(t) + (L + S)⊗ΓD1( 􏼁
C
0 D

α
t ei(t),

xi+1(0) � xi(0) + (L + S)⊗BΓD1( 􏼁ei(0).

⎧⎨

⎩

(23)

In order to facilitate the convergence analysis of the
proposed methods, the following assumptions hold.

Assumption 1. CB is of full column rank.

Remark 1. In order to guarantee the flawless tracking
performance, a typical supposition, i.e., identical initiali-
zation condition, is needed to be made in the ILC design.
Remember that accurate tracking can only be accomplished
with perfect initial conditions.

Assumption 2 (see [17]). *e graph G contains a spanning
tree with the leader being the root.

Remark 2. *is supposition is a prerequisite for the
FOMASs consensus tracking problem, which means all
followers can receive the leader’s information directly or
indirectly. Otherwise, due to the absence of data to make
their control inputs accurate, the isolated agents cannot keep
track of the leader’s trajectory.

Theorem 1. Consider the FOMASs (15) and under the
communication graph G, if Assumption 1 and 2 are satisfied.
Distributed PDα-type updating rule (23) is applied to the
FOMASs (15). If the matrices A,B,C and the learning gains
ΓP1 and ΓD1 satisfy the following condition:

ρ1 � I − (L + S)⊗CBΓD1
����

���� + β< 1, (24)

where β � ‖IN ⊗ C‖‖(L + S)⊗ (BΓP1 + ABΓD1)‖‖Φα,α(IN ⊗
A, t)‖1, then limi⟶∞‖ei+1(t)‖p � 0. Namely, the output
yi(t) converges uniformly to the desired trajectory yd(t) as
i⟶∞.

Proof. *e convergence discussed is as follows.
Based on Lemma 4, we can write the FOMASs (15) as

follows:

xi(t) � Φα,1 IN ⊗A, t( 􏼁xi(0)

+ 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 IN ⊗B( 􏼁ui(τ)dτ.

(25)

According to equalities (21), (23), and (25), we can
obtain

ei+1(t) � 1N ⊗ yd(t) − yi+1(t)

� 1N ⊗ yd(t) − yi(t)( 􏼁 − yi+1(t) − yi(t)( 􏼁

� ei(t) − IN ⊗C( 􏼁 xi+1(t) − xi(t)( 􏼁

� ei(t) − IN ⊗C( 􏼁Φα,1 IN ⊗A, t( 􏼁 xi+1(0) − xi(0)( 􏼁

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 IN ⊗B( 􏼁 ui+1(τ) − ui(τ)( 􏼁dτ

� ei(t) − IN ⊗C( 􏼁Φα,1 IN ⊗A, t( 􏼁 (L + S)⊗BΓD1( 􏼁ei(0)

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 IN ⊗B( 􏼁 (L + S)⊗ ΓP1( 􏼁ei(τ)dτ

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 IN ⊗B( 􏼁 (L + S)⊗ ΓD1( 􏼁

C
0 D

α
Tei(t)dτ

� ei(t) − IN ⊗C( 􏼁Φα,1 IN ⊗A, t( 􏼁 (L + S)⊗BΓD1( 􏼁ei(0)

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓP1( 􏼁ei(τ)dτ

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁

C
0 D

α
Tei(τ)dτ

(26)
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where 1(·) is a vector in which all entries are 1. From Lemma 2 and 3, we can see that

􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁

C
0 D

α
t ei(t)dτ

� 􏽚
t

0

C
τ D

1− α
t Φα,1 IN ⊗A, t − τ( 􏼁􏼐 􏼑 (L + S)⊗BΓD1( 􏼁

C
0 D

α
t ei(t)dτ

� 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁

C
0 D

1− α
t

C
0 D

α
t ei(t)􏼐 􏼑dτ

� 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁ei

′(τ)dτ

� 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁dei(τ)

� Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁ei(τ)|
t
0

− 􏽚
t

0

d
dτ
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD1( 􏼁􏼐 􏼑ei(τ)dτ

� Φα,1 IN ⊗A, 0( 􏼁 (L + S)⊗BΓD1( 􏼁ei(t)

− Φα,1 IN ⊗A, t( 􏼁 (L + S)⊗BΓD1( 􏼁ei(0)

+ 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 IN ⊗A( 􏼁 IN ⊗B( 􏼁 (L + S)⊗ΓD1( 􏼁ei(τ)dτ

� (L + S)⊗BΓD1( 􏼁ei(t) − Φα,1 IN ⊗A, t( 􏼁 (L + S)⊗BΓD1( 􏼁ei(0)

+ 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗ABΓD1( 􏼁ei(τ)dτ.

