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(e purpose of this paper is modelling and controlling the spread of COVID-19 disease in Morocco. A nonlinear mathematical
model with two subclasses of infectious individuals is proposed.(e population is divided into five classes, namely, susceptible (S),
exposed (E), undiagnosed infectious (Inc), diagnosed patients (Ic), and removed individuals. To reflect the real dynamic of the
COVID-19 transmission in Morocco, the real reported data are used for estimating model parameters. Two controls representing
screening effort and limited treatment are considered. Based on viability theory and set-valued analysis, a Lyapunov function is
constructed such that both exposed and infected populations are decreased to zero asymptotically.(e corresponding controls are
derived via a continuous selection of adequately designed feedbackmap. Numerical simulations are presented with three scenarios
(cases when each control is used alone and the case when two controls are combined). Our results show that when only one control
is to be applied, screening is the most effective in decreasing the number of people in the three infected compartments, whereas
combining both controls is found to be highly effective and leads to a significant improvement in the epidemiological situation of
Morocco. To the best of our knowledge, this work is the first one that applies the set-valued approach to a controlled COVID-19
model which agrees with the observed cases in Morocco.

1. Introduction

Coronavirus disease 2019, known as COVID-19, is a disease
caused by a novel betacoronavirus named SARS-CoV-2 that
affects the lower respiratory tract [1]. It is a fatal disease for
patients who developed various complications including
organ failure, septic shock, and pulmonary oedema (see
[1, 2]). Since its appearance in December 2019 in Wuhan,
Hubei Province, China, the virus has extended interna-
tionally [3], and the number of reported cases has
accelerated around the world. (is is why, on 20th January
2020, the World Health Organization (WHO) declared

COVID-19 as a public health emergency of international
concern [4].

Given the extent of the COVID-19 disease and the ur-
gency to deal with it, mathematical models are a powerful
tool for the management and control of this pandemic.
Nowadays, the contribution of the epidemiological models
in the fight against infectious diseases is indisputable. In-
deed, they provide important information on the dynamics
of disease transmission, give an overview of the character-
istics of an epidemic, and allow predicting its future evo-
lution and evaluating different intervention strategies to find
the best control program. For more details on the use of
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mathematical models in epidemiology, we refer the inter-
ested reader to [5–10].

Several mathematical modelling studies have been
proposed, which aim to understand the dynamics of this
disease and provide appropriate responses to the challenges
that it presents. For instance, in [11], a mathematical model
considering susceptible, exposed, infected, asymptotic,
quarantine/isolation, and recovered classes as in the case of
COVID-19 disease was developed. Elasticity and sensitivity
analyses are performed, and the global stability for the
proposed model is studied. (e study in [12] proposed a
fractional model to describe the dynamics of COVID-19 and
parametrized the model using the available infection cases.
In [13], the authors proposed a compartmental model taking
hospitalized and asymptomatic cases as extra compartments
for COVID-19 disease. (e local stability of the disease-free
equilibrium in terms of the basic reproduction number is
investigated, and the sensitivity analysis of the model with
respect to the variation of each one of its parameters is
provided. Using a generalized SEIR model and based on the
public data, Peng et al. [14] estimated the key epidemic
parameters and made predictions on the inflexion point and
possible ending time for 5 different regions in China. Based
on the collected epidemic data in China, the authors pro-
posed in [15] an extension of the classical SEIR model. (ey
divided the population into 6 different categories and
established the time series models based on different
mathematical formulas according to the variation law of the
original data. Extensions of the classical SIR model by
adding time delays were also proposed in [16, 17].

To contain the spread of COVID-19, almost all the
countries affected by this pandemic have implemented severe
control measures such as complete lockdown, social dis-
tancing, isolation, early detection, and the implementation of
a robust system to trace contacts. In this context, some au-
thors proposed optimal control frameworks for determining
the optimal strategies that can mitigate the negative impact of
this disease. (e study in [18] considered a mathematical
model including a quarantine class and governmental in-
tervention measures such as lockdown, media coverage on
social distancing, and improvement of public hygiene. To
reduce the infected individuals as well as to minimize the cost
of implementing government control measures, an optimal
control problem is formulated and solved, where the control
considered represents the awareness due to media coverage.
(e authors in [19] considered two control SEIR-type models
describing the spread of COVID-19 in a human population.
(ey used one control representing the quarantine intensity
and tried to find the optimal solution by applying Pon-
tryagin’s maximum principle. In [20], a model with five
compartments was proposed to highlight the role of infected
people without symptoms, infected individuals with mild
symptoms, and the complicated cases. (en, an optimal
control problem was formulated to lessen the infected in-
dividuals by carrying out awareness campaigns, diagnosis,
surveillance of airports, and quarantine of infected. In [21],
the authors proposed stochastic and deterministic models to
investigate the transmission mechanism of 2019-nCoV from
15 January to 5 February 2020 in Hubei province. Stochastic

and deterministic analyses were performed, and optimal
strategies were provided for the deterministic model. For
more examples of works that address the problem of COVID-
19 control, we refer to [22–28].

According to Rismanbaf [29], there is still no vaccine or
definitive treatment against the SARS-CoV-2 virus. How-
ever, new potential therapies are suggested based on in vitro
studies, virtual screenings, and records of their effectiveness
on earlier strains of coronavirus, SARS, and MERS. Fur-
thermore, it is well known that lockdown has a colossal
economic and social impact; this is why we have to think of
alternative solutions. Inspired by the experience of South
Korea, which has shown that mass testing is crucial to
control COVID-19 disease, a solution to be explored would,
therefore, be the extension of screening capacities. In this
context, we propose a mathematical model that describes the
COVID-19 transmission dynamics, and we investigate the
impact of implementing additional treatment protocol and/
or the multiplication of the number of screening tests on the
spread of this disease in Morocco. Novelty and the main
contributions are as follows.

