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A cubic spline approximation-Bayesian composite quantile regression algorithm is proposed to estimate parameters and structure
of theWiener model with internal noise. Firstly, an ARXmodel with a high order is taken to represent the linear block; meanwhile,
the nonlinear block (reversibility) is approximated by a cubic spline function. �en, parameters are estimated by using the
Bayesian composite quantile regression algorithm. In order to reduce the computational burden, the Markov Chain Monte Carlo
algorithm is introduced to calculate the expectation of parameters’ posterior distribution. To determine the structure order, the
Final Output Error and the Akaike Information Criterion are used in the nonlinear block and the linear block, respectively.
Finally, a numerical simulation and an industrial case verify the e�ectiveness of the proposed algorithm.

1. Introduction

�eWiener model is a nonlinear system, which is composed of
a dynamic linear block and a static nonlinear block. Due to its
simple structure and strong adaptability, the Wiener model is
widely used in industrial processes, such as chemical engi-
neering processes [1], oil recovery [2], biological plants [3], and
�uid control units [4]. However, how to identify the parameters
and structure of the Wiener model is still a challenging issue.

Most of the existing works are related to identify the
Wiener model with a known structure. Xu et al. introduced a
sigmoid function to improve the mutation rate F in the
Adaptive Di�erential Evolution algorithm [5]. Furthermore,
a blind identi�cation method for the Wiener model was also
investigated [6]. �e input signal of the system was given by
a cyclostationary signal instead of a Gaussian random signal
and the internal variables were recovered only based on the
output.�en, the order and parameters of theWiener model
were estimated by using the support vector machine
regression.

However, the structure and order of the Wiener model
are usually unknown in the industrial process. It is di�cult
to identify the Wiener model because of its nonlinear
characteristic. Additionally, the existing research studies are
mostly related to the system without noise or only with the
output noise [7–9]. Lamia et al. described the Wiener model
using the polynomial nonlinear state space (PNLSS) model
and developed an output error identi�cation method for the
nonlinear block [10]. Riccardo et al. presented a kernel-
based identi�cation to estimate parameters of the Wiener
system [11].�e impulse response of the linear block and the
static nonlinearity were modelled with a Gaussian process
and combination of basis functions, respectively. �en, an
iterative algorithm using the expectation-maximization
method was developed to estimate parameters of theWiener
model. Al-Dhaifallah applied twin support vector regres-
sions to identify the nonlinear Wiener system, including a
linear dynamic block [12]. �e linear block was expanded in
terms of basis functions, while the nonlinear part is deter-
mined by twin support vector machine regressions.
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Although mentioned algorithms work well, the indus-
trial process with the internal noise is less involved. Lindsten
et al. handled the internal white noise in a state space
systematic manner and used the nonparametric Gaussian
process model for the static nonlinearity [13]. Jing et al.
proposed a variable knot spline approximation recursive
Bayesian algorithm to reduce the influence of the internal
white noise [14]. Li et al. presented a neurofuzzy-based
single-input-single-output (SISO) Wiener model identifi-
cation method for colour noises [15]. Zhang and Mao
proposed a robust recursive least squares algorithm with a
dead zone weighted factor based on the inverse of the
nonlinear function block, which took process noises and
measurement noises into consideration [16]. Most of related
articles are on the assumption that the internal process noise
satisfies the Gaussian distribution or approximately satisfies
the symmetrical distribution. Due to the internal noise
change with the gain variation of the system, it is difficult to
eliminate affections.

(a) Variables between the linear block and the nonlinear
block cannot be measured, and the existing methods
cannot estimate parameters accurately [9].

(b) Owing to the nonlinear characteristic of the Wiener
model, the internal noise will be amplified with the
gain of the nonlinear block [14].

(c) (e inverse nonlinear block is commonly approxi-
mated by using the polynomial function. However,
there are some oscillation phenomena in the poly-
nomial with a high order [17]. As a result, the
existing algorithms cannot achieve a satisfied esti-
mation when the effect of external interpolation is
not good.

(d) (e best unbiased estimation of parameters can be
obtained only if the modelling error satisfies the
distribution with the mean zero and the same var-
iance. Because the error cannot be guaranteed to
satisfy the Gaussian distribution, the least squares
algorithm no longer shows its robustness [18].

