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 is paper studies an advanced intelligent recognition method of underwater target based on unmanned underwater vehicle (UUV) 
vision system.  is method is called kernel two-dimensional nonnegative matrix factorization (K2DNMF) which can further improve 
underwater operation capability of the UUV vision system. Our contributions can be summarized as follows: (1) K2DNMF intends 
to use the kernel method for the matrix factorization both on the column and row directions of the two-dimensional image data in 
order to transform the original low-dimensional space with nonlinearity into a higher dimensional space with linearity. (2) In the 
K2DNMF method, a good subspace approximation to the original data can be obtained by the orthogonal constraint on column basis 
matrix and row basis matrix. (3)  e column basis matrix and row basis matrix can extract the feature information of underwater 
target images, and an e�ective classi�er is designed to perform underwater target recognition. (4) A series of related experiments were 
performed on three sets of test samples collected by the UUV vision system, the experimental results demonstrate that K2DNMF 
has higher overall target detection accuracy than the traditional underwater target recognition methods.

1. Introduction

In the recent decades, more and more attention has been paid 
to the target detection by using UUV vision system [1, 2].  e 
underwater target detection aims to hunting and processing the 
target of interest, which may be a good way to eliminate poten-
tial threats and avoid the damage [3, 4]. For a long time, many 
scholars have devoted themselves to the development of UUV 
vision technology and thus, many e�ective methods for UUV 
vision technology have been developed and applied to deal with 
problems in the real environment [5, 6]. Among these studies, 
the UUV vision system-based target detection is one of the most 
concerned topics in the �eld of UUV vision technology, the 
three-dimensional of UUV model equipped with vision system 
is shown in Figure 1.  e traditional model-based target detec-
tion method largely depends on the prior knowledge of the 
detection target, but the knowledge acquisition in connection 
with the detection target is o�en very di¡cult, which limits the 
application of the model-based target detection method in prac-
tical problems.  erefore, the urgent need for research methods 
on images data itself, namely, the desire for target detection 
based on algebraic methods has emerged, which has led to the 
target detection techniques of multi-variable statistical analysis. 

Such as principal component analysis (PCA) [7] and two-di-
mensional principal component analysis (2DPCA) [8, 9].

It is well known that besides the linear relations, the non-
linear structures are also hidden among the variables of image 
data which are di¡cult to be described.  erefore, in the past 
decades, kernel method has been rapidly developed as a new 
technology for processing nonlinear data. By using the kernel 
method, the original input image data is mapped to a high-di-
mensional or in�nite-dimensional Hilbert space called a feature 
space where the image data structure in the high-dimensional 
space is linear. In addition, by introducing some special kernel 
functions, the inner product in the feature space can be calcu-
lated without considering the nonlinear mapping. For example, 
Xie and Lam proposed single-sample face recognition method 
by using kernel PCA [10]; Sun et al. proposed an e�ective 
K2DPCA approach [11]. Armin et al. proposed a face recogni-
tion algorithm based on a block-wise 2D kernel PCA [12]. 
However, none of the above methods can ensure that the 
obtained matrix factors are nonnegative, and the basic compo-
nents representing local features cannot be extracted due to the 
holistic nature of these proposed methods.

To seek solution for this problem, a new subspace method 
called nonnegative matrix factorization (NMF) [13–16] was 
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proposed. At present, NMF algorithm has been smoothly 
applied in the �eld of pattern recognition and image process-
ing. Di�erent from the traditional matrix factorizations, the 
core objective of the NMF is to �nd the product of two non-
negative matrix factors which is then used as the approxima-
tion to original data matrix. It is precisely the introduction of 
the nonnegative conditional constraints on the matrix factor, 
so that the local features learned by NMF learning can recon-
struct the original image data information through superim-
position method, and the subtraction operation is no longer 
needed to eliminate some information. However, there are still 
two obvious shortcomings in the application of NMF algo-
rithm in the �eld of target recognition. First, the two-dimen-
sional image matrix must be transformed into a 
one-dimensional image vector, which can cause the problem 
of large dimension. Second, the matrix-to-vector transforma-
tion may result in the loss of information hidden within the 
two-dimensional image matrix.  erefore, in order to solve 
the two problems, the 2DNMF [17–20] method was invented. 
2DNMF considers the column and row information of the 
image matrix in two direction and �nds the nonnegative 
matrix factors in two directions.  erefore, comparing to the 
NMF [15] method, 2DNMF is better than NMF in computa-
tional e¡ciency and detection accuracy.

