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+is paper deals with the problem of stochastic stability for a class of neutral distributed parameter systems withMarkovian jump.
In this model, we only need to know the absolute maximum of the state transition probability on the principal diagonal line; other
transition rates can be completely unknown. Based on calculating the weak infinitesimal generator and combining Poincare
inequality and Green formula, a stochastic stability criterion is given in terms of a set of linear matrix inequalities (LMIs) by the
Schur complement lemma. Because of the existence of the neutral term, we need to construct Lyapunov functionals showingmore
complexity to handle the cross terms involving the Laplace operator. Finally, a numerical example is provided to support the
validity of the mathematical results.

1. Introduction

Time-delay models are popular in all kinds of fields such as
demography, biology, economics, and chemistry. Neutral
systems as a special type of time-delay systems are often
encountered because these systems have a wider application
value than the general time-delay systems in many dy-
namical systems such as bioengineering systems, dynamic
systems of offshore platform, and dynamic economic
models. Hence, there are so many investigations about time-
delay systems [1–7]. As we all know, the systems inevitably
receive the impact of sudden changes in the environment,
abrupt failure of components, unexpected changes in system
parameters, and so on.+ese random diversifications usually
follow the law of Markov jump. +ese systems are called
Markovian jump systems. Markovian jump systems spur
investigators’ consuming interest [8, 9].

+e stability and performance of stochastic systems are
quite different from those of deterministic systems [10–12].
More recently, neutral-type Markovian jump systems have
aspirated considerable attention. All kinds of analysis methods
have been used to discover the stochastic stability criteria of

neutral-type Markovian jump systems such as Lyapu-
nov–Krasovskii functional approach, reciprocally convex
combination inequality method, and stochastic analysis theory
in [13–16]. For less conservative results, the delay-dependent
stability has been discussed in [17–20]. Other control methods
have also been extensively and thoroughly studied such as
robust delay-dependentH∞ control [21, 22], nonfragile control
[23–25], sliding mode control [26, 27], H∞ sliding mode
control [28], and the references therein.

+e transition rates in many references mentioned above
have been supposed to be completely known. But it is very
hard to acquire the accurate transfer probability, and even if
the exact transfer probability can be obtained, the cost is also
very huge. So the study of Markovian jump systems with
general unknown transition rates [29–50] has appealed to a
great many scholars. Stability, stabilization, and robust
control of Markovian jump systems with partially unknown
transition have been reported in [29–33]. Stability analysis for
neutral Markovian jump systems with partially unknown
transition probabilities has been proposed in [34, 35]. Kao
et al. and Yang et al. [36, 37] have settled the delay-dependent
stability for Markovian jump systems with partially unknown
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transition probabilities and Markovian jump neutral sto-
chastic systems with general unknown transition rates, re-
spectively. Singular Markovian jump systems with general
incomplete transition probabilities have been presented in
[38–40]. Finite-time stochastic stability and control of Mar-
kovian jump systems with general incomplete transition
probabilities have been discussed in [41–44]. Stabilization of
discrete-time Markovian jump systems with partially un-
known transition probabilities was probed in [45].

In parallel, many researchers have extensively studied the
time-delay distributed parameter systems [46–54]. +ree main
approaches of time-delay distributed parameter systems are
semigroup theory [47], matrix norm theory [48], and linear
matrix inequality theory (LMI) [49]. +e semigroup method
cannot guarantee the system to be of a fine dynamic character
and performance index undergoing two transformations. It is
not easy to apply the results to practical problems by matrix
norm. +e problem of exponential stability and stabilization
[50], sliding mode control [51], and feedback control [52] has
been proposed in terms of the linear matrix inequality ap-
proach. However, less attention has been paid to the distributed
parameter systems with Markovian jump, especially neutral
distributed parameter systems with Markovian jump which
requires a lot of research to be performed.