To get an unbiased estimation of the Wiener model with
the internal noise, a cubic spline approximation-Bayesian
composite quantile regression (CSA-BCQR) is presented in
this work. (e contributions are as follows:

(a) (e internal process noise with the unknown
asymmetric distribution form in theWiener model is
addressed

(b) Repeated sampling by using the Markov Chain
Monte Carlo (MCMC) method is implemented to
achieve a faster convergence of parameters

(c) Overcome the high-order oscillation caused by using
the polynomial approximation, and a structure de-
tection framework is also considered

(e structure is organized as follows. Section 2 gives the
problem description. Section 3 states the principle of quantile
regression and Bayesian composite quantile regression in
detail. Section 4 describes the order determination of the

nonlinear block and linear block of theWienermodel. Section
5 presents a numerical simulation and an industrial case to
evaluate the proposed algorithm, respectively. Finally, con-
clusions are summarized in Section 6.

2. Problem Description

As shown in Figure 1, the input signal u(k) firstly passes
through the linear block of the Wiener model
Bn(q− 1)/An(q− 1) and generates z1(k). Under the distur-
bance of the internal noise ε(k), z1(k) is further developed
into z2(k) and becomes the input of the nonlinear block
f(z2). (e overall output y(k) is finally generated.

Assume that

(a) (e nonlinear function f(z2(k)) is continuous,
monotonic, and reversible

(b) ε(k) ∼ N(0, σ2v) is considered as a Gaussian white
noise and independent of the input signal u(k)

(c) Unknown polynomial order can be defined by the
Final Output Error (FOE) and the Akaike Infor-
mation Criterion (AIC)

Here, an ARX model with a high order is employed to
approximate the linear block of the Wiener model:

z2(k) �
Bn q− 1( 

An q− 1( 
u(k) +

1
An q− 1( 

ε(k). (1)

Considering the nonlinear part is reversible, equation (1)
is rewritten as follows:

A
n

q
− 1

 f
− 1

(y(k)) � B
n

q
− 1

 u(k) + ε(k). (2)

(e cost function is defined as follows:

JARX � 
N

k�1
A

n
q

− 1
 f

− 1
(y(k)) − B

n
q

− 1
 u(k) 

2
, (3)

where N is the size of samples. Because the specific form of
the expression is unknown, a stable linear transfer function
is approximated by the finite impulse response (FIR) model.

z1(k) � B
n

q
− 1

 u(k) � 

nb

j�1
bju(k − j), (4)

where nb is the order of the linear block.
For the nonlinear block of the Wiener model, a cubic

spline approximation (CSA) function is applied to fit the
inverse function of the nonlinear clock:

f
− 1

(y(k)) � z2(k) � 

nc− 1

i�2
ci y(k) − yi



3

+ cnc
+ cnc+1y(k)

+ cnc+2y
2
(k) + cnc+3y

3
(k),

(5)

where nc is the order of spline function, [c2, c3, · · · , cnc+3] are

the estimated parameters, y2, y3, · · · , ync− 1  are the internal

gathering points in the knot set y1, y2, · · · , ync
  and satisfy
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min(y(j)) � y1 <y2 < · · · ync− 1<ync
� max(y(j)),

j � 1, 2, · · · , N, N is the size of samples, and cnc+1 � 1.
Because ε(k) is unmeasurable, an arbitrary size gain is

allocated between the linear module and the nonlinear
module. Set An(q− 1) � 1 and combine equations (2) and (5):



nc− 1

i�2
ci y(k) − yi



3

+ cnc
+ y(k) + cnc+2y

2
(k) + cnc+3y

3
(k)

� B
n

q
− 1

 u(k) + ε(k).