Although 2DNMF [17, 18] has been successfully applied 
to the �eld of the target detection, it does not perform well 
when image data contains a strong nonlinear characteristic. 
For this purpose, the kernel two-dimensional nonnegative 
matrix factorization (K2DNMF) has been proposed, which is 
a nonlinear extension of standard two-dimensional nonneg-
ative matrix factorization. In addition, this paper is not simply 
introducing the idea of kernel method, we explore the di�erent 
interpretations of K2DNMF when column basis matrix factors 
are restricted to having di�erent properties. Meanwhile, 
K2DNMF not only maintains the nonnegative and low-rank 
properties of the column basis matrix factor and the row basis 
matrix factor, but also exerts the orthogonal constraint on 
these two matrix factors respectively leads to a good subspace 
approximation of the original data matrix in the feature space. 
In the phase of underwater target detection, K2DNMF could 
accurately extract the e�ective information of the underwater 
target and identify the target with an e�ective classi�er, thereby 
reducing the computational complexity. Experimental results 
demonstrated that in comparison with the traditional 

underwater target detection method, K2DNMF had better 
feature extraction ability and higher detection accuracy for 
underwater target images collected by UUV vision system.

 e remainder of the paper is organized as follows: In 
Section 2, we brieªy reviewed the feature mapping method. 
In Section 3, the K2DNMF method was proposed and its algo-
rithm was described. In Section 4, the underwater image data 
collected by the UUV vision system was used to evaluate the 
performance of the K2DNMF method for underwater targets 
detection. Finally, a brief conclusion was summarized.

2. Feature Mapping

 e advantage of feature mapping is that it can transform the 
nonlinear relationship of sample data in low-dimensional 
space into a linear relationship in high-dimensional space [21]. 
In addition, by introducing a kernel function, one can avoid 
carrying out the feature mapping and compute the inner prod-
uct in the feature space. More knowledge about feature map-
ping and kernel functions are introduced in the following part 
of this section.

Consider � underwater original training image samples 
�� (� = 1, 2, . . . ,�), denoted the �� is a � by � matrix, we align 
the � original training images into an augmented matrix �
which can be written as follows:

where �� ∈ R�×1 represents the kth column vector of the aug-
mented matrix �.  erefore, it can be easily seen that the 
dimension of the augmented matrix � is the � by ��. Each 
data vector can be transfer to a higher-dimensional or even 
in�nite-dimensional feature space by the following mapping 
function �.

 us, in the feature space, the augmented matrix can be denoted 
by �(�) = [�(�1), . . . , �(��), . . . , �(���–�+1), . . . , �(���)].  e 
mapping mode is also called kernel mapping, the kernel matrix 
� is de�ned as:

where �⟨∗, ∗⟩ representative the kernel function. In feature 
space, data standardization can be done through mean cen-
tering and variance scaling of kernel matrix � [21].

where 1��×�� = (1/��)[1��]��×���,� ∈ R��×��, and ��(∗)
denotes the trace of matrix.

(1)

� = [�1,�2, . . . ,��]
= [�11, . . . ,��1, . . . ,�1�, . . . ,���]
= [�1, . . . ,��, . . . ,���–�+1, . . . ,���],

(2)��
��→ �(��).

(3)
� = �(�)��(�) = [�(��)�(��)]��,���,�=1 = [�⟨��,��⟩]

��,��
�, �=1 ,

(4)�̃ = � −�1��×�� − 1��×��� + 1��×���1��×��,

(5)�̃� = �̃
��(�̃)/��,

Figure 1:  ree-dimensional model of UUV equipped with vision 
system.
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3. Kernel 2DNMF

Generally, concerning with algorithms on the matrix decom-
position of two-dimensional image data, such as BDPCA [22, 
23] and RC2DPCA [24] algorithms that divide the original 
data space along both directions in the row and column into 
several subspaces, attempt to �nd the subspace approximation 
for the original data along both directions in the row and col-
umn. In this section, the augmentation matrix �(�) will be 
decomposed to �nd low-rank matrices in both the column 
and row directions of the high-dimensional feature space, 
thereby establishing a model for underwater target 
detection.

