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Residential load forecasting is important for many entities in the electricity market, but the load profile of single residence shows
more volatilities and uncertainties. Due to the difficulty in producing reliable point forecasts, probabilistic load forecasting
becomes more popular as a result of catching the volatility and uncertainty by intervals, density, or quantiles. In this paper, we
propose a unified quantile regression deep neural network with time-cognition for tackling this challenging issue. At first, a
convolutional neural network with multiscale convolution is devised for extracting more behavioral features from the historical
load sequence. In addition, a novel periodical coding method marks the model to enhance its ability of capturing regular load
pattern. Then, features generated from both subnetworks are fused and fed into the forecasting model with an end-to-end manner.
Besides, a globally differentiable quantile loss function constrains the whole network for training. At last, forecasts of multiple
quantiles are directly generated in one shot. With ablation experiments, the proposed model achieved the best results in the AQS,
AACE, and inversion error, and especially the average of the AACE is grown by 34.71%, 75.22%, and 32.44% compared with
QGBRT, QCNN, and QLSTM, respectively, indicating that our method has excellent reliability and robustness rather than the
state-of-the-art models obviously. Meanwhile, great performances of efficient time response demonstrate that our proposed work
has promising prospects in practical applications.

1. Introduction

The power system is one of the most complex man-made
systems, and electric load forecasting plays a vital role in
power system planning and operations, revenue projection,
rate design, electricity market trading, and so forth. Electric
load forecasting categories can be simply summarized as
follows: very short-term load forecasting (VSTLF), short-
term load forecasting (STLF), medium-term load forecasting
(MTLF), and long-term load forecasting (LTLF). STLF
studies data with hourly temporal resolution and has
forecasting horizon from hours to days [1]. STLF gives great
significances to power systems in providing strategies,

reliability analysis, interchange evaluation, security assess-
ment, and spot price calculation [2].

Recently, a mass of smart meters has been installed
around the globe, producing plenty of fine-grained electric
consumption data from time to space. High-resolution data
from smart meters provide a wealth of information about
consumers’ power consumption behaviors and lifestyles,
creating opportunities for accurate residential load fore-
casting. Residential load forecasting is becoming more and
more important for many entities in the electricity market.
For consumers, residential load forecasts can be used as the
input of home energy management systems (HEMS) to
decrease the cost and expense [3]. In the future electricity
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market, it also has potentials in the peer-to-peer (P2P)
market [4, 5]. For retailers, residential load forecasting serves
for pricing, purchasing, and hedging decisions and maxi-
mizes retailers’ profits [6]. To aggregators, it is utilized to
produce more accurate aggregate load forecasts by clustering
or other methods [7, 8]. In distribution system operators
(DSO), depending on effective residential load forecasting,
peak load reduction can be achieved by flexible use of the
energy storage (ES) system or intelligent demand response
(DR) technology. Accurate load forecasting for residential
customers is also able to help DSO to locate the best cus-
tomer groups who most likely participate in demand re-
sponse planning, which reflects great significances for
supplying load-balancing reserves and hedging market costs.

Traditional load forecasting concentrates on various ag-
gregation levels, such as system, feeder, and regional level.
Loads of these levels filter out many random fluctuations;
hence, the profile is smoother and more regular. On the
contrary, due to the difference of customers’ lifestyle and the
randomness of behavior, the load profile of single residence
shows more volatility and uncertainty and the profile char-
acteristics of different customers also provide great diversity.

Normalized hourly profiles of three different level loads
are shown in Figure 1, illustrating that residential load
profile presents more volatility compared with higher-level
load profile. Therefore, residential load forecasting is more
challenging, and models that perform well at the aggregate
level are no longer suitable for residential level.

Most existing literatures focus on point forecasting
techniques, attempting to forecast the expected value of
future load. However, residential load is far more volatile
and uncertain than aggregate level; therefore, highly reliable
point forecasts are difficult to produce. As a result, more and
more decision processes begin to rely on probabilistic load
forecasting (PLF), which contains more probabilistic in-
formation and generates output in the form of intervals,
density, or quantiles.

This paper proposed a unified quantile regression deep
neural network with time-cognition to produce probabilistic
residential load forecasting. At first, a deep neural network
with multiscale convolution is proposed for extracting more
discriminative features from the historical load sequence. In
addition, a periodical coding method is devised to mark the
model for capturing regular periodical load pattern. Besides,
the outputs of both branches are fused and inputted into the
proposed model for residential load forecasting with an end-
to-end manner. Meanwhile, we introduce a globally dif-
ferentiable quantile loss function to constrain the whole
network in the training process. At last, forecasts of multiple
quantiles are directly generated in one shoot at the end of the
neural network. The main contributions of the paper are
summarized as follows:

(i) A unified quantile regression deep neural network
with time-cognition is proposed for tackling the
probabilistic residential load forecasting problem

(ii) Comprehensive and extensive experiments are
conducted for inspecting reliability, sharpness, ro-
bustness, and efficiency of the proposed method
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(iii) We introduce the quantile inversion error as a
complementary metric to detect the robustness of
the quantile regression model

To the best of our knowledge, this is the first paper that
presents the quantile loss supervised CNN-based model with
time-cognition for probabilistic residential load forecasting.
In addition, the quantile inversion error is adopted to verify
the robustness particularly.

This paper will be structured as follows: Section 2
provides the background of the load forecasting community.
Section 3 defines the problem and describes the details of our
proposed method. Section 4 introduces the experiment
setups. Section 5 reports the experimental results and further
discusses some insights of the proposed method. The con-
clusions are drawn in Section 6.