(27)

Taking (27) into (26), we further get

ei+1(t) � (I − IN ⊗C( 􏼁 (L + S)⊗BΓD1( 􏼁ei(t)

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓP1( 􏼁ei(τ)dτ

− IN ⊗C( 􏼁 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗ABΓD1( 􏼁ei(τ)dτ

� I − (L + S)⊗CBΓD1( 􏼁ei(t) − IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗ BΓP1 + ABΓD1( 􏼁( 􏼁ei(τ)dτ.

(28)

According to Lemma 1, taking Lebesgue-p norm on both
sides of (28), we achieve

ei+1(t)
����

����p
≤ I − (L + S)⊗CBΓD1

����
���� + β􏼐 􏼑 ei(t)

����
����p

� ρ1 ei(t)
����

����p
,

(29)

where

β � IN ⊗C
����

���� (L + S)⊗ BΓP1 + ABΓD1( 􏼁
����

���� Φα,α IN ⊗A, t( 􏼁
����

����1.

(30)

Recalling the condition of ρ< 1, it deduces that

ei+1(t)
����

����p
≤ ρ1 ei(t)

����
����p
≤ ρi

1 e1(t)
����

����p
. (31)

So, as the iterations number increases, i.e., i⟶∞, we
obtain

lim
i⟶∞

ei+1(t)
����

����p
� 0. (32)

It shows that the tracking errors of all the agents tend to
reach zero in finite time when i⟶∞. *e proof is
completed. When ΓP1 � 0, the open-loop PDα-type frac-
tional-order algorithm degenerates into the Dα-type frac-
tional-order algorithm, which has the following form:
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ui+1(t) � ui(t) + (L + S)⊗ ΓD1( 􏼁e(α)
i (t). (33)

*us, the following corollary can be obtained. □

Corollary 1. Consider the FOMASs (15) and under the
communication graphG, if Assumptions 1 and 2 are satisfied.
Distributed Dα-type updating rule (33) is applied to the
FOMASs (15). Assuming that

I − (L + S)⊗CBΓD1
����

���� + β0 < 1 (34)

holds for all [0, T], where β0 � ‖IN ⊗C‖‖(L + S)⊗
ABΓD1‖‖Φα,α(IN ⊗A, t)‖1, then limi⟶∞‖ei+1(t)‖p � 0.
Namely, the output yi(t) converges uniformly to the desired
trajectory yd(t) as i⟶∞.

Proof. *e process of proof is similar to *eorem 1. □

3.2. Closed-Loop PDα -Type FOILC. *e closed-loop PDα

-type FOILC updating law for the FOMASs (15) is designed
as follows:

ui+1,j(t) � ui,j(t) + ΓP2ξi+1,j(t) + ΓD2
C
0 D

α
t ξi+1,j(t),

xi+1,j(0) � xi,j(0) + BΓD2ξi+1,j(0).

⎧⎨

⎩

(35)

Similar to (23), the updating law (35) can be rewritten by
the Kronecker product as

ui+1(t) � ui(t) + (L + S)⊗ ΓP2( 􏼁ei+1(t) + (L + S)⊗ ΓD2( 􏼁
C
0 D

α
t ei+1(t),

xi+1(0) � xi(0) + (L + S)⊗BΓD2( 􏼁ei+1(0),

⎧⎨

⎩ (36)

where L and S are the same as defined in (20).

Theorem 2. Consider the FOMASs (15) under a directed
graph G, if Assumptions 1 and 2 hold. 
e closed-loop
PDα-type FOILC described in (36) is applied for the system
(15). If learning gains ΓP2 and ΓD2 satisfy

0< ρ2 �
1

I +(L + S)⊗CBΓD2( 􏼁
− 1

�����

�����
− c⎛⎝ ⎞⎠

− 1

< 1, (37)

where

c � IN ⊗C
����

���� (L + S)⊗ BΓP2 + ABΓD2( 􏼁
����

���� Φα,α IN ⊗A, t( 􏼁
����

����1,

(38)

then limi⟶∞‖ei+1(t)‖p � 0. Hence, the system outputs yi(t)

can fully track the desired trajectory yd(t) in a finite time
when i⟶∞ for all t ∈ [0, T]; that is, limi⟶∞yi(t) �

yd(t), (t ∈ [0, T]).

