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0e output stability of the photovoltaic (PV) system is directly affected by temperature change of PV panels. In this paper, a novel
temperature prediction method of PV panels with support vector machine (SVM) is proposed, which can solve the temperature
prediction problem in a complex environment. In order to optimize parameters of SVM, a Pigeon-Inspired Optimization (PIO)
method is given. Meanwhile, the delay factor (DF) is added to improve the PIO algorithm for avoiding the problem of local
optimum. Moreover, a multisensor monitoring system of PV is established, and the collected data of temperature are used to train
and verify the accuracy of the model. Finally, the proposed method is evaluated using synthetic and actual data sets. Simulation
results show that the DFPIO-SVM can obtain better predictive performance.

1. Introduction

Due to the shortage of energy, emission of pollution, and
increasing demand, people have to seek new energy to re-
place traditional fossil energy. Solar energy has been
attracting more and more attention because it has the ad-
vantages of being green, clean, renewable, and so on.
However, in natural conditions, the power generation
performance of PV panels is affected by various factors,
especially, the temperature change of PV panels [1, 2]. As
one of the most relevant factors, the temperature of PV
panels has attracted wide attention in recent years [3, 4].
When the temperature of PV panels rises by 1∘C, the effi-
ciency of power generation decreases by about 0.22% [5].
0erefore, during the operation and maintenance of PV
power stations, how to accurately predict the temperature of
PV panels becomes an interesting problem.

0e temperature of PV panels is often affected by natural
factors such as irradiation, ambient temperature, wind
speed, and dust [6, 7]. With the increase of radiation in-
tensity and ambient temperature, the temperature of PV
panels will increase accordingly. For every 1∘C increase of
the ambient temperature, the temperature of PV panels will

increase by 0.851∘C [8, 9]. Due to the influence of wind, the
temperature of PV panels will decrease faster. For every 1m/
s increase of wind speed, the temperature of PV panels will
decrease by 0.421∘C [10]. In order to better understand the
temperature change rule of PV panels, many effective
prediction models have been proposed by researchers.
Almaktar et al. [11] proposed a novel temperature prediction
model of PV panels based on the collected data in a tropical
climate, which has better results. Barykina and Hammer [12]
proposed a Faiman temperature model of PV panels, which
evaluated four different panels in outdoor conditions with
different climates. Muzathik [13] proposed a simple tem-
perature prediction model of PV panels based on the en-
vironmental variables. Ceylan et al. [14] established a
temperature prediction model of PV panels based on the
backpropagation (BP) neural network by using different
ambient temperature and radiation intensity data. However,
these methods need to consider as many factors as possible,
but the complex field environment makes it difficult to
accurately measure some parameters, so a good prediction
effect cannot be obtained.

With the development of artificial intelligence tech-
nology, a lot of machine learning algorithms, Long Short-
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Term Memory (LSTM) [15–17], BP [18, 19], SVM [20, 21],
Radial Basis Function Neural Network (RBFNN) [22–24],
Echo State Network (ESN) [25–27], and Deep Belief
Network (DBN) [28], have been widely used in time series
prediction. SVM is used to solve regression problems due
to its advantages of no large amount of sample data and
fast training speed. Selakov et al. [29] proposed a novel
hybrid model based on PSO-SVM, which is applied to
short-term electrical load prediction. Zhang et al. [30]
proposed a load prediction method based on SVM with
dragonfly algorithm (DA) in microgrid. For the unpre-
dictability and periodicity of power load, Ma et al. [31]
investigated a prediction model based on SVM with a
modified firefly algorithm (MFA). Lu [32] proposed
surface roughness prediction methods based on SVM with
the artificial bee colony (ABC) optimization algorithm in
the manufacturing process.