2. Related Work

Load forecasting approaches have been extensively and
intensively studied. The present works mostly pay more
attentions on different aggregation levels for better fore-
casting, such as system, feeder, and regional level. This
strategy could remove uncertainties present in residential
load behaviors as far as possible so that the prediction for
clusters is facilitated with a more regular pattern. In contrast,
for the issue of forecasting to individual residences, con-
ventional models inevitability suffer from customers’ life-
style and the randomness of behaviors resulting in providing
poor performances in load forecasting.

Some research studies have examined popular models
specialized in the aggregation level for residential load
forecasting. Humeau et al. [9] investigated the application of
linear regression (LR), multilayer perceptron (MLP), and
support-vector machine for regression (SVR) in residential
load forecasting and found that LR has higher accuracy in
single residential level, while SVR performs better in ag-
gregation level. In the case of applying a specific clustering
algorithm, SVR outperforms LR when the number of the
cluster is greater than 32 houses. Edwards et al. [10] eval-
uated familiar machine learning algorithms focusing on
building load forecasting to residence, including LR, feed-
forward neural networks (FFNN), SVR, and their variants.
Experiments showed that they are generally uncomfortable
on residential data, but least-squares support-vector ma-
chines (LS-SVM) performs well. Ahmadiahangar et al. [11]
imported the generalized linear mixed-effects (GLME)
model to generate load patterns for forecasting the potential
flexibility of residential customers. The advantage of this
method is that it can be used, in on-line and real-time
methods, in a wide range of control approaches.

Recent research studies are no longer limited to traditional
regression or time-series methods, but rather follow designing
more sophisticated models to capture advanced features re-
lated to residential behaviors. Tascikaraoglu and Sanandaji
[12] proposed a new forecasting approach that combines
compressive sensing (CS) and data decomposition, providing
a framework which facilitates exploiting the existing low-di-
mensional structures governing the interactions among
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FiGure 1: Three normalized hourly profiles of different level loads including (a) residential level, (b) feeder level, and (c) system level.

residences. Yu et al. [13] utilized sparse coding features in load
forecasting for individual households and provided a large-
scale evaluation on the proposed method with several classical
models. Experiments showed that sparse coding features are
efficient in decreasing the forecasting error of next-day and
next-week total load. Similarly, Pan et al. [14] also relied on the
sparse characteristics in residential loads. A method based on
least absolute shrinkage and selection (LASSO) is proposed to
adaptively explore sparsity in historical data and leverage
predictive relationship among different residences, and its low
computational complexity and high accuracy are verified by
experiments. Recently, deep learning (DL) has become a
research hotspot of artificial intelligence applications in many
fields due to its powerful feature extraction and fitting ca-
pabilities [15]. Abbas et al. [16] proposed a unique and im-
proved nonlinear autoregressive neural network with external
input- (NARXNN-) based recurrent load forecaster using a
lighting search algorithm (LSA). Experiment was conducted
on substation-level aggregated residential load data, achieving
16%-20% improvement of precision in comparison with
present computational techniques. Long short-term memory
(LSTM) and gated recurrent unit (GRU), variants of the re-
current neural network (RNN), are introduced to resolve the
individual residential load forecasting problem in [17-19],
reflecting remarkable predominance in forecasting accuracy
over traditional machine learning algorithms and fully con-
nected neural networks.

Great literatures focus on point forecasting techniques,
attempting to predict the possible consumption in future.

However, residential load is far more volatile and uncertain
than aggregate level, providing difficulties to get high reliable
point forecasts. Consequently, more and more algorithms of
load forecasting prefer probabilistic load forecasting that
provides probabilistic results in the form of intervals,
density, or quantiles. Probabilistic load forecasting methods
can be divided into three categories according to different
generation processes:

(i) Multiple scenarios are devised and fed into point
forecasting models, and then outputs of these point
forecasts are generated to form a probabilistic
prediction. Many different temperature scenario
generation models have been proposed, including
fixed-date [20], shifted-date, bootstrap [21], and
surrogate models [22]. Xie and Tao [23] compared
these methods and revealed that the shifted-date
model acquired superior performance when the
number of dates being shifted locates within a
reasonable range.

(ii) Modeling techniques are applied in probabilistic
load forecasting directly, such as density estimation
[24, 25], Gaussian process regression [26], and
quantile regression [27]. The original probabilistic
forecasting techniques have not won more atten-
tions from the load forecasting community over the
past thirty years. Instead, some of these techniques
have been used for generating point load forecasts,
which are essentially the expected values derived



from the probabilistic forecasts. One possible ex-
planation for the underdevelopment of these
probabilistic forecasting techniques for load fore-
casting is the fact that their point forecast accuracy
may not be as good as those from point forecasting
techniques. Before the establishment of formal
evaluation methods for PLF, people may have
underestimated the power of these probabilistic
forecasting techniques based on their under-
performance in point forecasting accuracy.

(iil) Postprocessing of the point forecasting model is able
to produce probabilistic results by estimating
density function’s parameters of residual or com-
bining several outputs of multiple point forecasting
models. Xie et al. [28] evaluated several residual
simulation methods, demonstrating that residuals
cannot always obey normal distribution and pro-
posed several skills to tackle this problem for op-
timizing performances. Liu et al. [29] proposed a
hybrid method to generate probabilistic load fore-
casts by performing quantile regression averaging
on sister point forecasts.

Due to great volatility and uncertainty, probabilistic
forecasting load for residences is extremely challenging and
only a few literatures have made some preliminary attempts.
Shepero et al. [30] introduced the log-normal process (LP)
model that is designed for positive data like residential loads
with combination of log-normal distribution and Gaussian
processes. Traditional Gaussian processes and the log-nor-
mal process were evaluated in ablation studies and it was
found that the log-normal process produces sharper prob-
abilistic forecasts. Gerossier et al. [31] proposed a quantile
smoothing spline regression and used three inputs: hourly
load in previous day, median load of the previous week, and
temperature prediction. The robustness of this approach is
enhanced by fallback models to overcome defective data
such as insufficient data, unavailable variables, and extreme
situations. Experiments reflected that this model consis-
tently outperforms the persistence model and provides more
reliable probabilistic forecasts. Ben Taieb et al. [32] proposed
an additive quantile regression model for a set of quantiles of
the future distribution using a boosting procedure, which
includes flexible and interpretable models with an automatic
variable selection. The authors confirmed the advancement
of their proposed approach with three benchmark methods
on both aggregated and disaggregated scales using a smart
meter dataset.