Proof. From (15) and (36), we can get

ei+1(t) � ei(t) − IN ⊗C( 􏼁 xi+1(t) − xi(t)( 􏼁 � ei(t) − IN ⊗C( 􏼁Φα,1 IN ⊗A, t( 􏼁 xi+1(0) − xi(0)( 􏼁

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 IN ⊗B( 􏼁 ui+1(τ) − ui(τ)( 􏼁dτ

� ei(t) − IN ⊗C( 􏼁Φα,1 IN ⊗A, t( 􏼁 (L + S)⊗BΓD2( 􏼁ei+1(0)

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓP2( 􏼁ei+1(τ)dτ

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD2( 􏼁

C
0 D

α
t ei+1(t)dτ,

(39)

where 1(·) is a vector in which all entries are 1. Similar to the derivation of (27), one can conclude that

􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓD2( 􏼁

C
0 D

α
t ei+1(t)dτ � (L + S)⊗BΓD2( 􏼁ei+1(t) − Φα,1 IN ⊗A, t( 􏼁 (L + S)⊗BΓD2( 􏼁ei+1(0)

+ 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗ABΓD2( 􏼁ei+1(τ)dτ.

(40)
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Substituting (40) into (39), it yields

ei+1(t) � ei(t) − IN ⊗C( 􏼁 (L + S)⊗BΓD2( 􏼁ei+1(t)

− IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗BΓP2( 􏼁ei+1(τ)dτ

− IN ⊗C( 􏼁 􏽚
t

0
Φα,1 IN ⊗A, t − τ( 􏼁 (L + S)⊗ABΓD2( 􏼁ei+1(τ)dτ

� ei(t) − (L + S)⊗CBΓD2( 􏼁ei+1(τ) − IN ⊗C( 􏼁

· 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)⊗ BΓP2 + ABΓD2( 􏼁( 􏼁ei+1(τ)dτ.

(41)

*erefore,

I +(L + S)⊗CBΓD2( 􏼁ei+1(t)

� ei(t) − IN ⊗C( 􏼁 􏽚
t

0
Φα,α IN ⊗A, t − τ( 􏼁 (L + S)(

⊗ BΓP2 + ABΓD2( 􏼁􏼁ei+1(τ)dτ.

(42)

According to Assumption 1, one can find a feedback gain
matrix of differentiation ΓD2 such that I + (L + S)⊗CBΓD2 is
a nonsingular matrix. *erefore, premultiplying by (I + (L+

S)⊗CBΓD2)
− 1 on both sides of (42), taking Lebesgue-p

norm, and adopting the generalized Young inequality of
convolution integral, it can be concluded that

ei+1(t)
����

����p
≤ I +(L + S)⊗CBΓD2( 􏼁

− 1
�����

����� ei(t)
����

����p
+ λ ei+1(t)

����
����p

􏼒 􏼓,

(43)

where

c � IN ⊗C
����

���� (L + S)⊗ BΓP2 + ABΓD2( 􏼁
����

���� Φα,α IN ⊗A, t( 􏼁
����

����1.

(44)

Further

ei+1(t)
����

����p
≤

1
I +(L + S)⊗CBΓD2( 􏼁

− 1
�����

�����
− c⎛⎝ ⎞⎠

− 1

ei(t)
����

����p

� ρ2 ei(t)
����

����p
.

(45)

Recalling the condition of ρ2 < 1, according to inequality
(43), it is deduced that

ei+1(t)
����

����p
≤ ρ2 ei(t)

����
����p
≤ ρi

2 e1(t)
����

����p
. (46)

From (45), when the number of iterations is large
enough, i.e., i⟶∞, we obtain

lim
i⟶∞

ei+1(t)
����

����p
⟶ 0. (47)

So, it can be proved that the errors of all the fractional-
order agents tend to zero as i⟶∞. For the FOMASs (15),
ifΓP2 � 0 in (37), then the PDα -type FOILC will become
Dα-type FOILC.

ui+1(t) � ui(t) + (L + S)⊗ ΓD2( 􏼁e(α)
i+1(t). (48)