(6)

(en, the Wiener model is parameterized as follows:

y(k) � φT
(k)θ + ε(k), (7)

with

φ(k) � − y(k) − y2



3
, · · · , − y(k) − ync− 1




3
, − 1, − y2(k), − y3(k), u(k − 1), · · · , u(k − nb) 

T

∈ RW×1,

θ � c2, · · · , cnc− 1, cnc
, cnc+2, cnc+3, b1, · · · , bnb 

T

∈ RW×1,

W � nc + nb + 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

3. Bayesian Composite Quantile Regression

3.1.Quantile Regression. According to the theory of the least
squares method, the estimate is unbiased when the mod-
elling error ε ∼ Norm(0, σ2). If modelling error
ε ∼ Norm(μ, σ2) and μ≠ 0, the estimate is unbiased with the
minimum variance. When the data has a sharp/thick tail
distribution and a significant heteroscedastic, the least
squares algorithm no longer has the abovementioned su-
periority. To make up those deficiencies, a Quantile Re-
gression (QR) has been proposed by Bang et al. [19].

(e nature of the QR is to describe the linear relationship
between the independent variable and the dependent vari-
able in the quantile formation. When the quantile changes
from 0 to 1, the position and steering of the corresponding
regression plane will be adjusted. (erefore, the dependent
variable under different quantile conditions can be obtained.
QR not only describes the range of variation of the de-
pendent variable but also measures the influence of the

conditional distribution shape of the regression variable.
Unlike the least squares regression, QR has the best linear
unbiased estimates and modelling residuals satisfy the
normal distribution.

If the conditional quantile of y(k) is a linear function of
φ(k), then Qτ(y(k) |φ(k)) � φT(k)θ(τ). (e quantile esti-
mate of θ(τ) is shown as follows:

θ(τ) � argmin
θ



N

k�1
ρτ y(k) − φT

(k)θ(τ)


, (9)

where ρτ(ε) � ε(τ − I(ε< 0)), I �
1, ε< 0
0, others , ρτ is the

linear loss function, and I(·) is the indicator function.

Equivalently, ρτ(ε) �
τε, ε≥ 0
(τ − 1)ε, ε< 0 . Equation (9)

can also be expressed as follows:

θ(τ) � argmin
θ



k:y(k)≥θ(τ)φT(k)

τ y(k) − φT
(k)θ(τ)  + 

k:y(k)<θ(τ)φT(k)

(1 − τ) y(k) − φT
(k)θ(τ) 

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (10)

When τ takes different values, the estimated parameter is
also different, aswell as the expression of the regression equation.

However, the objective function in QR is non-
differentiable or nonconvex, which makes the optimal so-
lution process complicate [20]. Both equations (9) and (10)
are piecewise linear functions, so the solution cannot be
solved directly from the objective function. It is necessary to
find another way to obtain the posterior density function of
each QR’s parameter.

Definition 1. A random variable x has an Asymmetric Laplace
Distribution (ALD) which is noted as ALD(λ, m) with m ∈ R
and λ> 0 [21]. Its probability density function (pdf) is given by

pdf(x | m, λ, κ) �
λ

κ + 1/κ

exp(− λκ(x − m)), x≥m,

exp
λ
κ

 (x − m) , x<m,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)
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1

Figure 1: (e structure of the Wiener model with internal noise.

Complexity 3



where m is a location parameter, λ> 0 is a scale parameter,
and κ is an asymmetry parameter. When κ � 1, the distri-
bution simplifies to the Laplace distribution.

Assuming that ε(k) satisfies the ALD, the corresponding
pdf is written as follows [22]:

pdf(ε) � τ(1 − τ)exp − ρτ(ε)( , (12)

and the likelihood function of θ is defined as follows:

L(y | θ) � τN
(1 − τ)

N exp − 
N

k�1
ρτ y(k) − φT

(k)θ(τ) ⎛⎝ ⎞⎠.

(13)

(en, minimization of the cost function equation (10) is
equivalent to the maximization of the likelihood function
equation (13) based on ALD [23].

3.2. Bayesian Composite Quantile Regression. Compared
with least squares algorithm, QR has much more flexibility

in assessing the effect of predictors on different locations of
the response distribution [22]. It also solves the problem that
the least squares regression can only describe the local in-
fluence of the dependent variable to the dependent variable.
Zou and Yuan pointed out that QR can lead to arbitrarily
small relative efficiency compared with the least square [24].
In addition, the median regression, a special case of QR, may
not be the best choice for some abnormal errors. (erefore,
the Composite Quantile Regression (CQR) can aggregate
multiple quantile information together to produce a robust
parameter estimation. Meanwhile, CQR can achieve an
estimated efficiency gain based on a single quantile re-
gression [25].