3. Methodology

In this section, we further analyze the characteristics of
residential load and study how to utilize deep learning
technology to achieve more advanced performance. Finally,
our proposed model is introduced in detail.

3.1. Problem Identification. Aggregate load forecasting in-
tegrates multiple load subprofile to filter out uncertainty and
volatility, which enables the load curve pattern smoother
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and more regular for superior prediction. However, resi-
dential load consumption lacks a stable and consistent
pattern compared with aggregate-level loads. In some sce-
narios, people’s behaviors are more regular, such as getting
up in the morning, which is described as “general under-
standing” [8]. In some cases, behaviors are irregular even
disordered. For example, the lifestyle of individuals or
families with appliances results in inhomogeneous patterns
in households. For example, some people prefer more social
activities after work; thus, their contributions to load con-
sumption in the evening are relatively limited, but people
who stay indoors may give another condition. In fact, the
potential load pattern for every household may be different
that increases difficulties for load forecasting to residences.
Figure 2 draws the daily load profiles of three residences.
Figure 2(a) shows a residence with regular lifestyle. The
profiles corresponding to Figure 2(b) is irregular; hence, the
prediction is more challenging and dependent on the instant
law. The behavior in Figure 2(c) grows more regular in the
morning, while in other terms, there are no fixed-time
activities.

Therefore, an advanced model for residential load
forecasting should be able to capture the characteristics of
activities in history. Meanwhile, it should also extract the law
of electricity consumption in narrow span related to the
forecasting point. If the model combines both features in a
reasonable way, this method would hold great generalization
to different load patterns of households and achieve re-
markable performance. Traditional regression models, such
as SVR [33, 34] and Gradient Boost Regression Tree (GBRT)
[35, 36], are not designed for time-series problems. Other
time-series models, such as AR and ARIMA [37, 38], can
capture features in historical load sequences, but cannot
effectually combine them with instant behavioral charac-
teristics to produce better results.

Deep neural networks are one of the most promising
technologies available today. Due to the excellent capability
of learning discriminative features, the network can explore
potential characteristics of historical load sequences effi-
ciently. At the same time, the model can also perform re-
gression learning on temporal features. Therefore, the deep
neural network can naturally integrate two learned repre-
sentations and finally realize learning complex rules in an
end-to-end approach. Among typical architectures of deep
learning, recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs) are proper candidates suited
for tackling this issue. LSTM [39, 40] is good at solving the
problem of gradient disappearance/explosion due to ex-
cessive sequence length, allowing for longer information to
be remembered. LSTM has been successfully used to resolve
load forecasting problem in [17, 18, 41]. However, LSTM still
has two troubles: the efficiency of recursive operations and
the limited memory capacity for dealing with the longer
time-series problem.

CNN has made revolutionary progress in computer
vision, and it has been widely studied in other fields in recent
times. Recent works demonstrate that neural networks with
convolution operations can achieve top performance in
sequence tasks such as speech synthesis, language modeling,
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FiGure 2: Different residential load patterns. (a) Meter ID: 5843. (b) Meter ID: 6902. (c) Meter ID: 7374.

and machine translation [42-44]. CNN-based networks are
also used for load forecasting problems in [45-47]. Based on
the analysis of residential load forecasting, we propose a
unified quantile regression deep neural network with time-
cognition, which consists of sequence-to-sequence (S2S)
multi-scale CNN structure (MS-CNN), periodic time cod-
ing, and quantile regression components.

3.2. §2§ MS-CNN. Ordinary one-dimensional CNNs can
only catch relationships in neighborhood elements, which
limit the capabilities of extracting discriminative features for
detecting potential rules efficiently. Therefore, multiscale
convolution is introduced to fuse extra nonadjacent ones in
enlarged receptive fields. Specifically, deep neural network
stacks multiple dilated convolutional layers with different
scales [48, 49]. Multiscale convolution extracts rich and
crucial relationships from different input locations, but
prevents great growth of trainable parameters as well.
Traditional one-dimensional CNNs can accept very long
input sequences, but only output one forecast, which limits
its training efficiency and gradient flowing. Inspired by
RNNs, the proposed model uses a S2S structure in which
each point in the input sequence corresponds to a forecast.
This structure enhances the flow of gradients, forcing the
information at each moment to be effectively extracted into
the model, thereby improving the efficiency and accuracy of
the training. In order to avoid future functions, we use a
causal convolution to ensure that any node only acquires
information about the past. Figure 3 shows a schematic
diagram of a block containing four multiscale one-dimen-
sional causal convolution layers with the kernel size of 2. The

dilation rate s increases along /-th layers within a block such
that s;=2".

The proposed structure consists of a stack of blocks, each
of which contains L convolutional layers. The output of each
layer is connected by a residual connection, that is, the input
of each layer is added to its output. Let T be the length of
input sequence and F, be the number of filters, then
HU) ¢ REwT presents the convolution of the I-th layer of j-
th block, noting that Tand F,, keep consistent in all layers so
that output from different layers can be added. Meanwhile,
except for convolutional operation, a layer also holds a series
of operations g(-) including activation, normalization, and
dropout. Taking a convolution filter size of 2 as an example,
the convolution operation is applied at positions ¢ —s and ¢.
The filters’ parameters are denoted as W = {W 1, W@ p},

; . ~ (il
where parameter W ® € RFv*Fv and bias b € Rfw. Let Ht(] )

be the layer’s output at time ¢ and Ht(j’l) be output of the
residual connection such that

AU = g(WOHOD L w @R 1),

. S ~ (il
HUY = H s UB 1,

(1)
where U € RF«*fv and e € RFv are the weights and biases of
the residual convolution with a filter size of 1. The proposed
structure is shown in Figure 4, which consists of 8 blocks,
and each block holds 4 dilated convolution layers.