Based on previous discussions, we are considering the
problem of stochastic stability of a class of Markovian
jumping neutral distributed parameter systems in this paper.
+e linear matrix inequality approach together with the
Lyapunov functional method is employed to develop sto-
chastic stability criteria for the described systems.+e results
are given in a group of linear matrix inequalities (LMIs).

2. Problem Formulation and Preliminaries

Consider the neutral distributed parameter systems with
Markovian jump of the following form:

z

zt
[W(x, t) − C(r(t))W(x, t − σ)] � D(r(t))ΔW(x, t)

+ A(r(t))W(x, t)

+ A1(r(t))W(x, t − τ),

(1)

where (x, t) ∈ Ω × R+, Ω � x, ‖x‖< l< +∞{ } ⊂ Rm is the
bounded domain with smooth boundary zΩ, and mesΩ> 0.
Also,

∇W(x, t) � col ∇w1(x, t),∇w2(x, t), . . . ,∇wn(x, t)( ,

(2)

where ∇ � ((z/zx1), (z/zx2), . . . , (z/zxm)) is the gradient
operator.
W(x, t) � col(w1(x, t), w2(x, t), . . . , wn(x, t)) ∈ Rn is the
state function, and Δ � 

m
k�1z

2/zx2
k is the Laplace operator

on Ω.
+e initial value and boundary value conditions satisfy

W(x, t) � 0, (x, t) ∈ zΩ ×[− c, +∞),

W(x, t) � ψ(x, t), (x, t) ∈ Ω ×[− c, 0],

zW(x, t)

zn
� 0, (x, t) ∈ zΩ ×[− c, +∞),

(3)

where c � max σ, τ{ } and σ > 0 and τ > 0 are constants. n is
the unit outward normal vector of zΩ, and ψ(x, t) is the
smooth function. τ > 0, σ > 0, and D(r(t)) > 0 are constants;
A(r(t)), C(r(t)), and A1(r(t)) are constant matrices.

Let r(t), t≥ 0{ } be a right-continuous Markov process
and take values in a finite set F � 1, 2, . . . , N{ } with tran-
sition probability matrix Π � (πij); the mode transition
probabilities are defined as follows:

Pr(r(t + h) � j | r(h) � i) �
πijh + o(h), i≠ j,

1 + πiih + o(h), i � j,


(4)

where h> 0 and limδ⟶0(o(h)/h) � 0. πij ≥ 0, i≠ j donates
the transition rate from mode i to mode j in the time interval
h and πii � − 

N
j�1,j≠iπij. For each r(t) � i ∈ F, let A(r

(t)) � Ai, A1(r(t)) � A1i, D(r(t)) � Di, and C(r(t)) � Ci.
+en, we can represent system (1) in the following form:

z

zt
W(x, t) − CiW(x, t − σ)  � DiΔW(x, t) + AiW(x, t)

+ A1iW(x, t − τ).

(5)

Lemma 1 (see [53] (Green formula)). Let Ω ⊂ Rn be the
bounded domain with smooth boundary zΩ, n is the unit
outward normal vector of zΩ, and G ⊂ Ω is the smooth
subdomain. If u, v ∈ C2(G), then


G

uΔv dx � 
zΩ

u
zv

zn
ds − 

Ω
∇u∇v dx, (6)

where ∇ is the Hamilton operator and ds is the area element
over the boundary region.

Lemma 2 (see [54] (Friedrichs’s inequality)). Let w ∈ C1
0(Ω)

and Ω be included in the closed region
Ω1: 0≤ xi ≤ l(i � 1, 2, . . . , n). 7en,


Ω

w
2
(x)dx≤

Ω


n

i�1

zw

zx
 

2

dx � c
Ω

|∇w|
2dx, (7)

where c � l2/n.