With τ � (τ1, τ2, · · · , τl), 0< τ1 < τ2 < · · · < τl < 1, the
CQR of θ(τ) is

θ(τ) � argmin
θ



l

j�1


N

k�1
ρτj

y(k) − φT
(k)θ(τ)



, (14)

which is also rewritten by

θ(τ) � argmin

l

j�1


k:y(k)≥θ(τ)φT(k)

τj y(k) − φT
(k)θ(τ)  + 

k:y(k)<θ(τ)φT(k)

1 − τj  y(k) − θ(τ)φT
(k) ⎛⎝ ⎞⎠. (15)

Obviously, the estimated θ can be calculated by the QR of
a combination of τj. However, the computational burdens of
CQR and QR are high. It is necessary to find a good solution.

(e posterior distribution of θ, π(θ | y) is given by

π(θ | y)∝ L(y | θ)p(θ), (16)

where p(θ) is the prior distribution of θ, L(y | θ) is the
likelihood function:

L(y | θ) � τN
(1 − τ)

N exp − 
l

j�1


N

k�1
ρτj

y(k) − φT
(k)θ(τ) ⎛⎝ ⎞⎠.

(17)

Lemma 1. If the likelihood function is L(y | θ) � τ
N(1 − τ)N exp(− 

l
j�1

N
k�1ρτj

(y(k) − φT(k)θ(τ))), then the
posterior distribution of θ, π(θ | y), will have a proper dis-
tribution [25], i.e.,

0<  π(θ | y)dθ �  L(y | θ)p(θ)dθ<∞. (18)

If p(θ) � 1, − ∞< θ< +∞, π(θ | y) still exists and the
expectation of the posterior distribution is the Bayesian
estimate of θ.

In order to improve the computational efficiency, the
Markov Chain Monte Carlo (MCMC) method, which is
convenient for researchers to sample from complex distri-
butions, has been developed [26].(ere are twomainMCMC

samplingmethods: Metropolis-Hastings (M-H) sampling and
Gibbs sampling. Here, the M-H algorithm is used. (e
procedure of M-H sampling is shown in Algorithm 1.

(e Bayesian CQR (BCQR) algorithm used in this paper
does not depend on the actual distribution of data, but on the
likelihood function formed by the ALD [27]. (e essence of
BCQR is that the estimated parameter is regarded as a
random variable, and the sampling distribution of parameter
can be obtained by repeated sampling. When a stable dis-
tribution is obtained, the mean and standard deviation of the
parameters at each quantile can be determined.

4. Order Selection of the Wiener Model

(e FOE and AIC are commonly used to determine the
order of the nonlinear block and linear block, respectively.

4.1.OrderDeterminationof theNonlinearBlock. As shown in
equation (5), the order of the inverse nonlinear function is nc

and the corresponding FOE is as follows:

FOEy nc  �
N + W

N − W
×
1
N



N

k�1
y(k) − f B q

− 1
 u(k)  

2
,

(19)

where N is the size of samples and W is the number of
parameters. N + W/N − W is the factor which overcomes
the overfitting issue. However, equation (19) requires the
estimated value f(z2(k)). (erefore, an equivalent criterion
is introduced:
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FOEz2
nc  �

N + W

N − W
×
1
N



N

k�1

f
− 1

(y(k)) − B q
− 1

 u(k) 
2
,

(20)

where FOEy(nc) � FOEz2
(nc).

Assume

f f
− 1

(y(k))  � y(k). (21)

Since the nonlinear function is monotonic, then
min FOEz2

(nc)  � min FOEy(nc) .

4.2. Order Determination of the Linear Block. FOE criterion
needs to know the input of the system and the output of the
linear block, but the intermediate variables of the system are
unmeasurable. So, an indirect method is adopted to estimate
the intermediate variables firstly and the order is determined
lately.