3.1. Column Direction Decompose of K2DNMF. Similar to 
KNMF [25–28] method, consider the decomposition of the 
following form:

where � ∈ R�×�+  represent basis matrix and � ∈ R�×��+  rep-
resent the coe¡cient matrix respectively. For image feature 
extraction, we can choose the parameter � arbitrarily only if 
it is smaller than the parameter �. In this paper, since each 
column vector of �(�) corresponds to a column of the image 
a�er feature mapping, the matrix � is also called column basis 
matrix. Furthermore, in order to achieve improvement of sub-
space approximation performance and the need to reduce 
computational load, the two methods of BDPCA and 
RC2DPCA enlighten us to expect that the column basis matrix 
� can maintain orthogonality in the framework of K2DNMF 
method.

 rough the above analysis, matrix � and � can be 
obtained by solving the following optimization problems:

where ‖∗‖� represents the Frobenius norm of matrix, � is the 
identity matrix. However, since the kernel mapping function 
�(∗) is unknown, it is almost impossible to obtain matrices 
� and �. Fortunately, if we constrain the basis vectors 
� = [�1, �2, . . . , ��] to lie within the column space of  �(�), i.e., 
�� = �1��(�1) + �2��(�2) + . . . + �����(���)(� = 1, 2, . . . , �), 
where �kl is coe¡cient, Equation (7) can be further trans-
formed into the following form:

where � = [���]��,��=1,�=1 is coe¡cient matrix and ��(∗) is the trace 
of matrix. From the constraint conditions of the objective 
function in Equation (8) can be seen that the constraint con-
ditions of the objective functions simultaneously include ine-
quality constraints and the equality constraints.  erefore, 

(6)�(�) ≈ ��,

(7)
min �(�,�) = ‖�(�) − ��‖2�
s.t. ��� = �,� ∈ R�×�+ ,� ∈ R�×��+ ,

(8)

min �(�,�) = ‖�(�) − �(�)��‖2�
= ��((�(�) − �(�)��)�(�(�) − �(�)��))
= ��(�(�)��(�)) − 2��(�(�)��(�)��)
+ ��(�����(�)��(�)��)
= ��(�̃� − 2�̃��� + �����̃���)

s.t. ���̃�� = �,� ∈ R��×�+ ,� ∈ R�×��+

,

Karush-Kuhn-Tucker (KKT) conditions are used to obtain the 
optimal solution of the objective function.  e Equation (8) 
can be further rewritten as:

 e expression of Equation (9) is the objective function of 
K2DNMF to reªect the image column direction information 
in the feature space. Next, we employ the Lagrange multiplier 
method to derive the iterative solutions of Equation (9).  e 
Lagrangian function �(�,�, �,�, �) is de�ned as:

where �, � and � are the Lagrange multipliers associated with 
constraints ���̃�� = �, (−�) ∈ R��×�−  and (−�) ∈ R�×��− , 
respectively.

Consider the zero condition of the partial derivative of 
�(�,�, �,�, �) with respect to ��� yields:

where ∇ represents the partial derivative, the subscript ��
denotes the (�, �) entry of the matrix. By right Multiplying ���
on both sides of Equation (11) and obtain ������ = 0 with the 
help of the KKT condition, the updating rules for ��� can be 
obtained as:

where � represents the division operation of matrix elements. 
According to the KKT condition, it can be shown that the 
optimal solution of the target function must satisfy ��� = 0
and ��� = 0.  erefore, the Lagrangian function 
�(�,�, �,�, �) can be rede�ned as �(�,�, �) and can be 
rewritten as follows:

In order to obtain the value of the �. Requiring that the partial 
derivatives of �(�,�,�) with respect to � and � yields:

With the help of ���� = �, Equation (15) can be simpli�ed 
as:

By simultaneously le� multiplying both sides of Equation (14) 
by �� and applying two known conditions ���̃�� = � and 
� = ���̃� to Equation (14), we obtain � = 0 which then is sub-
stituted into Equation (12) yields the updating rule for ���:

(9)
min �(�,�) = ��(�̃� − 2�̃��� +�����̃���)
s.t. ���̃�� = �, (−�) ∈ R��×�− , (−�) ∈ R�×��− .

(10)

�(�,�, �,�, �) = ��(�̃� − 2�̃��� +�����̃���)
+ ��(��(���̃�� − �))
− ��(���) − ��(���),

(11)
∇����(�,�, �,�, �) = (2�̃����� − 2�̃��� + 2�̃��� −�)�� = 0,

(12)��� ← [(�̃��� − �̃���)�(�̃�����)]�����,

(13)
�(�,�, �) = ��(�̃� − 2�̃��� +�����̃���)

+ ��(��(���̃�� − �)).