3.3. Time-Cognition. Time is a key feature of forecasting
problems, and most current models adopt the one-hot
encoding approach [41, 50], which has two main challenges.
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First, the one-hot encoding approach does not take into
account the periodic relationships between points in time,
which makes the neural network lose prior knowledge
resulting in a precision to be improved. Second, the length of
the one-hot vector depends on the number of points in one
period. For example, encoding days of a year will make the
length of the vector as long as 366, which not only increases
the calculation but also reduces the forecasting accuracy. The
approach provides a unique coding to each moment in one
period and reserves all periodic characteristics of time.

Specifically, periodic coding [pi", pi*] corresponding to
moment ¢ can be generated by the sine and cosine functions:

) 27t
S = sin —,
pt C
(2)
2mt
0% = cos —,
pt C

where C describes the length of a period. In this paper, we
adopt the half-hours in one day, days in one week, and days
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in one year as the time feature and then code them to
[phdsin, Phdcos], [pdwsin’ Pdwcos]’ and [pdysin)pdycos]’ re-
spectively. At last, we obtain thedfull cc[;ding of time t:
P, = [pildsm’ P?d cos’ptdwsm’ pttiwcos,pt;"sm’ pt)’cos]‘ Different
coding methods are compared in Figure 5.

3.4. Quantile Loss. The proposed CNN structure can gen-
erate point forecasts or probabilistic forecasts by applying
different supervised techniques. Point regression methods
model the average behavior, which is useful but gives less
information of the forecasts. Quantile regression allows us to
get the forecasts at different quantile levels, hence drawing a
more comprehensive picture of the forecasted moment.
Quantile regression not only makes it easy to get multiple
quantile forecasts but also allows calculating the prediction
interval (PI). The quantile loss can be written as

Lig =()’t - j’t,q)(q - 1]{J’t < )A’t,q})a (3)

where y, is the truth at time f and y, ; denotes the forecast of
quantile g at time t.

In the process of training, the back-propagation algo-
rithm requires the loss function to be differentiable so that
the network can be trained using gradient descent. Common
pinball loss is not differentiable everywhere; therefore, we
introduced the log-cosh function to approximate the
quantile loss function, with least change, making the loss
function differentiable everywhere [51]. Then, we obtain the
new loss function as follows:

lOg(COSh(qy|yt - 5’t,q|>> ~
y > yt - yt,q 2 0’
Lt,q = 9
log(cosh((l - q)y|}/t - 5’tq|)) -
k y > yt - yt,q < 0’
(4)

where y is a hyperparameter that tunes the bound between
L1 norm and L2 norm and should be chosen according to the
value size of data and the expected accuracy. Higher ac-
curacy will call for a bigger y. log (cosh(x)) is approximately
equal to x°/2 when x keeps very small, and it tends to be
approximately equal to |x| —log(2) when x becomes larger.

3.5. Proposed Network Architecture. Previously mentioned
techniques are integrated into the entire network as key
components, the details of which are shown in Figure 6. At
first, a historical load sequence is inputted into the MS-CNN
network and representation vectors are generated from the
last layer of the network, which contains discriminative
features for load pattern of the historical data in moment.
Then, an auxiliary fully connected network learns the pe-
riodic codes of the forecasted time to increase extra features
for prediction. At last, the output vectors of two subnetworks
are fused and fed to another fully connected layer to produce
all quantile forecasts. The proposed model reflects the
contribution of the multiscale convolution neural network

One-hot coding

[1000000]
[0100000]
Days of the week Nature coding [0010000]
Sunday 0 [0001000]
[0000100]
Monday 1 ﬁ [0000010]
Tuesday 2 [0000001]
Wednesday 3 Periodic coding
Thursday . m [0.00  1.00]
[0.78 0.62]
Friday 5 [0.98 -0.22]
[0.43  -0.90]
Saturday 6 [-0.43 —-0.90]
[-0.98 -0.22]
[-0.78  0.62]

FiGure 5: Coding method comparison by taking seven days of one
week as an example.

and periodic coding especially with feature fusion or con-
catenation mechanism.

Individual electricity consumption behavior naturally
exhibits a time-series curve. To highlight the idea of our
proposed approach, only historical load data and calendar
data in the form of periodic coding are utilized as input
features in this paper. It is worth noting that other envi-
ronmental factors, such as temperature, can also be
employed in this model. Let X be the entire historical load
data with length T, which is divided into input load se-
quences X, = [X; 11> Xi_pmiz> - - -» Xp_1> X,] with length m
and start moment t—m+ 1. X, is a two-dimensional array
with shape (m, 1). It is worth noting that when T'is small, too
large m will make the convergence speed extremely slow like
the batch size. The auxiliary input corresponding to time ¢ is
the periodic coding of next moment p,,, =
[phdsin’ phdcos) pdwsin’ pdwcos’pdysin’ pdycos]’ which is a
vector with length 6. The output about time ¢ includes
quantile forecasts of time t+1: Y, = [P0
Vir120 - > Ves1,0)s where Q is the number of quantile.

The implementation process is divided into three stages:
data preparation, model training, and forecasting, and the
details are described in Figure 7. We trained the proposed
model for each customer with shared parameters for
households. During the training, we used the learning rate
decay and early stopping strategies based on the variation of
validation loss to reduce computation cost and prevent
overfitting.