Since the selection of key parameters of SVM has a great
influence on the accuracy of the network model, some
swarm intelligence optimization algorithms, including ABC
[33, 34], PSO [29, 35, 36], Artificial Fish Swarms Algorithm
(SFSA) [37], and Differential Evolution (DE) [38, 39], are
applied to optimize these parameters by many researchers.
0e basic idea of these algorithms is to simulate the behavior
of biological groups in nature, in which its own scalability,
robustness, and flexibility are relatively strong [40, 41]. In
2014, Duan and Qiao [42] proposed a new swarm intelli-
gence optimization algorithm, namely, Pigeon-Inspired
Optimization, inspired by pigeon homing behavior in na-
ture. PIO has been widely used in UAV formation [43, 44],
control parameter optimization [45–47], image processing
[48], and life science [49, 50], and it has achieved good
results in experimental applications.

In this paper, a temperature prediction method of PV
panels based on SVM with PIO is introduced. Firstly, on
the basis of analysing the SVM principle, the PIO algo-
rithm is adopted to optimize the SVM parameters, and the
PV panels temperature prediction model is established.
And then, according to the characteristics of particle
velocity change before and after two times, DF is intro-
duced into the PIO algorithm to improve the search ac-
curacy. Finally, in order to verify the prediction
performance of DFPIO-SVM, for the temperature data of
PV panels from the distributed PV power station, the
comparison results of different optimization methods are
given.

0e remainder of this paper is as follows: a multi-
sensor information fusion (MSIF) monitoring system is
introduced in Section 2. 0e principle of SVM and three
comparison optimization methods are given in Section 3.
0e DFPIO-SVM prediction model is proposed in Section
4. 0e simulation example results are performed in
Section 5.

2. MSIF Monitoring System

In this section, we will introduce a MSIF monitoring system
of PV station, which can collect and record data of current,

voltage, temperature of PV panels, and meteorological
information.

2.1. (e Structure of Monitoring System. 0e MSIF moni-
toring system consists of a field data acquisition system, a
wireless data transmission system, and the software manage-
ment system. In Figure 1, the data information from moni-
toring pointA and pointB is transmitted tomonitoring pointC
and then to the monitoring center. Meanwhile, each moni-
toring point can also be used as a relay system. 0e trans-
mission distance between points can be 5 km.0e temperature
of PV panels is transmitted to the monitoring center by the
wireless system, which can provide accurate real-time infor-
mation for the operating and maintenance personnel.

0e field data acquisition system includes a meteoro-
logical monitoring system, temperature sensor, data trans-
mitter, and other equipment. Solar irradiance, ambient
temperature and humidity, wind speed, wind direction, and
atmospheric pressure obtained from sensors are transmitted
to a data monitoring host. 0e digital DS18B20 temperature
sensor is used to measure the temperature of PV panels. By
using the characteristics of a sensor single bus, complex
signal transmission lines are avoided. When measuring the
temperature of PV panels, it is necessary to make a mea-
surement of different positions, and the average temperature
Ta is expressed as

Ta �
T1 + T2 + T3 + T4

4
, (1)

where Ta denotes the average temperature and T1,2,3,4 de-
notes the temperature of different positions.

2.2. (e Data Source. 0e experimental site is a distributed
PV power station in western Jilin, China. 0e area is located
at N45∘31′ and E122∘44′. 0e power station has an output of
12MW.0e annual sunshine duration is 1300 hours and the
average annual power generation is 15.8 million KWh. 0e
PV power station has 46,200 PV panels, which are oriented
toward the south. 0e angle of inclination to the ground is
43∘, and the tilt angle of the fixed bracket is not adjustable.
Two PV panels are installed side by side and the dimension is
1640mm× 990mm× 35mm. 0e MSIF monitoring system
at the experimental site is shown in Figure 2.

2.3. Recorded Temperature Data of PV Panels. 0e data in
this paper were obtained through the MSIF monitoring
system established in a PV power station. 0e monitoring
system recorded the temperature, meteorological informa-
tion, voltage, current, and other data of the PV panels every
15 minutes. 0e prediction model is trained and validated
using 3000 data samples from January to June 2018 under
different weather conditions.