(14)∇��(�,�, �) = �̃����� − �̃��� + �̃��� = 0.
(15)∇��(�,�,�) = ���̃��� −���̃� = 0.

(16)� − ���̃� = 0⇒ � = ���̃�.

(17)��� ← [(�̃���)�(�̃�����)]�����.
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where � ∈ R�×�+ , � ∈ R�×��+ . � and � are the row basis matrix 
and the coe¡cient matrix corresponding to the row basis 
matrix, respectively. It is expected that the row basis matrix 
still maintains the orthogonality.  erefore, Equation (20) can 
be further transformed into the following optimization prob-
lem to be solved:

By expanding Equation (21) according to the calculation 
method of Equation (8), the following optimization problem 
containing the double constraints of equality and inequality 
can be derived as follows:

Next, the Lagrangian technique is used to derive the iterative 
solution of Equation (22).  e Lagrangian function 
�(�,�,�,�, �) is de�ned as:

where �, � and � represent the Lagrange multipliers associated 
with the constraints ��� = �, (−�) ∈ R�×�−  and (−�) ∈ R�×��− , 
respectively. Next, consider the zero condition of the partial 
derivative of �(�,�,�,�, �) with respect to ��� yields:

where the subscript �� denotes the (�, �) entry of the matrix. 
By right multiplying ��� on both sides of Equation (24) and 
applying KKT condition ������ = 0, the updating rules for 
��� can be obtained as:

 en, the Lagrangian multiplier � is determined by using the 
KKT condition.  us, the Lagrange function �(�,�,�,�, �)
can be rede�ned as �(�,�,�), the form is shown as follows:

(20)� ≈ ��,

(21)
min �(�,�) = ‖� − ��‖2�
s.t. ��� = �,� ∈ R�×�+ ,� ∈ R�×��+ .

(22)
min �(�,�) = ��(��� − 2���� + ������)
s.t. ��� = �, (−�) ∈ R�×�− , (−�) ∈ R�×��− .

(23)

�(�,�,�,�, �) = ��(��� − 2���� + ������)
+ ��(��(��� − �)) − ��(���) − ��(���),

(24)
∇����(�,�,�,�, �) = (2���� − 2��� + 2�� − �)�� = 0,

(25)��� ← [(��� − ��)�(����)]�����.

(26)
�(�,�,�) = ��(��� − 2���� + ������)

+ ��(��(��� − �)).

 us far, if a matrix � whose initial value is nonnegative, a pair 
of �nally converged nonnegative matrices � and � can be 
obtained by repeated iterations.  e expression of the column 
basis matrix � can be obtained by �:

Since the feature mapping function � is unknown, the �nal 
result of the column basis matrix � cannot be calculated, 
which does not a�ect the e�ective expression of the underwa-
ter target feature information.

3.2. Row Direction Decompose of K2DNMF. In Section 3.1, 
we obtained a nonnegative column basis matrix � and a 
nonnegative coe¡cient matrix � by the decomposition of 
�(�), so that the ith sample image �� can be easily derived as:

where �� ∈ R�×�, the purpose of this section to �nd the row 
basis matrix of K2DNMF. To this end, we constructed a new 
matrix � = (��1 ,��2 , . . . ,���) ∈ R�×�� that contains the row 
direction information of image samples in the feature space. 
By using the similar decomposition method in column direc-
tion, nonnegative matrix � can be written as follows:

(18)� = �(�)�.

(19)�(��) ≈ ���,

Table 1: K2DNMF algorithm.

Step Calculation
1: Input: A, K, p and q;
2: Initialization: E and R;
3: Align the M training sample images into a m by Mn matrix A and transfer A into the feature space;

4: Column direction decomposition of K2DNMF is completed in feature space and the matrix factors E and H are obtained, then 
the column basis matrix C is expressed;

5: A n by Mp matrix B is constructed by the matrix factor H;
6: Row direction decomposition of K2DNMF is completed in feature space and matrix factors R and F are obtained;
7: Output: C, H, R and F

Table 2: Updating rules for E, H, R and F.