4. Experiment Setup

This section introduces the experiment setups, including the
data description, training implementation, and platforms.

4.1. Data Description. The dataset adopted in this paper
comes from the customer behavior trials (CBT), which is a
smart metering project launched by the Commission for
Energy Regulation, the regulator for the electricity, and
natural gas sectors in Ireland. It includes thousands of
residential customers’ anonymous data, which sample half-
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coding features fusion.

hourly electric consumption from each residence. The
dataset is collected from July 15, 2009, to January 1, 2011,
and each customer’s data contains 25,728 collection points.

Because the dataset filled with lots of noises, we removed
some redundant data and filled the missing data by the linear
interpolation algorithm. Moreover, 20 residential load
profiles are randomly selected from the dataset as subjects
for algorithm evaluation. Data of each subject are divided
into training set, validation set, and test set in order at 80%,
10%, and 10% respectively.

4.2. Benchmarks and Setup. Quantile regression LSTM
(QLSTM) and quantile gradient boosting regression tree
(QGBRT) are selected as experimental benchmarks. Among
the traditional method, the QGBRT is often adopted for its
stable and accurate performance. The LSTM has achieved
top performance in many sequence-processing areas. The
QLSTM model proposed in [41] has also achieved state-of-
the-art performance for probabilistic load forecasting. To
observe the improvement of our proposed model, a common
sequence-to-point quantile CNN (QCNN) was also
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Ficure 7: Flowchart for implementation of the proposed model.

introduced as a benchmark to verify the improvement of our
proposed model.

Hyperparameter tuning has close relationship with the
forecasting performance. It is not advisable to explore the
best parameters for each subject, which definitely results in
great computation cost. In our work, we paid more atten-
tions on proper overall performances of all subjects.
Therefore, some rules of thumb for hyperparameter selec-
tion are adopted. In general, deeper and wider network tends
to achieve better performance, and for proper evaluation, we
kept the scale of trainable parameters similar with the
QLSTM model. The input size of QCNN, QLSTM, and our
proposed model is the same to ensure the fairness, which is
set to 240. If the length of the input sequence cannot extract
sufficient features for growing ability of extracting dis-
criminative features and if too long, the efficiency of models
in computation is limited and sometimes causes overfitting
problem. The QCNN and the proposed model share some

hyperparameters: 34 convolutional layers and each con-
volutional layer consists of a convolutional operation, a
rectified linear unit (ReLU), a batch normalization filter, and
one dropout action. QLSTM stacks 3 units in order to
improve forecasting capacity. In addition, we employed grid
search to explore other hyperparameters, such as kernel size,
dropout rate, start learning rate, batch size, and so forth. In
this experiment, we made probabilistic forecasts with 9
quantiles (0.1-0.9) of halthour for evaluation on our pro-
posed model; therefore, the output sequence has the shape
mx Q. The experiment setups and hyperparameters of
neural networks are presented in Table 1.

4.3. Software and Hardware Platform. All experiments were
executed on a cloud server with two NVIDIA P4 computing
cards and the CPU with 8 cores. The implementations of
QGBRT are based on the scikit-learn packages. Other neural
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TaBLE 1: Shared parameters of neural networks

strategies selected.

and related

Parameters LSTM CNN
Depth 3 34
Hidden neural 128 None
Kernel size None 8
Kernel number None 24
Batch size 128 128
Input size 240 240
Dropout rate 0.05 0.05
Loss function Quantile loss Quantile loss
Optimizing method AMSGrad AMSGrad
Start learning rate 0.01 0.01
Learning rate decay 0.3 0.3

Training stop Early stopping Early stopping

network-based models are realized by the Keras framework
with TensorFlow [52] backend.

5. Results and Discussion

This section introduces the experiment setup, including the
evaluation metrics and experiment result.

5.1. Evaluation Metrics. For probabilistic forecasting eval-
uation, there are three commonly used attributes: reliability,
sharpness, and resolution. Reliability refers to how close the
predicted distribution is to the ground truth. Sharpness
means how tightly the predicted distribution covers the
actual curve. Resolution signifies how much the predicted
interval varies over time. Measures like Kolmogor-
ov-Smirnov, Cramer-von Mises, and Anderson-Darling
statistics assess the unconditional coverage of a probabilistic
forecasting rather than its sharpness or resolution. In this
paper, the performance of the probabilistic forecasting is
evaluated by the average quantile scores (AQS), which is a
comprehensive measure metrics considering not only reli-
ability but also sharpness and resolution. The quantile scores
have the same equation with quantile loss, and AQS is
defined as follows:

1 st Q
AQS = Z Lt,q’ (5)

Ttest X Q t=1

where Q denotes the defined number of quantiles and T
denotes the number of samples in test set. In addition, in
order to make a proper evaluation on candidates, the pre-
diction interval (PI) should be assessed. PI of time t with
100(1 - 6)% confidence level is given as [Lf, Uf], where Lf
and U? are the lower and the upper boundaries of the PI. It is
expected that the ground truth y; should be between the
lower and the upper boundaries with the nominal proba-
bility 100(1 — 6)%, which is called prediction intervals’
nominal confidence (PINC). The PI coverage probability
(PICP) evaluates whether the actual value lies within a
certain prediction interval limit:

Complexity

T(est
PICP = Tl Y iy e [L.U7]} (6)
tes

t =1

where T is the sample number of the test set. Results with
high reliability should get the PICP close to the PINC [53].
So, we use the absolute average coverage error (AACE) to
evaluate the reliability:

AACE =|PICP - PINC]|. (7)

Another metric, PI normalized average width (PINAW)
[54], is introduced to measure the sharpness of the PI. The
PINAW is defined as

1 TQCS‘
PINAW =~ > (U} - L), (8)

test t=1

where R is the difference between maximum and minimum
of the ground truth and normalizes the PI average width. In
this paper, we evaluated the PI coverage of 80% for AACE
and PINAW. Lower AQS, AACE, and PINAW indicate a
better performance.