Firstly, based on the collected epidemic data and analysis
of the actual situation in Morocco, we propose an extension
of the classical susceptible-exposed-infectious-removed
(SEIR) model. In our model, infectious people are divided
into two subclasses depending on whether they are diag-
nosed positive and isolated or they are still undiagnosed.
Considering these two categories (diagnosed and undiag-
nosed patients) will allow us to emphasize the importance of
detection effort to fight against the COVID-19 pandemic.
Furthermore, by estimating the model parameters using the
real data, we obtained a more realistic model that reflects the
dynamic of this disease in Morocco. Note that this model
could be adapted easily to other countries.

(en, we consider two controls representing mass
screening and limited treatment. For the treatment control,
we use a saturated function to take into account the con-
straints on the health offered in this period of crisis such as
insufficient human and material resources and the limita-
tions related to the effectiveness of treatment. To investigate
the impact of these intervention strategies on the spread of
COVID-19, we formulate a control problem which we solve
by a new direct approach. It is important to note that most of
the control frameworks indicated above (paragraph 4) used
an indirect approach based on the maximum principle of
Pontryagin [30], which requires to design a suitable objective
functional, prove the existence of an optimal solution, and
solve the optimality system consisting of the state and ad-
joint systems that can be hard to solve. Motivated by this, we
propose an alternative approach based on viability theory
[31] and set-valued analysis [32]. Our approach enables the
user to establish explicit formulas for the feedback controls.
More precisely, we construct an appropriate Lyapunov
function such that both exposed and infectious individuals
decreased to zero asymptotically. (e expression of our
controls is obtained via a continuous selection of adequately
designed feedback map.

Finally, to show the effectiveness of our theoretical results,
we provide numerical simulations with different scenarios. To
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our knowledge, the present work is the first one that proposes
a controlled dynamical model for COVID-19, which is fitted
to the existing epidemic data in Morocco, and where the
control problem is resolved using a set-valued approach.

(e remainder of the paper is structured as follows: In
Section 2, we introduce the compartmental model of
COVID-19. Section 3 will be devoted to treat the control
problem of COVID-19 by using a set-valued approach. In
Section 4, we present numerical simulations with three
scenarios in order to show the efficiency of our control
approach. Conclusions are given in Section 5.

2. COVID-19 Mathematical Model

2.1. Model Construction. (e model under consideration in
the present paper consists of five coupled nonlinear dif-
ferential equations whichmodel the dynamic of the COVID-
19 disease. We consider that the total population N is di-
vided into five different compartments:

(i) Susceptible individuals (S), people who may be
infected by the virus

(ii) Exposed individuals (E), infected with the virus but
without the typical symptoms of infection

(iii) Undiagnosed infectious individuals (Inc), who are
infectious but not yet confirmed by a test

(iv) Diagnosed infectious individuals (Ic), who are di-
agnosed as COVID-19-positive patients and are
isolated in hospitals

(v) Removed individuals (R), people who moved out
either by recovery or death

We assume that the transmission of COVID-19 occurs fol-
lowing adequate contact between a susceptible and undetected
infectious Inc. As the infectious people in Ic are isolated, we
assume that they have no contact with the susceptible and do not
transmit the disease. Due to the nonlinear contact dynamics in the
population, we use the incidence function β(Inc/N)S to indicate
successful transmission of COVID-19, where β denotes the in-
fection contact rate.We assume that all newly infected individuals
enter into the exposed compartment E, where they reside for an
average of k− 1 days (k is the rate at which individuals leave the
latent class by becoming infectious). A proportion p of the in-
fectious individuals are diagnosed and isolated, and they followed
a therapeutic protocol and entered the compartment Ic. (e
remaining infectious patients are considered as free infectious
people as they are not yet detected. Among the infectious who are
undiagnosed, some of them are diagnosed and isolated at a rate c.
We have observed from the clinical data that there was an in-
creasing change within time for the number of individuals who
progress from Ic to classR; to reflect this,we assume that people in
Ic enter into the removed class with a time-dependent variable
r(t), which is derived from the following logistic function:

r(t)≐ rf +
r0 − rf

1 + exp t − t(1/2)􏼐 􏼑/Δ􏼐 􏼑
, (1)

where t(1/2) represents the time at which r(t) reaches its half
value and Δ determines the width of r(t). (e parameters r0
and rf model asymptotic values.

A flowchart of our model is given in Figure 1.
(e dynamics of the model is governed by the following

differential equations:

_S � −β
SInc

N
,

_E � β
SInc

N
− kE,

_Inc � (1 − p)kE − cInc,

_Ic � pkE + cInc − r(t)Ic,

_R � r(t)Ic,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with initial data

S(0) � S0,

E(0) � E0,

Inc(0) � I
nc
0 ,

Ic(0) � I
c
0,

R(0) � R0.

(3)

2.2. Positivity and Boundedness of Solutions. As model (2)
describes the temporal evolution of human populations, we
shall show that the solutions remain nonnegative and
bounded. From system (2), we have

dS

dt
|S�0 � 0,

dE

dt
|E�0 � β

SInc

N
≥ 0,

dInc

dt
|Inc�0 � (1 − p)kE≥ 0,

dIc

dt
|Ic�0 � pkE + cInc ≥ 0,

dR

dt
|R�0 � rIc ≥ 0.