Step Calculation
1:   Initialize E and R with nonnegative matrix randomly
2:  loop
3:   loop
4:      Update H as in Equation (16)
5:     for l = 1 to Mn
6:      for k = 1 to p
7:       Update Elk as in Equation (17)
8:      end
9:     end
10:   end loop until convergence
11:       Update F as in Equation (29)
12:     for g= 1 to n
13:      for w = 1 to q.
14:       Update Rgw as in Equation (30)
15:      end
16:     end
17:  end loop until convergence
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By simultaneously le� multiplying both sides of Equation (27) 
by �� and applying two known conditions ��� = � and 
� = ��� to Equation (27), we can deduce � = 0. Substituting 
� = 0 into Equation (25) that can further simplify updating 
rule for ���:

Now, if a matrix � whose initial value is nonnegative, a pair 
of �nally converged nonnegative matrices � and � can be 
obtained by repeated iterations. Here � can be decomposed 
into the form of � sub-matrices align.

where �� ∈ R�×�(� = 1, 2, . . . ,�)  is regarded as the coe¡-
cients matrix of ��� , so the expression of ���  can be approxi-
mated to the product of the row basis matrix � and the 
coe¡cient matrix ��.

So far, K2DNMF row direction decomposition has been 
completed. By combining the results of the column decom-
position of K2DNMF described in Section 3.1,  e whole 
process of the K2DNMF algorithm is obtained and displayed 

(30)��� ← [(��T)�(����)]�����.

(31)� = (�1,�2, . . . ,��),

(32)��� ≈ ���.

Moreover, requiring that the partial derivatives of �(�,�,�)
with respect to � and � vanish, we have

Applying ��� = � to Equation (28) yields:

(27)∇��(�,�,�) = ���� − ��� + �� = 0
(28)∇��(�,�,�) = ���� − ��� = 0.

(29)� = ���.

Standardize the training samples
in feature space

Estimate image data model of
K2DNMF and extract the features of

training samples

Determine the control limits of
feature distance statistics

Whether the tested samples are
underwater target or not

Yes Alarm

No

Normal

Tested
samples

......

Collect image samples by UUV
vision system and construct the

training sample matrix by Eq. (1)

Figure 2:  e process of the underwater target detection based on K2DNMF.

Figure 3:  e structure of the experimental pool (the central depth is 
5 m, the edge depth is 2.5 m, the length is 10 m, and the width is 5 m).
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where 1��×� = (1/��)[1��]��, ��, � ∈ R��×�, Equation (33) can 
be written as:

Next, a classi�er that combines matching degree will be designed 
to achieve underwater target detection [29]. Assume that there 
is a total of � training sample images �1,�2, . . . ,��. Using 
the �rst stage feature extraction method, the feature matrix 
�� (� = 1, 2, . . . ,�) of each training sample can be obtained. 
 e distance of between any two sample feature matrices �� and 
�� is de�ned as:

 en, the distance between the feature matrix �� of each train-
ing sample and their mean feature matrices � = (1/�)∑��=1��
can be obtained by Equation (38).  ese distances can be 
de�ned in the form of a set � (the set � is also called the set 
of feature distance):

Suppose that the testing sample �(�����) is given, the feature 
matrix ����� can be easily obtained according to Equation (37), 
then the matching degree between ����� and � can be com-
puted to judge whether or not �(�����) belongs to the under-
water target image.  e matching degree � is de�ned as 
follows:

where � is parameter and � can be determined by the matching 
degree between the maximum value �max in the feature dis-
tance set � and �. We set a threshold � for the matching degree 
� (� also called the control limit). If the condition of � ≥ � is 
satis�ed, the target would be determined as an underwater 
target, otherwise, the underwater target was not found. Process 
of the underwater target detection based on K2DNMF as 
shown in Figure 2.

4. Experiments and Analysis

In this section, the proposed K2DNMF method was applied 
to underwater target images collected by UUV vision systems. 
 e experiment was conducted in the experimental pool of 

(37)���� = ���̃�����.

(38)�(��,��) = ������ − ������� = √��(�� − ��)�(�� − ��).

(39)� = {������� = ������� − ������� }.

(40)� = exp(−���������� − ������2�2� ) × 100%,

in Table 1. At the same time, a total of four matrix factors 
�, �, � and � have also been determined by employing the 
corresponding iteration rules which are summarized in 
Table 2.

3.3. Underwater Target Detection Based on K2DNMF. Two 
stages are involved in the underwater target detection using 
the K2DNMF method, the feature extraction stage and feature 
classi�cation stage of the underwater target respectively.