0e open-circuit voltage decreases PV panels with the
increase of temperature, and the voltage temperature co-
efficient is − (210 ∼ 220)mV/ ∘C. Similarly, the peak power
decreases PV panels with the temperature increase, which
directly affects the generation efficiency of PV systems. As
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shown in Figure 3, take the time series with an interval of 15
minutes and the rolling time sample data set is established.
0rough the observation of the curve, it can be concluded
that the temperature change of PV panels is caused by a
variety of factors and has the characteristics of being random
and nonlinear.

3. Methodology

In this section, the principle of SVM will be given in sub-
section 3.1.0ree optimization methods, PSO algorithm, DE
algorithm, and PIO algorithm, will be briefly described in
subsections 3.2, 3.3, and 3.4.
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Figure 1: 0e structure of the MSIF monitoring system.
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Figure 2: 0e MSIF monitoring system at the experimental site.
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3.1. SVM Model. SVM is a data-based machine learning
method, which adopts the principle of risk minimization. It
has good generalization performance and has obvious ad-
vantages in solving small sample problems. In the process of

establishing the SVM model, the training network is firstly
trained with the training sample data, and then the network
is used for later prediction. 0e training sample set
(xi, yi)|it � n1, 2, 3q, h . . ., xn􏽮 􏽯, where xi ∈ Rn, yi ∈ R. 0e
function of SVM is described as follows:

f(x) � w
T

· xi + b, (2)

where wT denotes weight and b denotes offset value. In order
to find the optimal parameters w and b, the function is
constructed:

min
1
2
w

T
w + c 􏽘

n

i�1
ζ i

s.t. yi wxi + bi( 􏼁≥ 1 − ζ i

ζ i ≥ 0, i � 1, 2, 3, . . . , l,

(3)

where parameter c denotes penalty factor and ζ denotes
relaxation variables. Combined with the optimization
principle, equation (3) is transformed as follows:

min
1
2

􏽘

l

i,j�1
a
∗
i − ai( 􏼁 a

∗
j − aj􏼐 􏼑k xi, xj􏼐 􏼑 + ε􏽘

l

i�1
a
∗
i + ai( 􏼁 − 􏽘

l

i�1
yi a
∗
i − ai( 􏼁

s.t. 􏽘
l

i

a
∗
i − ai( 􏼁 � 0

a
∗
i ≥ 0, ai ≥

c

l
, i � 1, 2, 3, . . . , l,

(4)

where k(xi, xj) is the kernel function of SVM and a∗i , ai are
the Lagrange multiplier. 0e RBF kernel function is selected,
and its expression is as follows:

k xi, xj􏼐 􏼑 � exp − g x − xi

����
����
2

􏼒 􏼓, g> 0, (5)

where g is a parameter of the kernel function.

3.2. PSO Algorithm. PSO is a kind of evolutionary compu-
tation, which originated from the research on the hunting
behavior of birds. It has been widely used in function opti-
mization, neural network training, fuzzy system control, and
other applications. 0e velocity and position of a particle are
two important properties, which search for the optimal so-
lution in search space. Firstly, all the particles in space are
assigned initial random positions and initial random veloc-
ities. Secondly, the individual optimal solution for each
particle is calculated. 0en, the individual particle can share
extreme value information with other particles in the particle
swarm. Finally, the optimal solution is sought through the
interaction and information transfer between particles.

3.3. DE Algorithm. DE is developed from the genetic algo-
rithm (GA), an algorithm model that simulates biological

evolution. 0rough the operation of the difference operator,
the population is continuously evolved and iterated to save the
individual with the highest adaptability, which is often used to
find the optimal solution of nonlinear and nondifferentiable
problems, and it has the characteristics of fast speed and good
robustness. DE algorithm approaches to the global optimal
solution through repeated iteration on the population, which
mainly includes population initialization, mutation operation,
crossover operation, and selection operation.

3.4. PIO Algorithm. PIO is a novel intelligence optimization
algorithm for solving global optimization problems, and it is to
simulate the homing behavior of pigeon by the Earth’smagnetic
field and landmarks [42]. When pigeon is far away from its
destination, it uses the Earth’smagnetic to identify the direction.
When pigeon is close to its destination, it uses landmarks for
navigation.