(4)

We observe that all the aforementioned rates are non-
negative on bounding planes of the nonnegative cone of R5.
(us, if we begin in the interior of this cone, we shall always
remain in this cone as the direction of the vector field is
inward on all the bounding planes. So, all the solutions of
system (2) are positive. Furthermore, as we denote the total
population by N(t), N(t) � S(t) + E(t) + Inc(t) +

Ic(t) + R(t), and by adding equations in (2), it is straight-
forward to prove that all solutions S, E, Inc, Ic, and R are
bounded by N(0). Hence, the model is well posed in a
biologically feasible domain given by the following positive
invariant set:
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S � S, E, Inc, Ic, R( 􏼁|0≤ S, E, Inc, Ic, R≤N(0)􏼈 􏼉. (5)

2.3. Parameter Estimation. Let us now estimate parameters
of model (2), as well as the unknown initial conditions E0
and Inc

0 . Firstly, recall that the progression rate, k, from E to
the infectious stage is supposed to be equal to the inverse of
the mean incubation period [10]. So, to calculate k, it suffices
to know the average incubation period of COVID-19. (e
study in [33] showed that the incubation period ranges from
2 to 14 days with 95% confidence and has amean of around 5
days. Another analysis [34] estimated the median incubation
period to be 5.1 days (95% confidence interval, 4.5 to 5.8
days). A result from [35] indicated a mean incubation period
of 5.2 days (95% CI, 4.1 to 7.0). (us, we set the mean
incubation period as 5 days and fix k � 1/5 per day. For the
remaining parameters and initial conditions E0 and Inc

0 , they
will be estimated by fitting the model with the collected data,
communicated by the Ministry of Public Health in Morocco
(see Table 1), using the MATLAB routine fminsearch. (e
resulting estimations are listed in Table 2, and the best model
fit to the real data is shown in Figure 2. Note that, for the
parameters of the function r(t), the best fit to real data gives
rf � 0.2352, r0 � 0.0096, t(1/2) � 70.3434, and Δ � 10.8262.

3. Control by a Set-Valued Approach

In this section, we applied a set-valued approach to the control
problem of COVID-19. For more details about this approach,
we refer the reader to theworks in [38, 39], where this approach
is used to deal with the problem of asymptotic null-control-
lability. Note that, in [39], the proposed approach is used for
epidemic models with only one infectious compartment, while
themain added value here is to control the spread of the disease
and decrease the number of infected people in several infec-
tious compartments to zero asymptotically.

3.1. Control Problem Statement. In Morocco, as in several
countries around the world, government authorities have
opted for severe confinement as a strategic measure to limit
the spread of COVID-19 in the country. Of course, this
strategy is effective to avoid large losses in human lives, but it
can lead to serious economic and social consequences, es-
pecially if the duration of the confinement is long. Other
measures such as mass screening and treatment can also be
implemented to limit the damage and allow a safe return of
economic activity. To study the impact of mass screening

and treatment on the dynamics of COVID-19 in Morocco,
we introduce two controls u1 and u2 into model (2), where

(i) u1 represents all the efforts which allow the multi-
plication of the number of screening tests such as the
widening of diagnostic sites in professional envi-
ronments in commercial and industrial units, the
detection of contact subjects in family clusters, and
the increase of the number of laboratories authorized
to carry out COVID-19 tests.

(ii) u2 represents the treatment of people confirmed to
be COVID-19 positive and who are placed in iso-
lation in hospitals. It is true that there is not yet a
specific drug or vaccine for COVID-19, but some
studies have shown that protocols combining several
drugs have proven their effectiveness (a review on
potential treatments for COVID-19 can be found in
[29]). It is often assumed that when the resources for
treatment are sufficient, the term of treatment is a
linear function to infected individuals. However, in
the case of COVID-19, as there are constraints and
limitations in terms of medical resources, drugs,
hospital beds, adequate isolation spaces, and the
effectiveness of treatment, it would be more ap-
propriate to consider a saturated treatment function
(u2Ic/1 + dIc), where the control u2 is the treatment
rate and d≥ 0 is the saturation factor that measures
the effect of the infected being delayed for treatment.
For examples on the use of the saturated treatment
function in epidemiological modelling, we refer to
[40–42].

Our model with controls is given as follows:

_S � −β
SInc

N
,

_E � β
SInc

N
− kE,

_Inc � (1 − p)kE − c 1 + u1( 􏼁Inc,

_Ic � pkE + c 1 + u1( 􏼁Inc − r(t)Ic −
u2

1 + dIc

Ic,

_R � r(t)Ic +
u2

1 + dIc

Ic,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

with initial data

S(0) � S0,

E(0) � E0,

Inc(0) � I
nc
0 ,

Ic(0) � I
c
0,

R(0) � R0.

(7)

(e control in system (6) is represented by u≐(u1, u2)

and has values in the subset

S E R

Inc

Ic

(1 – p) k

pk

γβ

r

Figure 1: Transfer diagram.
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Table 1: Cumulative daily reported data of confirmed and removed cases formMarch 20, 2020, to May 12, 2020, reported by the Ministry of
Public Health in Morocco and available in [36].