First, the stage of feature extraction is considered, since 
the column basis matrix � and row basis matrix � with orthog-
onality are regarded as orthogonal projection matrices in the 
K2DNMF method, so � and � are used for feature extraction 
operations. For any given new image sample �(����), the fea-
ture matrix ���� can be written as:

where ���� ∈ R��×� is given by:

Mean centering and variance scaling of �(����) can be done 
by [21]

(33)
���� = ���(����)� = (�(�)�)��(����)�
= ���(�)��(����)� = �������,

(34)���� = �(�)��(����) = [�(��)��(�����)]
��, �

�, �=1

= [�⟨��,�����⟩]��, ��, �=1 .

(35)
�̃��� = ���� −�1��×� − 1��×������ + 1��×���1��×�,

(36)
�̃���� = �̃�����(�̃)/Mn

,

Figure 4: Some sample images from underwater target image databases.

Table 3:  Performance (%) of di�erent methods on testing set 1 
when training number is 1000.

Method Average detection accuracy (%)
BDPCA 82.1 ± 2.13
RC2DPCA 84.3 ± 2.00
2DNMF 86.0 ± 1.83
PNMF 87.7 ± 1.70
MKNMF 90.9 ± 1.60
K2DNMF 91.5 ± 1.51



7Complexity

RC2DPCA [24], 2DNMF [18], PNMF [30], and MKNMF [31]. 
Among them, BDPCA, RC2DPCA, and 2DNMF belong to 
linear methods, while PNMF, MKNMF, and K2DNMF belong 

Best Sea Assembly and control technology Institute of Harbin 
Engineering University. Real experimental pool was shown in 
Figure 3.  e compared algorithms were BDPCA [22], 
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Figure 5: Underwater target matching degree (7th testing) over training number is 1000 for BDPCA, RC2DPCA, 2DNMF, PNMF, MKNMF, 
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to nonlinear methods which adopt the polynomial kernel 
�(�, �) = (⟨�, �⟩ + 1)�, � ∈ R+. For algorithms of BDPCA and 
RC2DPCA, we choose the eigenvectors whose cumulative 
variance contributes of the eigenvalues in column direction 
and row direction are 90%.  e maximum iteration number 
of the NMF-related is set to 300 and kept it constant in all the 
experiments.  e number of PNMF and MKNMF feature is 
chosen as 200.  e number of column direction features of 
2DNMF and K2DNMF � is chosen as 200, and the number 
of row direction features is chosen as 160.  e kernel param-
eters are set as � = 2, � = 7, and � = 5 for K2DNMF, PNMF, 
and MKNMF, respectively. Finally, an e¡cient classi�er is used 
to carry out the underwater targets detection under the con-
dition that the thresholds for all methods are set to be 80%. 
 e experiments were repeated 10 times, the average detection 
accuracies and the average matching degrees were recorded.

UUV vision system is mainly composed of underwater 
camera and underwater lighting equipment and installed in 
the bow portion of UUV.  e underwater camera can collect 
24 frames of image data per second. Taking into account the 
data storage space and the rate of operation, the resolution of 
each frame of image data is normalized from 288 × 352 pixel 
arrays to 96 × 118 pixel arrays.  e UUV vision system was 
used to consecutively sampling 50 seconds for each underwater 
target, including six types of underwater targets. one frame of 
image was collected every 0.25 seconds and stored in the under-
water target image dataset, therefore, the underwater target 
image dataset is composed of 1200 frame images. In addition, 
to better simulate underwater optical �ber cable, all target 
images are cylindrical in shape.  e underwater target image 
dataset contains various states of the underwater target, and 
some underwater target images with di�erent states are shown 
in Figure 4.  e �(� = 300, 400, 500, 600, 700, 800, 900, 1000)
frame images from the underwater target image dataset were 
randomly selected for training, while the remaining (1200 − �)
frame images were divided into three parts for testing. We stip-
ulate that the di�erence between the number of any two types 
of underwater targets in the training set should not exceed 10%, 
otherwise the training dataset should be re-selected.  e �rst 
part selected the (1200 − �)/2 frame images as the testing set 
1,  e second part selected the (1200 − �)/4 frame images a�er 
the testing set 1 is removed as the testing set 2.  e third part 
selected the remaining (1200 − �)/4 frame images and added 
600 frames of 15 underwater nontarget image dataset collected 
by UUV vision system as testing set 3 to be used,  e above 
process was repeated 10 times.