*us, according to *eorem 2, we can obtain a corollary
as follows. □

Corollary 2. For the FOMASs (15) under a directed graph G,
suppose Assumptions 1 and 2 hold. If the learning gain ΓD2 in
(48) is chosen such that

1
I +(L + S)⊗CBΓD2( 􏼁

− 1
�����

�����
− c0

⎛⎝ ⎞⎠

− 1

< 1, (49)

where

c0 � IN ⊗C
����

���� (L + S)⊗ABΓD2
����

���� Φα,α IN ⊗A, t( 􏼁
����

����1. (50)


en the tracking error satisfies limi⟶∞‖ei+1(t)‖p � 0.
Namely, the outputs yi(t) of the FOMASs (15) converge to the
desired trajectory yd(t) uniformly in a finite time when
i⟶∞, i.e., limi⟶∞yi(t) � yd(t), (t ∈ [0, T]).

Proof. *e proof process of the corollary is similar to
*eorem 2. □

3.3. Open-Closed-Loop PDα-Type FOILC. Considering the
FOMASs (15), an open-closed-loop PDα-type FOILC is
designed as

ui+1,j(t) � ui,j(t) + ΓP1ξi,j(t) + ΓD1
C
0 D

α
t ξi,j(t) + ΓP2ξi+1,j(t) + ΓD2

C
0 D

α
t ξi+1,j(t),

xi+1,j(0) � xi,j(0) + B ΓD1ξi,j(0) + ΓD2ξi+1,j(0)􏼐 􏼑.

⎧⎪⎨

⎪⎩
(51)
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Similar to (25), the updating law (51) can be rewritten by
the Kronecker product as

ui+1(t) � ui(t) + (L + S)⊗ ΓP1( 􏼁ei(t) + (L + S)⊗ ΓD1( 􏼁
C
0 D

α
t ei(t) + (L + S)⊗ ΓP2( 􏼁ei+1(t) + (L + S)⊗ ΓD2( 􏼁

C
0 D

α
t ei+1(t),

xi+1(0) � xi(0) +(L + S)⊗B ΓD1ei(0) + ΓD2ei+1(0)( 􏼁,

⎧⎨

⎩

(52)

where L and S are the same as defined in (20) and (36).

Theorem 3. Consider the FOMASs (15) under a directed
graph G, if Assumptions 1 and 2 hold. Let the distributed
closed-loop PDα-type FOILC described in (52) be applied for
the system with learning gains ΓP1ΓP2,ΓD1, and ΓD2 satisfying

ρ2ρ1 < 1, (53)

where

ρ1 � I − (L + S)⊗CBΓD1
����

���� + β,

ρ2 �
1

I +(L + S)⊗CBΓD2( 􏼁
− 1

�����

�����
− c⎛⎝ ⎞⎠

− 1

> 0,

β � IN ⊗C
����

���� (L + S)⊗ BΓP1 + ABΓD1( 􏼁
����

���� Φα,α IN ⊗A, t( 􏼁
����

����1

c � IN ⊗C
����

���� (L + S)⊗ BΓP2 + ABΓD2( 􏼁
����

���� Φα,α IN ⊗A, t( 􏼁
����

����1.

(54)


en limi⟶∞‖ei+1(t)‖p � 0. 
us, the system outputs yi(t) of
the fractional-order agents converge to yd(t) when i⟶∞
for all t ∈ [0, T]; that is, limi⟶∞yi(t) � yd(t), (t ∈ [0, T]).

Remark 3. According to the conditions of*eorems 1 and 2,
in the sense of Lebesgue-p norm, the convergence conditions
of the proposed algorithms are determined by the learning
gain and the properties of the system.

4. Simulation

In this section, five fractional-order agents are considered,
including a virtual leader and four followers. *e directed
fixed communication topology among agents is shown in
Figure 1, where the fractional-order agents are labeled with
0, 1, 2, 3, and 4, respectively. *e virtual leader has directed
edges to agents 1 and 3.

From Figure 1, the Laplacian matrix L and the infor-
mation transfer matrix S of the leader to the followers can be
obtained as follows:

L �

1 − 1 0 0

− 1 2 0 − 1

0 0 1 − 1

0 − 1 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S � diag(1, 0, 1, 0).