March 20 21 22 23 24 25 26 27 28 29 30 31
Ic 86 96 115 143 170 225 275 345 402 479 556 617
R 5 6 7 9 11 13 18 34 37 39 48 60
April 1 2 3 4 5 6 7 8 9 10 11 12
Ic 654 708 791 919 1021 1120 1184 1275 1374 1448 1545 1661
R 68 75 105 125 146 161 183 190 206 229 257 295
April 13 14 15 16 17 18 19 20 21 22 23 24
Ic 1763 1888 2024 2283 2564 2685 2855 3046 3209 3446 3568 3758
R 329 343 357 379 416 451 468 493 538 566 607 644
April 25 26 27 28 29 30
Ic 3897 4065 4120 4252 4321 4423
R 696 754 857 943 1096 1154
May 1 2 3 4 5 6 7 8 9 10 11 12
Ic 4569 4729 4903 5053 5219 5408 5548 5711 5910 6063 6281 6418
R 1254 1429 1612 1832 2019 2200 2362 2510 2647 2733 2999 3179

Table 2: Parameters and initial conditions.

Parameter Description Value Unit References
β Infection rate 0.386 1/day Fitted
k Progression rate from E to the infectious stage 1/5 1/day Fixed
p Proportion of the infectious that become diagnosed 0.6936 Dimensionless Fitted
c Progression rate from Inc to Ic 0.0597 1/day Fitted
r(t) Progression rate from Ic to R [0.01 − 0.24] 1/day Fitted
N Total population 35952000 Dimensionless [37]
S0 Initial number of susceptible individuals 35951556 Dimensionless Calculated
E0 Initial number of exposed individuals 111 Dimensionless Fitted
I0nc Initial number of undiagnosed infectious individuals 247 Dimensionless Fitted
I0c Initial number of diagnosed and isolated individuals 86 Dimensionless Table 1
R0 Initial number of removed individuals 5 Dimensionless Table 1
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Figure 2: (e reported diagnosed and removed individuals and their best fit to model (2). (a) Real data and fitted curve for Ic. (b) Real data
and fitted curve for R.
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U≐ 0, u
max
1􏼂 􏼃 × 0, u

max
2􏼂 􏼃, (8)

where umax
1 and umax

2 are positive numbers. (e aim of this
paper is to reduce the number of exposed, undiagnosed, and
diagnosed infectious individuals. (en, before we state our
control problem, we set and transform the above nonau-
tonomous system to the following autonomous one:

_x � f(x, y, u),

_y � h(x, y, u),

x(0) � x0, y(0) � y0,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where x≐ S, tRn, qt( 􏼁′, y≐(E, Inc, Ic)′, x0 � (S0, R0, 0),

y0 � (E0, Inc
0 , Ic

0),

f(x, y, u)≐

−β
SInc

N

r(t)Ic +
u2

1 + dIc

Ic

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

h(x, y, u)≐

β
SInc

N
− kE

(1 − p)kE − c 1 + u1( 􏼁Inc

pkE + c 1 + u1( 􏼁Inc − r(t)Ic −
u2

1 + dIc

Ic

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

(erefore, the control problem we have to deal with is
stated as follows.

Problem: for each (x0, y0) ∈ Γ⊆R6
+, find a control u such

that

u: [0,∞)⟶ U, (11a)

lim
s⟶∞

y(s) � 0, (11b)

where (x, ty) denotes a solution of system (9) for the control u.

Remark 1

(i) It is easy to see that the solution of system (9) remains
nonnegative and bounded for all t≥ 0; therefore, we
do not need to impose (in the context of our approach)
this constraint on the state of the system.

(ii) It is also noteworthy to mention that the notion of
the invariant set coincides with the viability one

when there exists a unique solution of system (9).We
refer the interested readers to [31].

3.2. Set-ValuedApproach. Now, we return to problems (11a)
and (11b), which we will treat in the context of viability
theory and set-valued analysis stated in Appendix. (ere-
fore, in order to establish our control method, first we need
to extend the dynamics of COVID-19 model (9) with the
control dynamics governed by the following differential
equation:

_u � v − αu, (12)

where v is the new control that has values in the closed subset

V≐ 0, α1u
max
1􏼂 􏼃 × 0, α2u

max
2􏼂 􏼃, (13)

with α1 and α2 being positive numbers. If the initial state of
dynamical system (12) belongs toU, i.e., u0 � u(0) ∈ U and
v ∈ V, then the solution of differential equation (12) also
belongs toU, i.e., u(t) ∈ U for all t≥ 0, since the solution of
the differential equation satisfies the following inequality:

u
i
0 exp −αit( 􏼁≤ ui(t)≤ u

max
i − u

max
i − u

0
i􏼐 􏼑exp −αit( 􏼁, (14)

for i � 1, 2. According to Definition A.2, a convenient
R3

+-Lyapunov function related to problems (11a) and (11b)
can be given by

φ(y, z) � 〈v, y〉 +〈δ, z〉, for all (y, z) ∈ R3
× R

3
, (15)

where ] and δ denote vectors of R3
+ whose both coordinates

are positive. Indeed, if aC1 function w: R+⟶ R3
+ satisfies

φ(w(s), _w(s))≤ 0, for all s, then the real nonnegative
function q � δ1w1 + δ2w2 + δ3w3 is such that

_q(s) + inf
i

]i

δi

􏼨 􏼩q(s)≤ 0, for all s≥ 0. (16)

As a result, q(s)⟶ 0 at infinity. (ereby, both func-
tions wi do so for all i � 1, 2, 3.