5.2. Result Analysis. We randomly selected 20 residences
and trained models separately for each residence which
belongs to the probabilistic forecasting model and is able to
output 9 quantiles in one shot. To ensure the fairness of
experiments, all subjects in training or testing phases kept
consistent parameters and model architecture. Figure 8 is a
heat map of AQS results from studied models for com-
parisons, intuitively revealing that our proposed model
serves the most sophisticated performance. Specifically, our
proposed model achieved 12 best results in 20 residences and
the rest also performed excellently. QGBRT contained 6 best
results outperforming QLSTM and QCNN. The right side of
Figure 8 reflects AQS improvement ratio of our proposed
model over other three algorithms. Statistically, our model
acquired the most excellent results with an average growth of
2.23%, 7.15%, and 2.12% compared with QGBRT, QCNN,
and QLSTM, respectively. Meanwhile, the classic machine
learning model QGBRT gave promising evaluations after
proper adjustments. Since the crude one-dimensional CNN
model lacks effective optimization for sequence problems, its
performance is restricted to weak ability of learning dis-
criminative features with simple convolutions.

Table 2 lists results of AQS in perspectives of each
quantile. I_QGBRT, I_QCNN, and I_QLSTM represent the
AQS improvement ratio comparing our proposed model
with other three models. AQS values of quantiles 0.1 and 0.2
are relatively lower since the quantity of household elec-
tricity consumption is maintained in a low level with
nonnegative character. In comparison of four models, our
proposed model achieved the best performance in all
quantiles and averages, indicating that our model has an
excellent stability crossing quantiles.

Heat map of 80% interval AACE is described in Figure 9.
Our proposed model achieved 11 best results of 20 resi-
dences, and QLSTM, QGBRT, and QCNN held 5, 3, and 1
ones, respectively. In terms of overall performance, most
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FiGUure 8: Heat map with AQS metrics for evaluation of four models. QGBRT, QCNN, QLSTM, and our proposed model in X-axis
correspond to AQS for different models, while I_QGBRT, I_QCNN, and I_QLSTM represent the AQS improvement ratio compared with
the proposed model. Y-axis denotes different residences. Results in each residence are described in the same row, where darker green shades

imply a better performance.

TABLE 2: Average quantile score from 0.1 to 0.9.

Quantiles QGBRT QCNN QLSTM Proposed I_QGBRT (%) I_QCNN (%) I_QLSTM (%)
0.1 0.036 0.0393 0.0365 0.0359 0.28 8.65 1.64
0.2 0.0634 0.068 0.0643 0.0634 0.00 6.76 1.40
0.3 0.0856 0.0909 0.0865 0.0853 0.35 6.16 1.39
0.4 0.1028 0.1087 0.1032 0.1022 0.58 5.98 0.97
0.5 0.1151 0.121 0.115 0.1138 113 5.95 1.04
0.6 0.1218 0.128 0.1213 0.1197 1.72 6.48 1.32
0.7 0.1223 0.1282 0.1214 0.1189 278 7.25 2.06
0.8 0.1136 0.1186 0.1124 0.1085 4.49 8.52 3.47
0.9 0.0877 0.0911 0.0869 0.0818 6.73 10.21 5.87
Average 0.0943 0.0993 0.0942 0.0922 2.23 7.15 212

results of QGBRT and QLSTM are acceptable, while QCNN
runs unsatisfactory. Taking AACE of 20 residences into
account, the proposed method has an average growth of
34.71%, 75.22%, and 32.44% compared with QGBRT,
QCNN, and QLSTM giving proof of the reliability in our
proposed model significantly.

Figure 10 depicts the heat map of 80% interval PINAW.
The QCNN acquires the best sharpness with 12 cases in 20
residences, and the performance of PINAW is also com-
pelling. PINAW provides measurement on how compact PI
is. If AACEs of different models are close, lower PI given by
PINAW will be more instructive. QCNN’s AACE is rela-
tively poor than our proposed model, but PINAW serves
more better, indicating that QCNN improves sharpness by
sacrificing reliability. This result is not desirable unless the
forecasting target explicitly requires more compact PIs.
When PINAW and AACE come into conflicts, additional

comprehensive indicators, such as AQS, could be selected
for accurate evaluation.

QGBRT and our proposed model obtain more sophis-
ticated achievements rather than QLSTM. Most results of
QLSTM are quite stable and similar with QGBRT, but the
performance of our proposed model gives more fluctuations.
In perspective of average improvement ratio, PINAW of our
method in improved by 1.51%, 7.53%, and 1.87% relative to
QGBRT, QCNN, and QLSTM, respectively. Considering the
significant improvement in reliability, the deterioration of
our proposed model in sharpness is still within an acceptable
limit.

Figure 11 gives the coverage probability of the interval
between each estimated quantile, and each interval corre-
sponds to a bar. 10 intervals are generated from 9 quantiles
(from 0-0.1 to 0.9-1), and the actual load values in the testing
set have a uniform probability falling into these 10 intervals.
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FIGURE 9: Heat map of 80% interval AACE for four models. QGBRT, QCNN, QLSTM, and our proposed model in X-axis correspond to
AACE for different models, while I_QGBRT, I_QCNN, and I_QLSTM represent the AACE improvement ratio of our proposed model over
other three models. Y-axis expresses different 20 residences. AACEs of the same residence are listed in the same row, where darker green
shades imply a better performance.
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FIGURE 10: Heat map of the 80% PINAW for four models. QGBRT, QCNN, QLSTM, and our proposed model in X-axis correspond to
PINAW, respectively, while I_QGBRT, I_QCNN, and I_QLSTM denote PINAW improvement ratio compared with our method over other
models. Y-axis represents different residences. Results of each residence are compared in the same row, where darker green shades imply a

better performance.