3.4.1. Map and Compass Operator. In the map and compass
operator, the rules are defined with the position Xi and the
velocity Vi of i pigeon, and the positions and velocities in a
D-dimension search space are updated in each iteration. 0e
new position Xi and velocity Vi of i pigeon at the th iteration
can be calculated as follows:
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Figure 3: 0e recorded temperature data of PV panels.
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Vi(n) � Vi(n − 1)∗ e
− Rn

+ rand∗ Xgbest − Xi(n − 1)􏼐 􏼑,

Xi(n) � Xi(n − 1) + Vi(n),

(6)

where R denotes map and compass factor, rand denotes a
random number, and Xgbest denotes the current global best
position.

3.4.2. Landmark Operator. In landmark operator, Np is
used to record the half number of pigeons in each gener-
ation, and Xc(n) is the center position of all pigeons in
generation n. If each pigeon can fly a direct distance to the
destination, the position updating rule for pigeon i − th
iteration is described as follows:

Np(n) �
Np(n − 1)

2
, (7)

Xc(n) �
􏽐 Xi(n)∗ fitness Xi(n)( 􏼁

Np ∗ 􏽐 fitness Xi(n)( 􏼁
, (8)

Xi(n) � Xi(n − 1) + rand∗ Xc(n) − Xi(n − 1)( 􏼁, (9)

where fitness(x) denotes the quality of the pigeon indi-
vidual. For the minimum optimization problems,
fitness(Xi(n)) � 1/(fmin(Xi(n)) + ε). On the contrary,
fitness(Xi(n)) � fmax(Xi(n)).

4. DFPIO-SVM

0e SVM for regression accuracy depends on the parameters
of penalty factor c and kernel function g. 0e selection of
these two parameters is generally obtained through expe-
rience and tends to affect the effect of regression. In order to
improve the regression accuracy of SVM, DFPIO will be
used to optimize the selection of these parameters.

4.1. DFPIO. During the updating iteration of pigeon, the
direction of movement of the pigeon is always to the optimal
position. 0e velocity change of pigeon i at time t is

ΔVi(t + 1) � Vi(t + 1) − Vi(t). (10)

When ΔVi(t + 1)ΔVi(t)< 0, it shows that the pigeon is in
reverse motion at t + 1 and t moment, and the pigeon ve-
locity is too large to pass the current optimal solution at t

moment. At this time, the flying velocity of pigeon should be
reduced to make it close to the optimal solution. In order to
improve the accuracy of the pigeon, we refer to the delay
factor (DF) τ into the position update equation (8). So, the
delay factor τ is given by

τ � τmax −
τmax − τmin( 􏼁

Niter

∗ i, (11)

τ ∈ [0.9, 1]. (12)

According to the changing characteristics of the velocity
before and after the pigeon, DF can dynamically adjust the
flying speed of the pigeon. 0us, the position update can be
rewritten as follows:

Xi(n) � Xi(n − 1) + τVi(n). (13)

4.2. DFPIO-SVM. DFPIO algorithm is used to optimize the
penalty factor c and kernel function g of SVM. 0e pa-
rameters are treated as two particles, which constantly
update their positions and velocities, and their fitness values
are calculated by the objective function to achieve the global
optimum.

An algorithmic implementation for the optimization
process is provided in Algorithm 1.

5. Results

In this section, the Mackey–Glass chaotic time series and
Nonlinear Autoregressive Moving-Average (NARMA) se-
ries are used to verify the performance of DFPIO-SVM.
DFPIO-SVM is compared to original SVM [20], PSO [29],
DE [38], PIO [42], and OPIO [48]. For these prediction
methods, the training number of samples is 900, and the
prediction number of samples is 100. 0e dimension of the
input and output are 5 and 1, respectively. For optimization
methods, the size of the swarm optimization algorithm n is
30, particle vector dimension is 2, the map and compass
factor R is 0.3, and the number of iterations Niter is 30.