(55)

*e dynamic model of the jth agent is described as

D
αxj(t) �

0.4 2

5 − 6
􏼢 􏼣xj(t) +

1 0

0 1
􏼢 􏼣uj(t),

yj(t) �
0.85 0

0 1
􏼢 􏼣xj(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

Here, t ∈ [0, 1], α � 0.75.
Let the virtual leader be the given expected reference

trajectory

yd1 � t
2

+ sin(2πt), (t ∈ [0, 1]),

yd2 � sin(2πt), (t ∈ [0, 1]).

⎧⎨

⎩ (57)

In the following simulations, the initial states of the
followers at first iteration are set as x0,1 � 0.1 0.3􏼂 􏼃

T, x0,2 �

− 0.5 − 0.7􏼂 􏼃
T, x0,3 � 0.2 0.4􏼂 􏼃

T , and x0,4 � − 0.6 0.8􏼂 􏼃
T .

*e control objective of the initial state is xd � 0 0􏼂 􏼃
T and

the initial control is set as u0,j(t) � 0, j � 1, 2, 3, 4 for all
agents.

Case 1. Open-loop PDα-type: the open-loop PDα-type is
applied to the multiagent system (1). Based on *eorem 1,

the gains are selected as ΓP1 �
0.4 0
0 0.6􏼢 􏼣,ΓD1 �

0.2 0
0 0.3􏼢 􏼣.

*us, we can calculate ρ1 � ‖I − ((L + D)⊗ ΓD1CB)‖ + β1 �

0.9421< 1, which satisfies the convergence condition (26).
*e simulation results are shown in Figures 2–4. *e

initial states of the followers at the first iteration are x0,1 �

0.1 0.3􏼂 􏼃
T, x0,2 � − 0.5 − 0.7􏼂 􏼃

T, x0,3 � 0.2 0.4􏼂 􏼃
T, and

x0,4 � − 0.6 0.8􏼂 􏼃
T. And the desired initial states of the four

followers are zero; that is x0,j � 0 0􏼂 􏼃
T for j� 1, 2, 3, 4.

Figure 2 shows the initial state learning process. It can be
seen that the initial states x1 and x2 of the multiagent at time
zero have a large error from the desired state at the be-
ginning of the iteration, because the initial control is set as
u0,j(t) � 0, j � 1, 2, 3, 4 for all agents. But as the number of
iterations increases, the errors of the initial states gradually
decrease. When the number of iterations reaches the 40th
iteration, the initial state of x2 also converges to the desired
initial state. And when the number of iterations reaches the
60th iteration, the initial state of x1 converges to the desired
initial state. Figure 3 shows the output tracking results of y1
and y2. It can be seen that each subsystem does not track the
desired trajectory at the 5th iteration. With the increase of
the number of iterations, when it reaches the 100th iteration,
both the outputs y1 and y2 of all the agents fully track the
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Figure 1: Communication graph among agents in the network.
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Figure 2: Initial state profile vs. iteration number by open-loop PDα-type. (a) Initial state learning of x1. (b) Initial state learning of x2.
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Figure 3: *e tracking results of all agents at different iterations by open-loop PDα-type. (a) Output y1 at the 5th iteration. (b) Output y1 at
the 100th iteration. (c) Output y2 at the 5th iteration. (d) Output y2 at the 100th iteration.

Complexity 9



desired trajectory over the time period [0, 1]. We define the
errors in the 2-norm sense at the ith iteration as
‖yd,1 − y1i,j‖2 and ‖yd,2 − y2i,j‖ for j � 1, 2, 3, 4. Figure 4
depicts the tracking errors in each iteration; it shows that the
tracking errors converge to zero as the iteration number
increases. By the 60th iteration, the tracking errors of y1 of
the four followers in the 2-norm sense are 0.000456,
0.000862, 0.000351, and 0.000785, respectively. By the 80th
iteration, the tracking errors of y2 of the four followers in the
2-norm sense are 0.000648, 0.000978, 0.000596, and
0.000895, respectively.

Case 2. Closed-loop PDα-type: the initial inputs and initial
state of the multiagents are the same as Case 1. Based on
*eorem 2, we select the learning gains as ΓP2 �

0.504 0
0 0.396􏼢 􏼣,ΓD2 �

6 0
0 7􏼢 􏼣. Clearly, ρ2 � (1/‖I + H⊗ ΓD2

CB‖) � 0.2146< 1; thus, the convergence condition can be
satisfied.