(en, condition (11b) can be written as viability of the
subset

Dφ≐ (x, y, u) ∈ R8
|φ(y, h(x, y, u))|≤ 0􏽮 􏽯, (17)

under the augmented control system

_x � f(x, y, u),

_y � h(x, y, u),

_u � v − αu.

(18)

Ultimately, consider the feedback map Gφ, for each
(x, y, u) ∈ Dφ:

Gφ(x, y, u)≐ v ∈ V|(f(x, y, u), h(x, y, u), v − αu) ∈ TDφ
(x, y, u)􏼚 􏼛. (19)

Let
π1 Dφ􏼐 􏼑≐Ωφ, (20)

6 Complexity



where π1 denotes the mapping (x, y, u)⟶ (x, y). (en,
we are ready to show the following result.

Theorem 1. Any continuous selection of the map Gφ pro-
vides a solution of problems (11a) and (11b) for each
(x0, y0) ∈ Ωφ ∩R6

+.

Proof. For such a selection ζ, it follows that

(f(x, y, u), h(x, y, u), ζ(x, y, u) − αu) ∈ TDφ
(x, y, u), for all (x, y, u) ∈ Dφ,

ζ(x, y, u) ∈V.
(21)

Since Dφ is closed, f, h, and ζ are continuous; then, by
using Lemma A.1, we deduce that subsetDφ is locally viable
under system (18). Since both f and h have linear growth
and ζ is bounded, subset Dφ is viable under system (18).

Now, let (x0, y0) belong to subsetΩφ and u0 be such that
(x0, y0, u0) ∈ Dφ; then, system (18) has solution
(x, y, u): [0,∞)⟶ Dφ, which satisfies
(x, tyn, qu)(0) � (x0, y0, u0).

(anks to equation (17), this solution satisfies

φ(y(s), _y)(s)≤ 0, for all s≥ 0. (22)

By taking (x0, y0) ∈ R6
+ and using Gronwall inequality,

we get y(s)⟶ 0 as s⟶∞. Furthermore, since
ζ(x, y, u) ∈V, thanks to inequality (14), u(s) ∈ U for all

s≥ 0. Ending the proof, problems (11a) and (11b) have the
solution from Ωφ ∩R6

+.
In what follows, we will provide the explicit expression of

the feedback map Gφ(·) of equation (19) in order to get its
continuous selection as required by (eorem 1. Now, let us
set

ϕ(x, y, u)≐φ(y, h(x, y, u)). (23)

(en, according to equation (15), we get

ϕ(x, y, u) � 〈], y〉 +〈δ, h(x, y, u)〉, for all (x, y, u) ∈ R8
,

(24)

and let

Dφ≐ (x, y, u) ∈ R8
|ϕ(x, y, u)≤ 0􏽮 􏽯,

∇xϕ �

δ1β
Inc

N

0

−δ3r′(t)Ic

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∇yϕ �

]1 + −δ1 + δ2(1 − p) + δ3p( 􏼁k

]2 + δ1β
S

N
+ 1 + u1( 􏼁c δ3 − δ2( 􏼁

]3 − δ3 r(t) +
u2

1 + dIc( 􏼁
2

⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∇uϕ �

δ3 − δ2( 􏼁cInc

−δ3
Ic

1 + dIc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(25)
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According to Lemma A.2, we can easily get the ex-
pression of the contingent cone TDφ

(·) as follows. □
Lemma 1. For each (x, y, u) ∈ Dφ, we have

(θ, λ,Λ) ∈ TDφ
(x, y, u)⟺ |

(θ, λ,Λ) ∈ R8
,

〈∇xϕ(x, y, u), θ〉 +〈∇yϕ(x, y, u), λ〉

+〈∇uϕ(x, y, u),Λ〉≤ 0 if ϕ(x, y, u) � 0.

(26)

Hence, we are ready to determine a useful expression of
the feedback map Gφ(·) given by (19). To that end, we need
to define the following functions and map:

ℓφ≐∇xϕf + ∇yϕh − ∇uϕαu, (27)

mφ≐∇uϕ, (28)

Cφ(x, y, u)≐ v ∈V|ℓφ(x, y, u) +〈mφ(x, y), v〉 ≤ 0􏽮 􏽯, (29)

for all (x, y, u) ∈ R8. It is noteworthy here that the control
affine structure of the system involves that function ℓφ is
affine in control u, and function mφ depends only from state
(x, y). Consequently, we are ready to state the following
result.

Lemma 2. We have, for each (x, y, u) ∈ Dφ,

Gφ(x, y, u) � |
V, if ϕ(x, y, u)< 0,

Cφ(x, y, u), if ϕ(x, y, u) � 0.
(30)

Proof. We can easily get expression (30) by using Lemma 1
and considering equations (19) and (29).

Recall that, in(eorem 1, we have proved the case where
problems (11a) and (11b) have a solution from Ωφ ∩R6

+. In
the next theorem, we will treat these problems from R6

+.
(ereafter, we need to introduce the following map, for each
σ > 0:

C
σ
φ(x, y, u)≐ v ∈ V|ℓφ(x, y, u) +〈mφ(x, y), v〉 ≤ − σ􏽮 􏽯,

(31)

for each (x, y, u) ∈ R8. □

Theorem 2. Assume that, for some σ > 0, the map Cσ
φ given

by (31) has a continuous selection; then, problems (11a) and
(11b) have a solution for each (x0, y0) ∈ R6

+.