5.1. (e Mackey–Glass Chaotic Time Series. 0e Mack-
ey–Glass is a typical chaotic system, which is selected to
verify the prediction performance of DFPIO-SVM. It can be
described by

y(n) � y(n − 1) + 0.1
0.2y(n − 10τ)

1 + y(n − 10τ)
10 − 0.1y(n − 1)􏼠 􏼡,

(14)

where τ is set as 17. 0e Runge–Kutta method is used to
generate the Mackey–Glass time series and the initial
condition (y(0) � 1.2). 0e mean squared errors (MSE) and
root mean squared error (RMSE) are given to analyse the
performance of prediction methods, which can be described
by

MSE �
1
N

􏽘

N

i�1
yn − 􏽢yn( 􏼁

2
, (15)

RMSE �

�����

1
N

􏽘

N

i�1

􏽶
􏽴

yn − 􏽢yn( 􏼁
2 , (16)

where yn denotes target data, 􏽢yn denotes predicted data, and
N is the number of data samples.

0e prediction accuracy of DFPIO-SVM and other
methods in [20, 29, 38, 42, 48] are shown in Table 1, and it
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can be seen that the prediction accuracy of the DFPIO-SVM

is better than that of those methods. 0e average prediction
accuracies of DFPIO-SVM are increased by 84.08%.

For the Mackey–Glass chaotic time series, the prediction
output values of five methods and the target values are
shown in Figure 4. From this figure, we can see that the
DFPIO-SVM fits the curve moderately well. Figure 5 shows
the prediction error of three methods. 0e prediction error
curves of the five methods fluctuate, but the curve of DFPIO-
SVM is the lowest. 0e average prediction errors of SVM,
PSO-SVM, and DFPIO-SVM are 0.03306, 0.01434, and
0.01373, respectively.

0e trained SVM model is used to predict the
Mackey–Glass chaotic time series. Comparing the fitness
results of MSE shown in Figure 6, it can be seen that the
DFPIO algorithm achieves the smallest MSE within 23rd
iterations. PIO algorithm achieves the same MSE as
DFPIO at the 15th iteration. In the iteration process, the
fitness values of PSO are higher than PIO and DFPIO.

5.2. NARMA Series. At the same time, a NARMA model is
given to verify the prediction performance of DFPIO-SVM,
which can be described as follows:

y(n) � 0.3y(n − 1) + 0.05y(n − 1) 􏽘
10

i�1
y(n − i)⎛⎝ ⎞⎠

+ 1.5u(n − 10)u(n − 1) + 0.1,

(17)

where y(n) and u(n) are output and input. 0e input u(n) is
independent identically distributed random samples, and its
value is in the range [0, 1]. 0e output y(n) is the value
initialized in the range [− 1, 1].

For the NARMA series, the prediction accuracies of the
five methods are shown in Table 2. It is apparent from this
table that DFPIO-SVM can be compared with other
methods, having better prediction performance.0e average
prediction accuracy of DFPIO-SVM increased by 2.31%.

Figure 7 shows the target values and prediction output
values of three methods, and the corresponding error curve
is shown in Figure 8.0e prediction results of three methods
fluctuated greatly, and the prediction of peak value is not
accurate. 0e overall trend of the DFPIO-SVM model is
close to the actual prediction data, compared with the other
two predictionmethods, it has a better fitting degree with the
actual data. 0e average prediction errors of DE-SVM,

Input: number of pigeons n, number of iterations for optimization Niter, the map and compass factor R;
Output: trained DFPIO-SVM;

(1) Step 1: initialize Niter and n pigeons positions at random ∈[0.01, 20];
(2) Step 2: compute the fitness of each pigeon;
(3) Step 3: update velocity Vi and position Xi according to equations (7) and (15);
(4) Step 4: update position Xi according to equation (11);
(5) Step 5: update c and g;
(6) Step 6: obtain optimal MSE.

ALGORITHM 1: DFPIO-SVM algorithm.
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OPIO-SVM, and DFPIO-SVM are 0.01537, 0.01516, and
0.01466, respectively.