Lemma 3 (see [55]). Let V1, V2, andV3 be the real matrices
and V3 � VT

3 > 0; then, for an arbitrary given scalar α> 0, the
following inequality holds:

V
T
2V1 + V

T
1V2 ≤ α

− 1
V

T
1V

− 1
3 V1 + αV

T
2V3V2. (8)
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3. Main Results

Theorem 1. Given matrices Ai, A1i, andCi, time-delay con-
stants τ > 0 and σ > 0 and constantDi > 0, the neutral distributed
parameter systems with Markovian jump (5) is stochastically
stable. If there exist positive symmetric matrices Pi, Qi, M, N, R,
and Z and positive scalars αi, such that for any Markovian jump
mode i ∈ F, the following linear matrix inequalities (LMIs) hold:

αi − 2Di( I DiCi

DiC
T
i − αiI

 < 0,

Θ �

Π1 0 − AT
i Ci 0 0 0

0 − Pi − AT
1iCi 0 0 0

∗ ∗ − Qi 0 0 0

0 0 0 Π2 AT
1i DiCi − CT

i Ai

0 0 0 ∗ − M − CT
i A1i

0 0 0 ∗ ∗ − N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(9)

where β � max |πii|, i ∈ F , Π1 � AT
i + Ai + Pi + Qi + βτR +

βσZ, Π2 � M + N + Ai + AT
i − 2DiI,

Pi <R, (10)

Qi <Z. (11)

Proof. For system (5), we construct the following stochastic
Lyapunov functional:

Vi(t, W(x, t)) � 
9

n�1
Vin, (12)

where

V1i � 
Ω

Y
T
(x, t)Y(x, t)dx, whereY(x, t) � W(x, t)

− CiW(x, t − σ),

Vi2 � 
Ω


t

t− τ
W

T
(x, θ)PiW(x, θ)dθ dx,

Vi3 � 
Ω


t

t− σ
W

T
(x, θ)QiW(x, θ)dθ dx,

Vi4 � 
Ω


t

t− τ
∇WT

(x, θ) M ∇WT
(x, θ) 

T
dθ dx,

Vi5 � 
Ω


t

t− σ
∇WT

(x, θ) N ∇WT
(x, θ) 

T
dθ dx,

Vi6 � 
Ω
∇YT

(x, θ)  ∇YT
(x, θ) 

T
dx,

Vi7 � αi
Ω


t

t− σ
(ΔW(x, θ))

TΔW(x, θ)dθ dx,

Vi8 � βi
Ω


0

− τ


t

t+s
W

T
(x, θ)RW(x, θ)dθ ds dx,

Vi9 � βi
Ω


0

− σ


t

t+s
W

T
(x, θ)ZW(x, θ)dθ ds dx.

(13)

Let L be the weak infinitesimal generator; then, we
calculate

LVi(t, W(x, t)) � 

9

n�1
LVin, (14)

where

LV1i � 2
Ω

Y
T
(x, t)

zY(x, t)

zt
dx

� 2Di
Ω

W
T
(x, t)ΔW(x, t)dx

+ 
Ω

W
T
(x, t) A

T
i + Ai W(x, t)dx

+ 2
Ω

W
T
(x, t)A1iW(x, t − τ)dx

− 2Di
Ω

W
T
(x, t − σ)C

T
i ΔW(x, t)dx

− 2
Ω

W
T
(x, t − σ)C

T
i AiW(x, t)dx

− 2
Ω

W
T
(x, t − σ)C

T
i A1iW(x, t − τ)dx.

(15)

Applying Lemma 1 and Lemma 2,

2Di
Ω

W
T
(x, t)ΔW(x, t)dx � 

n

k�1


n

l�1


zΩ
wk(x, t)

zwl(x, t)

zn
ds

− 
Ω
∇wk(x, t)∇wl(x, t)dx

� − 

n

k�1


n

l�1

Ω
∇wk(x, t)∇wl(x, t)dx

� − 2Di
Ω
∇WT

(x, t) ∇WT
(x, t) 

T
dx,

(16)

− 2Di
Ω

W
T
(x, t − σ)C

T
i ΔW(x, t)dx

� − 2Di
Ω



n

l�1


n

m�1
wm(x, t − σ)cml∇ · ∇wl(x, t)( dx

� 2Di 

n

l�1


n

m�1

Ω
∇wm(x, t − σ)cml · ∇wl(x, t)dx

� 2Di 

n

l�1


n

m�1


m

k�1

Ω

zwm(x, t − σ)

zxk

cml

zwl(x, t)

zxk

dx

� 2Di
Ω
∇WT

(x, t − σ)Ci ∇W
T
(x, t) 

T
dx.