Proof. Let ζ be such a selection of the map Cσ
φ. For each

(x, y, u) ∈ Dφ, this map has values included inGφ.(en, the
selection ζ is also a selection of Gφ. By (eorem 1, problems
(11a) and (11b) have, therefore, a solution for each
(x0, y0) ∈ Ωφ. Now, we have to show that problems (11a)
and (11b) have a solution from R6

+∖Ωφ.
Let (x0, y0) belong to R6

+∖Ωφ. (ereby, ϕ(x0, y0, u)> 0,
for all u, such that (x0, y0, u) ∈ R8

+. Let such u0 be given, and
we readily have

d
ds

ϕ(x(s), y(s), u(s)) �〈∇xϕ(x(s), y(s), u(s)), _x(s)〉 +〈∇yϕ(x(s), y(s), u(s)), _y(s)〉

+〈∇uϕ(x(s), y(s), u(s)), _u(s)〉,

(32)

which yields, according to equations (27) and (28),

d
ds

ϕ(x(s), y(s), u(s)) � ℓφ(x(s), y(s), u(s))

+〈m(x(s), y(s)), _u(s)〉.

(33)

Hence,

ϕ x s1( 􏼁, y s1( 􏼁, u s1( 􏼁( 􏼁 � ϕ x0, y0, u0( 􏼁

+ 􏽚
s1

0
ℓφ(x(s), y(s), u(s)) +〈ζ(x(s), y(s), u(s)), m(x(s), y(s))〉􏽨 􏽩ds.

(34)
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Since ζ is also a continuous selection of Cσ
φ,

ϕ x s1( 􏼁, y s1( 􏼁, u s1( 􏼁( 􏼁≤ ϕ x0, y0, u0( 􏼁 − σs1. (35)

(ereby,

x s1( 􏼁, y s1( 􏼁, u s1( 􏼁( 􏼁 ∈ Dφ, for s1 ≥
ϕ x0, y0, u0( 􏼁

σ
. (36)

Let x1≐x(s1), y1≐y(s1), and u1≐u(s1). As a result, the
use of (eorem 1 implies that the system,

_z � f(z, p, w),

z s1( 􏼁 � x1,

_p � h(z, p, w),

p s1( 􏼁 � y1,

_w � ζ(z, p, w) − αw,

w s1( 􏼁 � u1,

(37)

has a solution (z, p, w): s1,∞)⟶ R6
+ × U, which satisfies

p(s)⟶ 0, when s⟶∞. (38)

Consequently, the control given by u on [0, s1] and w on
(s1,∞) leads to the solution of problems (11a) and (11b)
from (x0, y0)􏼈 􏼉. □

4. Numerical Simulation

In this section, we provide some numerical simulations
usingMATLAB to validate the theoretical results obtained in
the previous section. To investigate the impact of controls u1
and u2 on the spread of COVID-19 in Morocco, we will
consider three different control scenarios. (e first one is
when the control u1 (mass screening) is used alone. (e
second scenario is when only treatment (control u2) is
applied. (e last one is when controls u1 and u2 are coupled.
For our numerical simulations, we consider parameter’s
values and initial conditions given in Table 2. (e control
period is from March 20, 2020, to May 12, 2020 (tf � 53
days). It should be noted that in order to give the continuous
selection of feedback map Cσ

φ(·), for each scenario, as
expressed in equation (31), we first derive expressions of the
functions ℓφ and mφ given, respectively, by equations (27)
and (28). In what follows, r′(t) represents the time derivative
of r(t), and its expression is given by

r′(t) �
rf − r0􏼐 􏼑exp t − t(1/2)􏼐 􏼑/Δ􏼐 􏼑

Δ 1 + exp t − t(1/2)􏼐 􏼑/Δ􏼐 􏼑􏼐 􏼑
2 . (39)

Scenario 1. Control with mass screening.
In this case, we assume that only mass screening, u1, is

implemented, whereas the control u2 is set to zero. (e
functions ℓφ and mφ are given by

ℓφ(x, y, u) � −δ1 β
Inc

N
􏼒 􏼓

2
S − δ3r′(t)Ic + ]1 + δ3p + δ2(1 − p) − δ1( 􏼁k( 􏼁 β

SInc

N
− kE􏼒 􏼓

+ ]2 + δ1β
S

N
+ 1 + u1( 􏼁c δ3 − δ2( 􏼁􏼒 􏼓 (1 − p)kE − 1 + u1( 􏼁cInc( 􏼁

+ ]3 − δ3r(t)( 􏼁 pkE + 1 + u1( 􏼁cInc − r(t)Ic( 􏼁 − δ3 − δ2( 􏼁cIncα1u1,

mφ(x, y) �

mφ,1

0

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

(40)

where mφ,1 � (δ3 − δ2)cInc. (en, a continuous selection
that provides a solution of problems (11a) and (11b) is given
by

ζ1(x, y, u) � min α1u
max
1 , max 0, −

ℓφ + σ
mφ,1

􏼠 􏼡􏼠 􏼡. (41)

In Figures 3(a)–3(c), we depict the evolution of the
exposed individuals (E) and infectious individuals in
compartments (Inc) and (Ic) over time in both cases with and
without control. We observe in these figures that mass
screening significantly reduces the number of the infected
people. At the end of the 53-day period, the number of the
infected individuals in E, Inc, and Ic is reduced by 82.7%,
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84.3%, and 63.4%, respectively. Figure 3(d) shows the
control u1 as a time-dependent function. We can see, in this
figure, that the control u1 should be implemented with full
effort over 40 days.