According to the estimated parameter θ, the linear
module is

z1(k) � 

nb

j�1
bju(k − j), (22)

with

θnb
� b1, b2, · · · , bnb 

T
,

znb
� z1(1), z1(2), · · · , z1(k) 

T
,

⎧⎪⎨

⎪⎩

Ηnb
�

u(0) u(1) · · · u 1 + nb( 

u(1) u(2) · · · u 2 + nb( 

⋮ ⋮ ⋮

u(N − 1) u(N) · · · u N + nb( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(23)

Equation (22) can also be rewritten by

znb
� ΗT

nb
θnb

. (24)

(e likelihood function of θnb
is L(θnb

). (e maximum
likelihood estimation of θnb

is given by

θML � ΗT
nb
Ηnb

 
− 1
ΗT

nb
znb

. (25)

Using AIC criterion,

AIC nb(  � − 2 log L θML   + 2nb. (26)

Finally, the order is determined with min AIC(nb) .

5. Case Studies

5.1. Numerical Simulation. (e discrete Wiener model with
an internal noise is given by

y(k) � f Bn q− 1( u(k) + ε(k)( ,

f z2(k)(  � z2(k) + 3z3
2(k),

⎧⎨

⎩ (27)

where Bn(q− 1) � 1 − q− 1 + 3q− 2 − 2q− 3, u(k) � unifrnd

(0, 0.4), ε(k) satisfies the ALD, and N � 600.

5.1.1. Estimation of nc. (e order of the Cubic Spline
Function is estimated by using the FOE criterion under
different variances. (e variation of the FOE of the cubic
spline function with different quantiles was shown in Fig-
ure 2. When nc � 6, FOE is minimum.

5.1.2. Estimation of nb. As shown in Figure 3, AIC is
minimum when nb � 3, which is completely consistent with
the true order of the Wiener model.

5.1.3. Parameter Estimation Using CSA-BCQR. To estimate
the error of the linear part and nonlinear part, absolute
relative error (ARE) and mean square error (MSE) are
defined as follows:

Begin
Define the maximum number of state transitions ntrans, the number of samples nsamp, the input state transition probability of
Markov Chain qtrans, input smooth distribution π(x), initialize variable j and state xj�0.
while j≤ ntrans + nsamp − 1 do
calculate α � π(x′)qtrans(x′, x)/π(x)qtrans(x, x′);
determine the probability of reception αaccept(x, x′) � min 1, α{ };
uni � unifrn d(0, 1);
if uni< αaccept(x, x′)

x(j+1) � x′;
else

x(j+1) � xj;
end if
j � j + 1;

end while
end begin

ALGORITHM 1: Pseudocode of M-H sampling algorithm.
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ARE �

b1,
b2,

b3  − b1, b2, b3 
�����

�����

b1, b2, b3 
����

����
× 100%,

MSE �
1
N



N

k�1
[y(k) − y(k)]

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

and the comprehensive error (CE) is

CE �
nb × ARE

mean(ARE)
+

nc − 1  × MSE
mean(MSE)

. (29)

(e estimated results were shown in Table 1 and Fig-
ure 4. To show the superiority of CAS-BCQR algorithm,
CSA-Bayesian quantile regression (CSA-BQR) and CSA-

recursive least squares (CSA-RLS) algorithms were taken for
comparison.

When using CSA-BCQR algorithm, b1, b2, and b3 con-
verge at the iteration of 195, 79, and 83, respectively.
However, in CSA-BQR algorithm, b1 does not converge
when the iteration time is 300 and b2 and b3 converge at 91
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Figure 2: Order of the nonlinear block using FOE.
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Table 1: Comparison among CSA-BCQR, CSA-BQR, and CSA-
RLS in the numerical simulation.

Variable CSA-
BCQR CSA-BQR CSA-RLS

Linear block

b1 −1.001 − 1.01 − 0.996
b2 2.99 2.95 2.93
b3 −2.0 − 2.07 − 2.11

ARE 2.69E −
03 2.31E − 02 3.49E − 02

Nonlinear block MSE 3.121E−
04 5.675E − 04 9.554E − 04

Comprehensive
error CE 2.95 8.06 12.98
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Figure 4: Parameter identification results of the linear block.
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and 249, respectively. In CSA-RLS algorithm, b1 also fails to
converge at 300 and b2 and b3 converges at 190 and 298,
respectively. Obviously, the convergence speed of CSA-
BCQR algorithm is faster than those of the CSA-BQR and
CSA-RLS algorithms.