(17)

Substituting (16) and (17) into (15), we have
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LV1i � − 2Di
Ω
∇WT

(x, t) ∇WT
(x, t) 

T
dx

+ 
Ω

W
T
(x, t) A

T
i + Ai W(x, t)dx

+ 2
Ω

W
T
(x, t)A1iW(x, t − τ)dx

+ 2Di
Ω
∇WT

(x, t − σ)C
T
i ∇W

T
(x, t) 

T
dx

− 2
Ω

W
T
(x, t − σ)C

T
i AiW(x, t)dx

− 2
Ω

W
T
(x, t − σ)C

T
i A1iW(x, t − τ)dx,

(18)

LVi2(t, W(x, t)) � 
Ω

W
T
(x, t)PiW(x, t)dx

− 
Ω

W
T
(x, t − τ)PiW(x, t − τ)dx

+ 
Ω


t

t− τ
W

T
(x, θ) 

N

j�1
πijPj

⎛⎝ ⎞⎠W

· (x, θ)dθ dx.

(19)

Noticing πij > 0(i≠ j) and combining Pj <R and
β � max |πii|, i ∈ F , we derive the following inequality:


Ω


t

t− τ
W

T
(x, θ) 

N

j�1
πijPj

⎛⎝ ⎞⎠W(x, θ)dθ dx

≤
Ω


t

t− τ
W

T
(x, θ) 

N

j�1,i≠j
πijPj

⎛⎝ ⎞⎠W(x, θ)dθ dx

� − πii
Ω


t

t− τ
W

T
(x, θ)PjW(x, θ)dθ dx

≤ β
Ω


t

t− τ
W

T
(x, θ)PjW(x, θ)dθ dx

≤ β
Ω


t

t− τ
W

T
(x, θ)RW(x, θ)dθ dx.

(20)

+en,

LVi2(t, W(x, t))≤
Ω

W
T
(x, t)PiW(x, t)dx

− 
Ω

W
T
(x, t − τ)PiW(x, t − τ)dx

+ β
Ω


t

t− τ
W

T
(x, θ)RW(x, θ)dθ dx.

(21)

For the same reason, we can also obtain


Ω


t

t− σ
W

T
(x, θ) 

N

j�1
πijQj

⎛⎝ ⎞⎠W(x, θ)dθ dx

≤ β
Ω


t

t− σ
W

T
(x, θ)QjW(x, θ)dθ dx

≤ β
Ω


t

t− σ
W

T
(x, θ)ZW(x, θ)dθ dx.

(22)

So
LVi3(t, W(x, t)) � 

Ω
W

T
(x, t)QiW(x, t)dx

− 
Ω

W
T
(x, t − σ)QiW(x, t − σ)dx

+ 
Ω


t

t− σ
W

T
(x, θ) 

N

j�1
πijQj

⎛⎝ ⎞⎠

· W(x, θ)dθ dx

≤
Ω

W
T
(x, t)QiW(x, t)dx

− 
Ω

W
T
(x, t − σ)QiW(x, t − σ)dx

+ β
Ω


t

t− σ
W

T
(x, θ)ZW(x, θ)dθ dx,

(23)

LVi4 � 
Ω
∇WT

(x, t)M ∇WT
(x, t) 

T
dx

− 
Ω
∇WT

(x, t − τ)M ∇WT
(x, t − τ) 

T
dx,

(24)

LVi5 � 
Ω
∇WT

(x, t)N ∇WT
(x, t) 