Scenario 2. Control with treatment.
With this scenario, only treatment is employed as a

control strategy, i.e., u1 � 0. In this case, expressions of the
functions ℓφ and mφ are given by

ℓφ(x, y, u) � −δ1 β
Inc

N
􏼒 􏼓

2
S − δ3r′(t)Ic + ]1 + δ3p + δ2(1 − p) − δ1( 􏼁k( 􏼁 β

SInc

N
− kE􏼒 􏼓

+ ]2 + δ1β
S

N
+ c δ3 − δ2( 􏼁􏼒 􏼓 (1 − p)kE − cInc( 􏼁

+ ]3( − δ3 r(t) +
u2

1 + dIc( 􏼁
2

⎛⎝ ⎞⎠ pkE + cInc − r(t)Ic −
Ic

1 + dIc

u2􏼠 􏼡 + δ3
Ic

1 + dIc

α2u2,

mφ(x, y) �

0

mφ,2

⎛⎜⎝ ⎞⎟⎠,

(42)
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Figure 3: Number of E, Inc, and Ic with control u1 and without control. (a) Exposed individuals E. (b) Undiagnosed infectious individuals
(Inc). (c) Confirmed and isolated individuals (Ic). (d) Evolution of the control u1 with δ � ] � (0.02, 0.2, 0.1), α1 � 0.6, σ � 1, and umax

1 � 0.9.
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where mφ,2 � −δ3(Ic/(1 + dIc)). (en, a continuous selec-
tion that provides a solution of problems (11a) and (11b) is
given by

ζ2(x, y, u) � min α2u
max
2 , max 0, −

ℓφ + σ
mφ,2

􏼠 􏼡􏼠 􏼡. (43)

Figures 4(a)–4(c) display the dynamics of the state
variables E, Inc, and Ic with and without control u2. It is clear
from these figures that the control u2 effectively reduces the
number of people who are diagnosed and isolated, while the
exposed and the undiagnosed individuals are unaffected by
this control. (e result in Figure 4(c) indicates that the

number of people detected who are isolated decreases with
treatment by 19.5% at the end of the control period. (us,
recovery of infective via treatment can reduce the burden on
the health system. In addition, from Figure 4(d), one can
note that, in order to reduce the number of the isolated
individuals, the control u2 should be intensively used during
almost the whole control period.

Scenario 3. Control with screening and treatment.
With this approach, both controls u1 and u2 are used.

Expressions of the functions ℓφ and mφ are given by
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Figure 4: Number of E, Inc, and Ic with control u2 and without control. (a) Exposed individuals E. (b) Undiagnosed infectious individuals
(Inc). (c) Confirmed and isolated individuals (Ic). (d) Evolution of the control u1 with δ � ] � (0.02, 0.2, 0.1), d � 0.02, α2 � 0.6, σ � 1, and
umax
2 � 0.9.
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ℓφ(x, y, u) � −δ1 β
Inc

N
􏼒 􏼓

2
S − δ3r′(t)Ic + ]1 + δ3p + δ2(1 − p) − δ1( 􏼁k( 􏼁 β

SInc

N
− kE􏼒 􏼓

+ ]2 + δ1β
S

N
+ 1 + u1( 􏼁c δ3 − δ2( 􏼁􏼒 􏼓 (1 − p)kE − 1 + u1( 􏼁cInc( 􏼁

+ ]3( − δ3 r(t) +
u2

1 + dIc( 􏼁
2

⎛⎝ ⎞⎠ pkE + 1 + u1( 􏼁cInc − r(t)Ic −
Ic

1 + dIc

u2􏼠 􏼡

− δ3 − δ2( 􏼁cIncα1u1 + δ3
Ic

1 + dIc

α2u2,

mφ(x, y) �

δ3 − δ2( 􏼁cInc

−δ3
Ic

1 + dIc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

mφ,1

mφ,2

⎛⎜⎝ ⎞⎟⎠.

(44)
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Figure 5: Number of E, Inc, and Ic when both controls u1 and u2 are applied and without control. (a) Exposed individuals E. (b) Undiagnosed
infectious individuals (Inc). (c) Confirmed and isolated individuals ((Ic)). (d) Evolution of the controls u1 and u2 with δ � ] � (0.02, 0.2, 0.1),
d � 0.02, α � (0.6, 0.6), σ � 1, and umax

1 � umax
2 � 0.9.
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(en, a continuous selection that provides a solution of
problems (11a) and (11b) is given by

ζ(x, y, u) �

min α1u
max
1 , max 0, −

ℓφ + σ
2mφ,1

􏼠 􏼡􏼠 􏼡

min α2u
max
2 , max 0, −

ℓφ + σ
2mφ,2

􏼠 􏼡􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

Figures 5(a)–5(c) show a comparison among the number
of the infected individuals in the compartments E, Inc, and Ic

in the uncontrolled case and when the two controls are
combined. We observe, in Figures 5(a) and 5(b), that the
curves are almost similar to the case when only the control
u1 is applied (Scenario 1). However, we can note from
Figure 5(c) that the result obtained for the confirmed and
isolated cases (Ic) is more interesting than that in
Figures 3(c) and 4(c). (us, at the end of the 53 days, the
number of people in the compartment Ic, when the controls
u1 and u2 are used together, is reduced by 81.6% instead of
63.5% in the first scenario and 19.5% in the second scenario.
Furthermore, it is important to note that when two controls
are activated, the control u1 should be used with a full effort,
while the control u2 has to be applied with its maximum level
during 36 days with a gradual reduction at the end of the
control period (see Figure 5(d)).