When the number of training samples are chosen as 1000, 
the average detection accuracy of each method in the testing 

Table 4: Average detection accuracy (standard deviation) (%) versus training number (TN) on testing set 2.

n 300 400 500 600 700 800 900 1000
BDPCA 73.12 (2.71) 75.30 (2.28) 75.91 (2.95) 80.13 (2.14) 79.48 (3.12) 80.30 (2.87) 81.33 (3.46) 81.80 (3.32)
RC2DPCA 74.63 (2.58) 77.95 (2.09) 81.04 (2.25) 82.00 (2.96) 81.27 (3.44) 82.20 (2.59) 83.00 (3.15) 84.00 (2.67)
2DNMF 71.86 (2.95) 73.55 (2.52) 74.63 (3.38) 78.37 (2.01) 80.02 (3.27) 82.40 (3.00) 83.20 (4.19) 84.60 (3.53)
PNMF 72.90 (2.41) 73.95 (2.01) 77.37 (2.14) 83.21(4.37) 84.46 (3.58) 85.00 (3.02) 86.00 (3.77) 85.80 (3.19)
MKNMF 78.33 (2.47) 80.10 (1.93) 82.68 (2.25) 84.53 (2.29) 85.94 (3.10) 87.10 (2.49) 88.33 (3.10) 88.20 (3.04)
K2DNMF 79.92 (2.03) 81.20 (1.42) 83.42 (1.50) 85.90 (1.72) 87.22 (2.63) 88.30 (2.30) 89.55 (2.86) 90.20 (2.74)
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samples number (300, 400, 500, 600, 700, 800, 900, and 1000) 
were selected, this is probably because the orthogonality of 
column basis matrix and row basis matrix is considered in 
the objective function of K2DNMF, which is important to 
improve the robustness of the algorithm.

In view of the better simulation of underwater target 
detection, in testing set 3, in addition to the rest (1200 − �)/4
frame images, we added 600 frames underwater nontarget 
image datasets containing ��een categories collected by the 
UUV vision system as the source of interference, and each 
category consists of 40 frame image data whose resolution of 
each frame is normalized from 288 × 352 pixel array to 
96 × 118 pixel array. Figure 8 shows some interference source 
images in testing set 3.  e average detection results are tab-
ulated in Figure 9 and Table 5. It can be seen that the accuracy 
of K2DNMF ascends12.60% from training number 300 to 
training number 1000, while the detection accuracies of 
BDPCA and RC2DPCA increases 11.80% and 12.46% from 
300 training images to 1000 training images. For NMF meth-
ods, the detection accuracy of 2DNMF, PNMF, and MKNMF 
increase 15.74%, 16.89%, and 12.96% from 300 training 
images to 1000 training images. From Figure 9 and Table 5 
can also be clearly seen that when the number of training 
samples is 500, 600, 700, 800, 900, and 1000, the kernel 
method outperforms the linear methods for the accuracy of 
target detection.  at is to say, when the number of training 
samples exceeds 41.67% of the samples in the image dataset, 
average detection accuracies PNMF, MKNMF, and K2DNMF 
are higher than BDPCA, RC2DPCA, and 2DNMF. By com-
paring and analyzing the experimental results of the testing 
set 2, if the kernel method is used for underwater target detec-
tion, the number of the training sample is recommended to 
exceed 50% of the image sample dataset. In addition, it is easy 
to �nd that among the number of selected training samples, 
the K2DNMF method proposed in this paper overall detec-
tion accurate higher than other methods for underwater tar-
get.  is is probably because that K2DNMF preserves the 
structural information embedded among pixels, which is 
most vital for target detection. When the training samples 
(300, 400, 500, 600, 700, 800, 900, 1000) training samples were 
selected, the standard deviation distribution of the detection 
accuracy corresponding to each method is shown in Figure 
10. From the experimental results of Figure 10 can be seen 
that the standard deviation of the detection accuracy from 
K2DNMF is the smallest in numerical value among all the 

set 1 are shown in Table 3. Figure 5 shows the matching degree 
of di�erent methods for sample data in the 7th experiment of 
testing set 1, where the red dots indicate the error detection 
of the underwater target, the green dots indicate the correct 
detection of the underwater target, and the blue line is the 
control limit. From Figure 5 and Table 3 can be clearly seen 
that the test results of PNMF, MKNMF, and K2DNMF is better 
than BDPCA, RC2DPCA, and 2DNMF, it shows that the non-
linear methods outperform their linear counterparts.  e best 
performance among them is the K2DNMF algorithm pro-
posed in this paper. For other methods, the accuracy of under-
water target detection was increased by 9.4%, 7.2%, 5.5%, 
3.8%, and 0.6% respectively.  is demonstrates that our pro-
posed K2DNMF method can have more e�ective feature 
extraction capabilities than other methods and can accurately 
detection underwater targets.