We normalized this probability according to the quantile
width of intervals (i.e., 0.1); hence, each bar should be close
to 1. The proposed model in Figure 11(d) provides the

minimum along Y-axis demonstrating that the quantile
forecasting of our proposed model is reasonably interpreted
in multiple residential data. Specifically, QGBRT, QCNN,



Complexity

13

— — [ 58] [ S5}
(=) )] S )]

Empirical coverage

e
&

e
=]

-~

w

—
=
—
2
—

Empirical coverage
)

10
(®)

1 12 13 14 15 16 17 18 19 20

L el e g
o W o

Empirical coverage
=
o

Sl
o

—_ — N
= wn o

e
n

Empirical coverage

e
o

1 2 3 4 5 6 7 8 9

10
(d)

1 12 13 14 15 16 17 18 19 20

FiGure 11: The empirical coverage of (a) QGBRT, (b) QCNN, (c) QLSTM, and (d) our proposed model. Y-axis denotes normalized
empirical coverage and X-axis represents different residences with 10 bars individually corresponding to 10 intervals. A bar with height close

to 1 indicates a better empirical coverage.

QLSTM, and our proposed model handle 2, 7, 2, and 1 bars,
respectively. In general, most bars in QGBRT, QLSTM, and
the proposed model tend to be close to 1.

A strange phenomenon appeared that bars’ average height
of residence 1 and residence 15 in Figure 11(a) is larger than 1.
For a special example, the forecasting results of quantiles 0.1,
0.2, and 0.3 are 1kW, 0.8kW, and 1.2kW and the ground
truth is 0.9 kW. The actual value is located in the interval 0-0.1
and 0.1-0.2 at the same time, which belongs to an inversion
error of inverted quantiles. Table 3 reflects the number of
errors in 20 residential quantile forecasting, where the number

of errors in our model is remarkably lower except residence 4
and 13. It demonstrates the superiority of our model in
perspective of the regularity for quantiles’ arrangement. In
particular, QGBRT performed well in AQS, AACE, and
PINAW but generated great errors, which could be influenced
by the separated computing mechanism of quantile fore-
casting. Inversion errors become a wonderful complement to
classic metrics of reliability, sharpness, and resolution, which
avoid confusing results in the evaluation process.

Figure 12 plots the actual load and the quantile fore-
casting of residence 2 in one week. Eight intervals among 0.1
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TaBLE 3: Inversion error statistics.

Residence QGBRT QCNN QLSTM Proposed
1 1854 1791 1989 407
2 476 478 385 311
3 6825 3623 4541 633
4 5256 918 2913 1700
5 1187 1465 570 87
6 1559 3222 2926 619
7 4223 2077 758 189
8 1215 1253 525 142
9 2906 1771 703 125
10 3913 2990 1225 440
11 1726 3309 754 271
12 2435 1388 836 438
13 812 1003 209 221
14 3377 2041 738 380
15 7411 3160 6991 857
16 2930 3172 1879 1050
17 7634 2486 286 269
18 2165 3475 1947 449
19 2066 3003 1107 561
20 1957 2227 475 398
Total 61927 44852 31757 9547
4

: ,l | |

| | ,
2 I
\ \ N \ N T, “\ / ! ’\\ A
! :5.3/*‘ ‘L&,hk J’“‘ m\&&\ ) “‘é Mo‘&}k \“ \béjﬁo&« \éxﬁ \\“ \\.; Al Nr.g‘\\‘}\‘ h =) (e i\wg‘/ . ’m > ‘| 'v

Load (kW)

A LANLAN AMSAZARY
0
-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
Time (half-hour)
(a)

4
£ 3
)
=
S 2
—

1

0
-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

Time (half-hour)
(b)
4
£ 3
Z
T2
—

-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
Time (half-hour)

(]

FiGgure 12: Continued.



Complexity

15

Load (kW)

-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
Time (half-hour)

FIGURE 12: Forecasting results and ground truth of residence 2 for one week. X-axis expresses time with a half-hour unit, and Y-axis
represents electricity load. Eight intervals between 0.1 and 0.9 are shown in different colors, where the solid black lines represent the ground
truth. (a) QGBRT, (b) QCNN, (c¢) QLSTM, and (d) our proposed model.

TaBLE 4: AQS comparison of three time-coding methods.

Residence Nature coding One-hot coding Periodic coding I_nature (%) I_one-hot (%)
1 0.0604 0.0592 0.0546 9.67 7.83
2 0.1261 0.1226 0.1206 4.40 1.67
3 0.1401 0.1449 0.1392 0.70 3.94
4 0.1823 0.1585 0.1536 15.75 3.10
5 0.0778 0.0666 0.0651 16.25 2.15
6 0.0885 0.0951 0.0856 3.29 9.99
7 0.1413 0.1378 0.1308 7.49 512
8 0.2379 0.2114 0.2101 11.66 0.60
9 0.0888 0.0895 0.0811 8.68 9.42
10 0.1091 0.1018 0.0983 9.91 3.47
11 0.0523 0.0475 0.0461 11.89 291
12 0.1176 0.1116 0.1078 8.34 3.38
13 0.0433 0.0401 0.0384 11.27 4.21
14 0.0983 0.0946 0.0901 8.26 4.67
15 0.0933 0.0896 0.0809 13.27 9.75
16 0.1188 0.1239 0.1140 4.03 8.00
17 0.0259 0.0253 0.0226 12.89 10.63
18 0.0707 0.0630 0.0632 10.63 -0.30
19 0.1200 0.1204 0.1091 9.09 9.34
20 0.0351 0.0349 0.0319 9.01 8.51
Average 0.1014 0.0969 0.0922 9.10 491