T
dx

− 
Ω
∇WT

(x, t − σ)N ∇WT
(x, t − σ) 

T
dx,

(25)

LVi6 � 2
Ω
∇

zYT(x, t)

zt
 

T

∇YT
(x, t) 

T
dx

� − 2
Ω

zYT(x, t)

zt
ΔYT

(x, t) 
T
dx

� − 2Di
Ω

(ΔW(x, t))
TΔW(x, t)dx

+ 2Di
Ω

(ΔW(x, t))
T
CiΔW(x, t − σ)dx

− 2
Ω

W
T
(x, t)A

T
i ΔW(x, t)dx

− 2
Ω

W
T
(x, t − τ)A

T
1iΔW(x, t)dx

+ 2
Ω

W
T
(x, t)A

T
i CiΔW(x, t − σ)dx

+ 2
Ω

W
T
(x, t − τ)A

T
1iCiΔW(x, t − σ)dx.

(26)
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+rough applying Lemma 3, the following inequality
holds:

2Di
Ω

(ΔW(x, t))
T
CiΔW(x, t − σ)dx

≤ α− 1
i 
Ω

(ΔW(x, t))
T
D

2
i CiC

T
i ΔW(x, t)dx

+ αi
Ω

(ΔW(x, t − σ))
T
(ΔW(x, t − σ))dx.

(27)

Taking advantage of Lemma 1 and Lemma 2, we obtain

− 2
Ω

W
T
(x, t)A

T
i ΔW(x, t)dx � 2

Ω
∇WT

(x, t) Ai ∇W
T
(x, t) 

T
dx, (28)

2
Ω

W
T
(x, t)A

T
i CiΔW(x, t − σ)dx � − 2

Ω
∇WT

(x, t) C
T
i Ai ∇W

T
(x, t − σ) 

T
dx, (29)

− 2
Ω

W
T
(x, t − τ)A

T
1iΔW(x, t)dx � 2

Ω
∇WT

(x, t − τ) A1i ∇W
T
(x, t) 

T
dx, (30)

2
Ω

W
T
(x, t − τ)A

T
1iCiΔW(x, t − σ)dx � − 2

Ω
∇WT

(x, t − τ) C
T
i A1i ∇W

T
(x, t − σ) 

T
dx. (31)

Combining (26)–(31) together yields

LVi6 ≤
Ω

(ΔW(x, t))
T α− 1

i D
2
i CiC

T
i − 2DiI ΔW(x, t)dx

+ αi
Ω

(ΔW(x, t − σ))
T
(ΔW(x, t − σ))dx

+ 2
Ω
∇WT

(x, t) Ai ∇W
T
(x, t) 

T
dx

+ 2
Ω
∇WT

(x, t − τ) A1i ∇W
T
(x, t) 

T
dx

− 2
Ω
∇WT

(x, t) C
T
i Ai ∇W

T
(x, t − σ) 

T
dx

− 2
Ω
∇WT

(x, t − τ) C
T
i A1i ∇W

T
(x, t − σ) 

T
dx,

(32)

LVi7 � αi
Ω

(ΔW(x, t))
TΔW(x, t)dx

− αi
Ω

(ΔW(x, t − σ))
T
(ΔW(x, t − σ))dx,

(33)

LVi8 � βτ
Ω

W
T
(x, t)RW(x, t)dx

− β
Ω


t

t− τ
W

T
(x, θ)RW(x, θ)dθ dx,

(34)

LVi9 � βσ
Ω

W
T
(x, t)ZW(x, t)dx

− β
Ω


t

t− σ
W

T
(x, θ)ZW(x, θ)dθ dx.