In order to demonstrate the ability of each method to 
recognize targets when the number of training samples is 
changed, di�erent numbers (300, 400, 500, 600, 700, 800, 900, 
1000) were selected from the underwater target image dataset 
to test in testing set 2.  e average detection accuracies are 
shown in Table 4 and plotted in Figure 6, where the numbers 
in parenthesis are the standard deviations. Figure 6 and Table 
4 show that when the number of training samples increases, 
the performance of all methods were improved.  e detection 
accuracy of K2DNMF increases from 79.92% with 300 train-
ing images to 90.20% with 1000 training images. For other 
methods, the detection accuracies of BDPCA, RC2DPCA, 
2DNMF, PNMF, and MKNMF increase from 73.12%, 74.63%, 
71.86%, 72.90%, and 78.33% with training number 300 to 
81.80%, 84.00%, 84.60%, 85.80%, and 88.20% with training 
number 1000 respectively. From Figure 6 and Table 4 can also 
be seen that when the number of training samples exceeds 
50% of the samples in the image dataset, kernel methods are 
competitive to the linear method, that is, PNMF, MKNMF, 
and K2DNMF outperform BDPCA, RC2DPCA, and 2DNMF. 
Further observations demonstrate that among the selected 
training samples, the K2DNMF algorithm is the best overall 
performance in the detection accuracy compared to other 
methods. Figure 7 visually show that the standard deviation 
distribution of the detection accuracy with di�erent methods 
when the same number of trainings samples were used in 
testing set 2. It can be seen from the experimental results of 
Figure 7 the standard deviation of the detection accuracy of 
K2DNMF is smaller than other methods when the training 

Figure 8: Some interference source images in testing set 3.
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Figure 9: Continued.
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methods regardless of which of the training sample numbers 
was selected, demonstrate the stronger robustness of the 
K2DNMF method.

5. Conclusion

In this paper, a new approach to underwater target detection—
kernel two-dimensional nonnegative matrix factorization 
(K2DNMF)—has been developed.  e acquisition method of 
the matrix factors �, �, � and � in the feature space was 
discussed. In order to achieve the better expression of the orig-
inal data in the feature subspace, besides guaranteeing the 
nonnegativity and low-rank of the column basis matrix � and 
the row basis matrix �, the constraint on the two factors 
ortho-normality has been applied. In addition, in the phase 
of target detection, by combining the feature information of 
the underwater images extracted by the K2DNMF with the 
matching degree method, the computational complexity can 
be reduced to some extent. Finally, the underwater target 
detection scheme is further expanded by the K2DNMF 
method. Our proposed method has been evaluated by image 
data collected by the UUV vision system. Experiment results 
demonstrate that K2DNMF-based has good feature extraction 
ability and target detection e�ect.
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Figure 9: Underwater target detection accuracy over di�erent training number for BDPCA, RC2DPCA, 2DNMF, PNMF, MKNMF, and 
K2DNMF on the testing set 3.

Table 5: Average detection accuracy (standard deviation) (%) versus training number (TN) on testing set 3.

n 300 400 500 600 700 800 900 1000
BDPCA 71.54 (3.18) 73.32 (3.46) 76.51 (3.32) 77.14 (2.46) 76.18 (3.63) 78.37 (4.29) 81.47 (3.76) 83.34 (3.07)
RC2DPCA 73.16 (2.77) 74.84 (3.31) 77.35 (2.45) 78.71 (3.37) 79.21 (3.92) 81.02 (4.13) 83.56 (3.52) 85.62 (2.78)
2DNMF 70.63 (4.09) 71.25 (3.20) 75.80 (3.64) 76.49 (2.21) 77.83 (3.85) 81.75 (4.49) 84.42 (4.53) 86.37 (4.16)
PNMF 71.20 (4.24) 73.46 (4.08) 78.22 (2.53) 80.82 (4.65) 81.42 (4.06) 82.96 (4.21) 85.38 (4.17) 88.09 (3.58)
MKNMF 76.28 (3.17) 78.25 (2.76) 80.19 (2.62) 82.04 (2.67) 83.20 (3.68) 85.27 (3.93) 86.84 (3.41) 89.24 (3.25)
K2DNMF 77.46 (2.49) 79.04 (2.40) 81.4 (2.12) 83.28 (2.06) 84.70 (3.23) 86.02 (3.28) 88.51 (3.14) 90.06 (2.83)
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