Figures 5–7 show the trajectory tracking performances
employing the closed-loop PDα-type ILC scheme. As it
can be seen from Figure 5, similar to the simulation results
of Case 1, the initial state of the agents tends to reach the

desired initial state as the iteration number increases.
Figure 6 shows the outputs y1 and y2 with closed-loop
PDα-type ILC at the 5th and 30th iterations. From Fig-
ure 6, the trajectories y1 and y2 of the followers can track
the desired trajectory generated by the leader as the it-
eration number increases over the time period [0, 1].
Figure 7 shows the tracking errors of y1 and y2 of the four
followers in 2-norm sense with the number of iterations. It
can be seen that the errors gradually decrease and ap-
proach zero as the number of iteration increases. By the
30th iteration, the tracking errors of y1 of the four fol-
lowers in 2-norm sense are 0.000279, 0.000648, 0.000324,
and 0.000472. *e tracking errors of y2 of the four fol-
lowers in 2-norm sense are, respectively, 0.000187,
0.000547, 0.000298, and 0.000385. Besides, compared with
the open-loop PDα-type, the closed-loop FOILC performs
better and has faster convergence speed than the open-
loop one.

Case 3. Open-closed-loop PDα-type
In this simulation, the initial states and inputs are the

same as Case 1 and Case 2. According to *eorem 3, the
learning gain matrix can be obtained as follows:
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Figure 4: *e 2-norm of tracking errors for all agents in each interaction by open-loop PDα-type. (a) Tracking errors of y1 with iterations.
(b) Tracking errors of y2 with iterations.
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Figure 5: Initial state profile vs. iteration number by closed-loop PDα-type. (a) Initial state learning of x1. (b) Initial state learning of x2.
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ΓP1 �

0.616 0

0 0.484

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

ΓD1 �

4.5 0

0 1.8
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

ΓP2 �
0.5 0

0 0.4
⎡⎢⎢⎣ ⎤⎥⎥⎦,

ΓD2 �
6 0

0 7
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(58)
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Figure 6: *e tracking results of all agents at different iterations by closed-loop PDα-type. (a) Trajectories of y1 at the 5th iteration. (b)
Trajectories of y1 at the 30th iteration. (c) Trajectories of y2 at the 5th iteration. (d) Trajectories of y2 at the 30th iteration.
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Figure 7: *e 2-norm of tracking errors for all agents in each interaction by closed-loop PDα-type. (a) Tracking errors of y1 with iterations.
(b) Tracking errors of y2 with iterations.
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Clearly, ρ2ρ1 � 0.245< 1; thus, the convergence condition in
*eorem 3 can be satisfied.

*e simulation results with open-closed-loop PDα-type
FOILC are presented in Figures 8–10. *e results are
similar to those of the open-loop and closed-loop PDα-type
FOILC. From the results, both the initial states and the

outputs can converge to the desired values. And we can
conclude that the proposed FOILC scheme with initial
state learning works well as the iteration number in-
creases. Figure 9 shows the output tracking results of y1
and y2. It can be seen that the followers can fully track the
desired trajectory as the iteration increases over the time
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Figure 8: Initial state profile vs. iteration number by open-closed-loop PDα-type. (a) Initial state learning of x1. (b) Initial state learning of
x2.
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Figure 9:*e tracking results of all agents at different iterations by open-closed-loop PDα-type. (a) Trajectories of y1 at the 5th iteration. (b)
Trajectories of y1 at the 30th iteration. (c) Trajectories of y2 at the 5th iteration. (d) Trajectories of y2 at the 30th iteration.
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period [0, 1].In addition, compared with open-loop PDα-
type FOILC and closed-loop PDα-type, applying open-
closed-loop PDα-type FOILC has better performance in
the initial state and for the outputs.

5. Conclusion

In this paper, we have discussed the consensus problem
with fixed communication graph, which has been
addressed for fractional-order multiagent systems with
initial state shift. Considering the initial state learning
mechanism, open-loop PDα type, closed-loop PDα type,
and open-closed-loop PDα type FOILC are proposed. *e
theoretical convergence of the proposed algorithm is an-
alyzed and sufficient conditions are presented. *eoretical
analysis shows that the proposed algorithms can guarantee
the tracking errors of all the agents and the errors in the
initial state tend to be zero in a finite time as the number of
iterations increases. Finally, some simulation examples are
used to validate the effectiveness. As a recommendation for
the future, the convergence and robustness of fractional-
order nonlinear systems can be studied by using the
proposed method of this paper.
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