In Figure 9, we can see that the DFPIO algorithm
achieves the smallest MSE within the 25th iterations. PIO
algorithm achieves the same MSE as PSO at the 15th iter-
ation. With the increase in iteration, it can be seen that the

delay factor increases the global search capability of the PIO
algorithm.

5.3. (e Temperature of PV Panels. To further verify the
prediction performance of DFPIO-SVM for the temperature
of PV panels, the field temperature data collected in PV
power station from Jilin are tested in this paper. 0e mean
absolute percentage error (MAPE) and its expression are as
follows:

MAPE �
1
N

􏽘

N

i�1

yn − 􏽢yn

yn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%, (18)

where yn denotes target data, 􏽢yn denotes predicted data, and
N is the number of data samples.

As can be seen from Table 3, DFPIO-SVM achieved the
smallest MAPE value. After executing the DFPIO algorithm,
search and get the optimal SVM parameter c � 10.2261,
g � 0.6090. It can be intuitively seen that the established
prediction algorithm is more effective and less affected by
sample data. 0e DFPIO-SVM algorithm can be used to find
the optimal parameters of SVM more easily and efficiently,
which improves the prediction accuracy of the model.

0e best parameters of five optimization methods are
brought into the SVM model for PV panels temperature
prediction.0e predicted results are shown in Figure 10, and

Table 1: Comparison of prediction accuracy for the Mackey–Glass time series.

Method
Optimized parameters

MSE RMSE Accuracy improvement (%)
c g

SVM 0.1 1 4.1113e − 04 2.03e − 02 —
DE-SVM 17.7584 1.5187 1.2462e − 04 1.12e − 02 69.69
PSO-SVM 16.2988 0.6093 6.6701e − 05 8.18e − 03 83.78
PIO-SVM 18.6471 0.6140 6.6069e − 05 8.13e − 03 83.90
OPIO-SVM 16.8580 0.6129 6.6346e − 05 8.14e − 03 83.86
DFPIO-SVM 16.7831 0.6151 6.5455e − 05 8.09e − 03 84.08
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Table 2: Comparison of prediction accuracy for NARMA.

Method
Optimized parameters

MSE RMSE Accuracy improvement (%)
c g

SVM 0.1 1 1.0155e − 05 3.187e − 03 —
DE-SVM 1.8581 13.3556 1.0340e − 05 3.216e − 03 − 1.82
PSO-SVM 0.0719 7.9756 1.0141e − 05 3.184e − 03 0.13
PIO-SVM 0.6372 12.5727 1.0140e − 05 3.184e − 03 0.14
OPIO-SVM 0.0772 13.4447 1.0075e − 05 3.174e − 03 0.79
DFPIO-SVM 0.0130 10.0047 9.9202e − 06 3.150e − 03 2.31
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the prediction relative error is shown in Figure 11.
According to the running results of the program, the pre-
diction results based on DFPIO-SVM are in better agree-
ment with the target.0e average percentage error of the test
prediction is 0.2883%. 0e simulation results show that the
DFPIO-SVM can achieve high accuracy in the temperature
prediction of PV panels.

A temperature data set of PV panels is used for SVM
training in Figure 12. 0e results show that DFPIO-SVM
converges faster than other algorithms. DFPIO-SVM algo-
rithm achieves the smallest MSE at the 14th iteration, and it
can achieve the least iterations.

6. Conclusions

In this paper, a novel DFPIO algorithm is proposed, which is
used to solve the problem of SVM parameters optimization.
By referring the delay factor to the position updating
equation, the convergence accuracy of the PIO algorithm is
improved. Meanwhile, the predictive performance of the
proposed algorithm is verified by the Mackey–Glass chaotic
time series and NARMA series. In order to further analyse
the application effect of the proposed model in the pre-
diction temperature of PV panels, a MSIF monitoring
system is established in a PV power station from Jilin. 0e
temperature data of PV panels, from January to June 2018,
are selected for the input of the prediction model. Com-
paring with other optimization methods, the effectiveness of
the DFPIO algorithm is verified. 0ese results show that the
DFPIO-SVM model can be used to better predict the
temperature of PV panels and have strong generalization
ability.
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