and 0.9 quantiles are shown in different colors, while solid
black lines represent the ground truth. It is found that al-
gorithms based on historical load try to explore the short-
term trend of the load as far as possible. As a result of the
volatility of the profile, there is always a delay when the peak
of the load is being captured. Besides, a peak load corre-
sponding to the 90th-100th half-hour should be paid more
attentions and 80% PI of all four models failed to capture the
first peak. Especially, our proposed model significantly
learned discriminative features in sequences, but QGBRT
and QLSTM were not competent. In addition, before several
peaks in the 60th, 210th, 255th, and 305th half-hour, our
proposed model improved the result of prediction dra-
matically, and consequently its 80% PI remarkably caught
load trend. However, other models could not attain this
achievement, manifesting superiority of our model in
dealing with the peak point. This capability should be at-
tributed to the periodic coding that provides our model with
advanced periodical characteristics at certain moments.

5.3. Evaluation of Time-Coding Method. In order to evaluate
the effectiveness of periodic coding, we compared AQS of
periodic coding, natural coding, and one-hot coding on the
proposed network architecture, as shown in Table 4.
I_nature and I_one-hot denote the improvement ratio of
periodic coding over natural coding and one-hot coding. The
AQS of natural coding grew quickly, even higher than
QCNN, indicating that it is not competent to improve AQS.
The AQS of one-hot coding served preferred performance
rather than natural coding, yet the degree is still limited.
Specifically, the average AQS of periodic coding achieved the
best results, 9.10% and 4.91%, respectively, lower than other
two approaches remarkably.

5.4. Efficiency. Computation efficiency and memory cost of
compared models are shown in Table 5. Deep neural net-
works serve numerous parameters and produce massive
computation costs. Fortunately, we can address this issue by
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TaBLE 5: Average efficiency comparison of 20 residences.

Item QGBRT QCNN QLSTM Proposed R_QLSTM
Training time per epoch (s) None 24 209 26 87.56%
Testing time (s) 0.18 0.88 16.27 0.89 94.53%
Training convergence epochs None 77 68 66 —
Total training time (s) 1,517 1,814 14,212 1,716 87.93%
Parameters None 184,681 330,889 187,769 —

adopting professional graphic cards; thus, the deep neural
network models in our studies were run on the NVIDIA P4
cards by default. All comparison experiments are qualified
with the same configuration.

In Table 5, each training epoch of QLSTM provides larger
computation cost than QCNN and our proposed model,
resulting from higher dependency in steps where the entire
iterative process is impossible to be deployed in parallel ap-
proach. Similarly, when run on 2328 samples for testing,
QLSTM nearly gave 18 times costs over the CNN-based
model. Especially, column R_QLSTM expresses that our
proposed model reduces the cost of training, testing, and total
training cost by 87.56%, 94.53%, and 87.93%, respectively,
over the QLSTM in each epoch. Efficiency of QGBRT is
relatively preferable than others owing to its simple mecha-
nism of extracting features, which only took 0.18s. Both
QLSTM and our proposed model adopt the S2S structure that
enhances the flow of gradients and the process of convergence.
QGBRT, QCNN, and our proposed model were close in the
cost of training, and QLSTM took much longer. It is easily
found that the cost gap of QGBRT between the training and
testing process is larger than others due to QGBRT’s esti-
mators without the parallel mechanism. Unlike neural net-
works, each quantile of the QGBRT requires separate training
operation that leads to an increase in the training costs of the
QGBRT. Besides, on the scale of parameters, the achievements
obtained by the proposed model require less parameters than
QLSTM, providing notable efficiency in comparison.

6. Conclusion

Residential load forecasting is important for many entities in
the electricity market, but the load profile of individual
residence shows great volatilities and uncertainties. Due to
the difficulty in producing reliable point forecasts, proba-
bilistic load forecasting becomes a research focus that could
explore the volatility and uncertainty by intervals, density, or
quantiles. In this paper, we propose a unified quantile re-
gression deep neural network with time-cognition for
tackling this challenging issue. At first, a deep convolutional
neural network with multiscale dilated convolutions is
proposed for extracting more significant features from the
historical load sequence. In addition, a periodical coding
method is devised to mark the input sequence for capturing
regular load pattern. Then, features generated from both of
subnetworks are fused and fed into the forecasting model
with an end-to-end manner. At last, forecasts of multiple
quantiles are directly outputted in one shot.

To ensure the accuracy of the experiments, we conducted
experiments on 20 randomly selected residential data for

evaluations. Sufficient experiments compared our proposed
model with several state-of-the-art works obtaining com-
prehensive conclusions. Metrics such as AQS, AACE, and
PINAW are used to quantitatively evaluate subjects in
perspectives of reliability and sharpness. In addition, we also
paid more attentions on empirical coverage and quantile
inversion error to provide additional measures on perfor-
mances. Experimental results showed that our proposed
model achieves the best results in the AQS, AACE, and
inversion errors, and especially the average AACE of our
model is increased by 34.71%, 75.22%, and 32.44%, re-
spectively, compared with QGBRT, QCNN, and QLSTM,
indicating that the proposed network has remarkably ex-
cellent reliability. In addition, we analyzed the efficiency of
subjects in computation and found that our proposed model
has lower burden training and testing cost, which reflects
faster time response rather than QLSTM arguing that our
model serves promising prospects in practical applications.

The CNN-based deep learning models have achieved
many state-of-the-art results in sequential problems re-
cently. Through the experimental results of our work, the
well-designed CNN model can not only achieve high pre-
cision but also approximate the traditional machine learning
algorithm in efficiency, serving a good practical application
prospect. Technologies such as transformable convolution
and attention mechanism have enormous potentials in load
sequence forecasting, and we will continue to explore this
field in future work.
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