5.2. Industrial Case. A water tank model was taken for an
example (shown in Figure 5). u(k) is the water inlet flow,
z1(k) is the theoretical liquid level, z2(k) is the actual liquid
level, and y(k) is the water outlet flow [28].

(e relationship between the variables of the model is as
follows:

z1(k) � 0.8z− 1 + 0.4z− 2 + 0.2z− 3 + 0.1z− 4 u(k),

z2(k) � z1(k) + ε(k),

y(k) � z2
2(k) + 3z2(k),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

where u(k) ∼ Norm(0, 12) is a persistent excitation signal
sequence, N � 500. Here, nb � 4 and nc � 5 and param-
eters estimated by CSA-BCQR algorithm were shown in
Table 2.

As shown in Table 2, the estimation errors of the CSA-
BCQR, CSA-BQR, and CSA-RLS algorithms decrease
gradually with k increasing. Meanwhile the estimated value

was getting closer to the true value. When k � 150, the ARE
of CSA-BCQR algorithm was 0.0282 and the ARE of CSA-
BQR and CSA-RLS were 0.1136 and 0.1642, respectively.

As shown in Figure 6, the MSE of CSA-BCQR algo-
rithm has a significant reduction and converges after 100
iterations. Using CSA-BQR and CSA-RLS, the accuracy of
the nonlinear block parameter identification is less than
that of CSA-BCQR algorithm. It can be seen that the CSA-
BCQR algorithm has higher accuracy and faster
convergence.

6. Conclusion

A Cubic Spline Approximation-Bayesian Composite
Quantile Regression algorithm is presented to estimate the
structure and parameter of the Wiener system with internal
noise. Using a cubic spline function to approximate the
nonlinear block, overcome the high-order oscillation caused
by the polynomial approximation. (en, using Bayesian
Composite Quantile Regression algorithm to consider dif-
ferent information of quantiles can effectively improve the
accuracy of parameter estimation. A numerical simulation
and an industrial case show that the CSA-BCQR algorithm
has faster convergence speed and higher parameter iden-
tification accuracy compared with CSA-BQR and CSA-RLS
algorithms. Furthermore, the CSA-BCQR algorithm may
also be applied to other block-oriented models, such as a
Hammerstein system or a Hammerstein-Wiener system.

Data Availability

(e detailed mechanismmodel and model parameters of the
Wiener model are given in the manuscript. (e results are
computed on the MATLAB software with the model and
given parameters, while the relevant results are also given in
the manuscript.

u(k)

z(k)

y(k)

Figure 5: A water tank model.

Table 2: Comparison among CSA-BCQR, CSA-BQR, and CSA-
RLS in the water tank.

Algorithm k b1 b2 b3 b4 ARE

True value 0.8 0.4 0.2 0.1

CSA-BCQR

1 0.9543 0.5544 0.3645 0.2459 0.3360
50 0.8953 0.4929 0.3208 0.1912 0.2186
100 0.8589 0.4746 0.2678 0.1589 0.1418
150 0.8161 0.4098 0.2087 0.1157 0.0282
200 0.8007 0.4014 0.2057 0.1009 0.0065

CSA-BQR

1 0.9735 0.5968 0.3867 0.2644 0.3922
50 0.9168 0.5115 0.3342 0.2319 0.2689
100 0.8794 0.4896 0.2794 0.2046 0.1927
150 0.8248 0.4687 0.2301 0.1687 0.1136
200 0.8091 0.4284 0.2126 0.1166 0.0395

CSA-RLS

1 0.9859 0.5888 0.3911 0.2721 0.4005
50 0.9277 0.5472 0.3558 0.2526 0.3172
100 0.9024 0.5078 0.2942 0.2311 0.2380
150 0.8585 0.4995 0.2489 0.1848 0.1642
200 0.8159 0.4232 0.2151 0.1205 0.0411

CSA-BCQR
CSA-BQR
CSA-RLS

1E – 4

1E – 3

0.01

0.1

1

10

M
SE

50 100 150 2000
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Figure 6: MSE of the nonlinear block.
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