Overall, the numerical results under various interven-
tions show that if we have to choose only one control, the
screening control is the most useful because it allows a
significant decrease in all the infected compartments. In
addition, combining the two controls contributes positively
to the improvement of the final results, particularly by re-
ducing the number of people in the Ic compartment.

5. Concluding Remarks and Discussion

In this work, we were interested in modelling and con-
trolling the COVID-19 pandemic in Morocco. We have
proposed an extension of the SEIR model that is adapted to
the epidemiological data in Morocco. (us, in addition to
the susceptible (S), exposed (E), and removed (R) com-
partments, we have divided infectious patients into two
classes. (e first class (Ic) involves infectious people who are
confirmed by a test and placed in isolation in hospitals. (e
second class (Inc) contains infectious individuals who are not
yet tested. (is distinction between detected and undetected
people seems more realistic than considering a single
compartment that includes all the infectious people. It
highlights the role of screening in the dynamics of COVID-
19 transmission. Also, it helps to differentiate the isolated
infectious who no longer contribute to the transmission of
the disease from those who are still free and participate
positively to the spread of COVID-19. Furthermore, to have
a model that reflects as much as possible the epidemiological
situation of Morocco, we have estimated the parameters of
our model from official data published by the Ministry of
Public Health in Morocco from March 20, 2020, to May 12,
2020.

To reduce the number of infected people in the com-
partments E, Inc, and Ic, we formulate a control problem
based on the proposed model to which we added two
controls representing mass screening and limited treatment.
(is control problem is solved by a new approach based on
results from the viability theory which presents the ad-
vantage of directly finding the expression of the considered
controls. More precisely, we have proposed a set-valued
approach based on viability theory and set-valued analysis
that allows deriving controls via continuous selections of the
designed feedback map.

Numerical simulations are carried out for three different
scenarios, namely, the application of mass screening only,
the adoption of a control strategy based on treatment only,
and finally, the combination of these two intervention
measures (screening and treatment). (e results obtained
have shown that when treatment is applied alone, it reduces
only the number of people hospitalized, whereas mass
screening has a significant effect on the three infected
compartments E, Inc, and Ic. Our results show that when
screening is implemented alone, the number of E + Inc + Ic

at the final time decreased by 71%, while there is only a
reduction by 19.5% when treatment is used alone. Hence, we
conclude that between applying screening only and treat-
ment only, screening is the most effective control inter-
vention. Furthermore, combining screening and treatment
is found to be better since the reduction of the total number
of the infected at the final time reaches 83%.

Appendix

In this section, we set some results from set-valued analysis
and viability theory, in the context of nonlinear systems. Let
g: Rn⟶ Rn be a given function andD be a closed subset of
Rn. Consider the following system:

_z � g(z),

z(0) � z0.
(A.1)

Definition A.1. Subset D is said to be locally viable (under
system (A.1)), whenever for all z0 ∈ D, there exist an instant
T> 0 and a solution z: [0, T]⟶ D, satisfying z(0) � z0. If
one may have T≐∞, subset D is said to be viable (under
system (A.1)).

(is problem can be studied in terms of contingent
cones. Let TD(·) be the contingent cone to subset D, given at
each point z, as follows:

TD(z) � w| liminf
ε↓0

d(z + εw, D)

ε
� 0􏼨 􏼩, (A.2)

where d(w, D)≐inf |z − w|| z ∈ K{ }. (en, we have the fol-
lowing results [31].

Lemma A.1. Assume that function g is continuous on the
closed subset D. Den, D is locally viable under system (A.1) if
and only if the following tangential condition holds:
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g(z) ∈ TD(z), for each z ∈ D. (A.3)

In addition, if g has a linear growth, then D is viable
under system (A.1).

Recall that function g mapping a subset D of Rn into Rn

is said to be of linear growth if there exists a constant k> 0
such that

|g(z)|≤ k(1 +|z|), for all z ∈ D. (A.4)

Remark A.1. Nevertheless, such a condition is not required
when function g is bounded on subset D or, in particular,
when the latter subset is bounded.

Next, we present a result which was established by Aubin
and Frankowska [32]. It will be fundamental for building our
control laws. Let ϕ: Rn⟶ R be a differentiable function,
and consider the subset

D≐ z ∈ Rn
|ϕ(z)≤ 0􏼈 􏼉. (A.5)

(en, we have the following result.

Lemma A.2. Let z0 ∈ D, and suppose that the following
statement holds true:

∃ξ0 ∈ R
n such thatdϕ z0( 􏼁ξ0 < 0. (A.6)

(en,

ξ ∈ TD z0( 􏼁⇔|

ξ ∈ Rn
,

and

dϕ z0( 􏼁ξ ≤ 0 if ϕ z0( 􏼁 � 0,

(A.7)

where dϕ(·) denotes the differential operator of ϕ.
A selection of the set-valued map Q is a mapping ζ such

that ζ(z) ∈ Q(z) for all z. Ultimately, the Lyapunov function
considered in this paper is introduced as follows [38].

Definition A.2. Let Y stand for a nonempty subset of RN

and φ: Y × RN⟶ RN, a C1 real-valued function. We call
φ an Y-Lyapunov function if the following holds:

w: [0,∞)→Y, is differentiable, and

φ(w(s), _w(s))≤ 0, for all s≥ 0,
⇒ lim

s→∞
w(s) � 0.

(A.8)
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