(35)

Synthesizing (18), (21), (23)–(25), and (32)–(35), the
following inequality holds:

LV(t, W(x, t))≤
Ω

(ΔW(x, t))
T αiI + α− 1

i D
2
i CiC

T
i

− 2DiIΔW(x, t)dx

+ 
Ω

W
T
(x, t)Π1W(x, t)dx

+ 
Ω
∇WT

(x, t)Π2 ∇W
T
(x, t) 

T
dx

− 
Ω

W
T
(x, t − τ)PiW(t − τ)dx

− 
Ω

W
T
(x, t − σ)QiW(t − σ)dx

− 
Ω
∇WT

(x, t − τ)M ∇WT
(x, t − τ) 

T
dx

− 
Ω
∇WT

(x, t − σ)N ∇WT
(x, t − σ) 

T
dx

+ 2
Ω
∇WT

(x, t − σ) DiC
T
i − A

T
i Ci 

· ∇WT
(x, t) 

T
dx

+ 2
Ω
∇WT

(x, t − τ) A1i ∇W
T
(x, t) 

T
dx

− 2
Ω
∇WT

(x, t − τ) C
T
i A1i

· ∇WT
(x, t − σ) 

T
dx

− 2
Ω

W
T
(x, t − σ)C

T
i AiW(x, t)dx

− 2
Ω

W
T
(x, t − σ)C

T
i A1iW(x, t − τ)dx.

(36)
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Select appropriate αi > 0 such that αiI + α− 1
i D2

i

CiC
T
i − 2DiI< 0, then we transform it into (9) by the Schur

complement lemma.
Set

X(t) �

W(x, t)

W(x, t − τ)

W(x, t − σ)

∇WT(x, t)( 
T

∇WT(x, t − τ)( 
T

∇WT(x, t − σ)( 
T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

+en,

LV(x, W(x, t))≤
Ω

X
T
(t)ΘX(t)dx < 0. (38)

+e proof is concluded. □

Remark 1. Because of the simultaneous existence of neutral
term and Markov jump, the stochastic stability of neutral
distributed parameter systems with jump is given by finding
the maximum value of absolute value on the main diagonal
of the state transition probability matrix. Compared with the
general time-delay system, the derivation process of the
system is complex, but the conclusion is simple.

4. Examples

Consider a neutral distributed parameter system (5) with
two Markovian jump modes and the parameters as follows:

A1 �
− 1 0

0 − 0.9
 ,

A2 �
− 1 0

0 − 0.1
 ,

A11 �
1 0.1

− 0.5 1
 ,

A12 �
− 1 2

0 − 1
 ,

C1 �
− 0.3 0.5

0 − 0.2
 ,

C2 �
− 0.2 0.3

− 0.1 − 1.6
 ,

D1 � D2 � 1,

τ � 0.1,

σ � 0.2.

(39)

+e transition rate matrix is defined by

Π �
− 1 1

0.5 − 0.5
 . (40)

Obviously, the absolute maximum of the principle di-
agonal line is 1. We get feasible solutions by solving linear
matrix inequalities (9)–(12) in +eorem 1 and obtain the
following parameters:

M �
2.4183 0.3114

0.3114 0.4770
 ,

N �
0.6491 0.0022

0.0022 1.1412
 ,

P1 �
17.3237 1.3197

1.3197 21.9271
 ,

P2 �
35.0493 15.3697

15.3697 80.9490
 ,

Q1 �
0.0358 − 0.0829

− 0.0829 0.2264
 ,

Q2 �
0.0844 − 0.1372

− 0.1372 0.5661
 ,

R �
5.2693 0.2587

0.2587 3.0645
 ,

Z �
3.6731 0.2179

0.2179 1.4507
 .

(41)

Obviously matrices P1, P2, Q1, Q2, M, N, R, andZ are
positive. +e effectiveness of the method of +eorem 1 is
illustrated.

5. Conclusion

First, we choose a set of appropriate Lyapunov stochastic
functionals; some of them show more complexity in dealing
with the neutral cross terms containing the Laplace operator.
+en, by taking advantage of boundary conditions, Green
formula, and Schur complement lemma, we obtain a sufficient
condition for stochastic stability of the studied model in this
paper via linearmatrix inequalities. At last, a numerical example
is given to prove the effectiveness of the proposed method.
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