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In a multiprocessor system, as a key measure index for evaluating its reliability, diagnosability has attracted lots of attentions.
Traditional diagnosability and conditional diagnosability have already been widely discussed. However, the existing diagnosability
measures are not sufficiently comprehensive to address a large number of faulty nodes in a system. )is article introduces a novel
concept of diagnosability, called two-round diagnosability, which means that all faulty nodes can be identified by at most a one-
round replacement (repairing the faulty nodes). )e characterization of two-round t-diagnosable systems is provided; moreover,
several important properties are also presented. Based on the abovementioned theories, for the n-dimensional hypercube (Qn), we
show that its two-round diagnosability is (n2 + n/2), which is (n + 1/2) times its classic diagnosability. Furthermore, a fault
diagnosis algorithm is proposed to identify each node in the system under the PMC model. For Qn, we prove that the proposed
algorithm is the time complexity of O(n2n).

1. Introduction

With the growth of the large scale integration technology, a
huge number of multiprocessors are integrated to a multi-
processor computer system. It is not difficult to predict that, in
such a system, some faulty processors (nodes) will be produced.
To make sure that the system works properly, the designers
should consider the problem that the system needs to have the
ability to diagnose itself faulty processors such that they can be
repaired or replaced with the new fault-free processors. In
dealing with the problem of fault diagnosis for multiprocessor
systems, two approaches are used: one is the system-level ap-
proach and another is the logic-circuit-level approach. Since the
system-level approach is helpful for user-transparent reconfi-
guration, automatic, and recovery in the multiprocessor system
while the logic-circuit approach is not, the designers prefer to
design the system into a system-level fault-diagnosis system. In
1967, Preparata et al. proposed an automatic diagnosis pro-
cedure in multiprocessor systems, which is known as the first
system-level diagnosis approach [1, 2]. )is model proposed by
Preparata et al. [1] is called the Preparata, Metze, and Chien
(PMC) model. In theory, a digraph G � (V, E) can usually be

used to denote a PMCmodel, where for two processors i and j,
(i, j) ∈ E if and only if processor u is tested processor i. For
each testing edge (i, j), we can use 1 or 0 to denote their test
result σ(i, j), where σ(i, j) � 1 implies that i judges j to be
faulty and σ(i, j) � 0 implies that i judges j to be fault-free.

)ere are several fundamental system-level diagnosis
strategies: t-diagnosis, t/s-diagnosis (s≥ t) and conditional
t-diagnosis. Suppose that a system S has at most t faulty nodes,
if each node in the system can be diagnosed correctly as either
fault-free or faulty, then the system is called a t-diagnosable
system; some research results on a t-diagnosable system can be
found in [1–4], etc. In theory, the t-diagnosis approach is a key
measurement for the reliability of considered network system.
Besides, the t-diagnosis approach is desirable to be applied to
the areas being related to network control, for example, in the
research on reinforcement learning and adaptive optimization,
we know that the neural network is often used to represent
actor network and chosen as a optimal control policy [5].
Before an adaptive optimal controller is designed, it is necessary
and important to test whether the nodes (neurons) in the
neural network are fault-free or faulty by the t-diagnosis ap-
proach. For a system having at most t faulty nodes, if it can
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determine a set with the size s (s≤ t) that contains all its faulty
nodes, then it is t/s-diagnosable. Numerous studies have been
reported on a t/s-diagnosable system, such as [6–12].

In a system, denoted by G � (V, E), with at most t faulty
nodes, a subset Vi ⊂ V with |Vi|≤ t is called a conditional
faulty set if there does not exist a node v such thatN(v) ⊂ Vi,
where N(v) is a set consisting of all v′s neighbors. If for any
two conditional faulty sets V1 and V2 with V1 ≠V2,
σ(V1)∩ σ(V2) � ϕ, where σ(Vi) is the set of syndromes
produced by Vi, then the system is called conditionally
t-diagnosable. Lots of efforts are made to study the condi-
tionally t-diagnosable system, see [13–22].

It is worthmentioning that the above three strategies are one-
round diagnosis strategies, whose diagnosabilities are usually not
too large. For instance, Qn is shown to be n-diagnosable and its
t/t-diagnosability and conditional diagnosability are n and
(2n − 2)/(2n − 2), respectively, based on the PMC model.
However, when the size of the faulty node set is larger than the
diagnosability of the above diagnosis strategies, the above di-
agnosable systems can do little for the diagnosis. )erefore, to
address the issue that a systemhas a large number of faulty nodes,
Chen et al. introduced a novel strategy, called by t/k-diagnosis,
for the star network [23], where 1≤ k≤ t. A t/k-diagnosable
system guarantees to identify at least k faulty nodes only if as long
as the size of the set consisting of faulty nodes in it does not
exceed t. Although a t/k-diagnosis has a large diagnosability, it
takes much longer to repair faulty nodes, which leads to low
efficiency. )erefore, it provides strong motivation for the study
of a diagnosis strategy that can reach a balance between im-
proving the diagnosability and being highly efficient. )is paper
presents a novel diagnosis approach, called by two-round t-di-
agnosis. Using the two-round t-diagnosis approach, the system
can guarantee that each faulty node canbe diagnosed by atmost a
one-round replacement (repairing the faulty nodes).

A simple introduction on this paper’s remainder is as
follows. Some related notations and definitions are presented
as the preliminaries in Section 2. In Section 3, two-round
t-diagnosable systems are characterized and several important
properties are also presented. In Section 4, the properties of a
two-round t-diagnosable system is applied for computing the
two-round t-diagnosability of Qn. In Section 5, a fast two-
round diagnosis algorithm, whose time complexity is O(n2n),
is proposed for Qn. Section 6 draws the conclusions.

2. Preliminaries

In the section, we introduce some necessary notations and
definitions that are frequently used in the rest of the paper.

Under the PMC model, for a system given by graph
G � (V, E), let Γx � y | (x, y) ∈ E andx, y ∈ V􏼈 􏼉 and
Γ− 1x � y | (y, x) ∈ E andx, y ∈ V􏼈 􏼉. Similarly, for any sub-
set X ⊂ V, ΓX � ∪x∈XΓx − X and Γ− 1X � ∪x∈XΓ− 1x − X. In
particular, if G is undirected, then Γx � Γx− 1 � N(x) and
ΓX � ΓX− 1 � N(X), where X ⊂ V.

Definition 1. Suppose that G � (V, E) is a graph and has k

connected components, say C1, C2, . . . , Ck. )en, Csub(G) �

C1, C2, . . . , Ck􏼈 􏼉 is called a connected subgraph set of G. In
particular, if G is connected, then Csub(G) � G{ }.

Additionally, let max Csub(G)􏼈 􏼉 � Ci, where
|V(Ci)|≥ |V(Cj)| for each Cj ∈ Csub(G).

Definition 2. Let G � (V, E) denote a graph and X ⊂ V.
)en, G[X] � (X, E) is called the induced subgraph by X,
where E � (u, v) | (u, v) ∈ E, u, v ∈ X{ }.

Definition 3. Let G � (V, E) denote a graph, let
Cardk(Csub(G)) � C | C ∈ Csub(G ) and |V(C)| � k􏼈 􏼉 be the
set of connected subgraphs with k nodes in G.

For instance, for graph G shown in Figure 1, Csub(G) �

C1, C2􏼈 􏼉, where C1 � G[ v2, v3, v6􏼈 􏼉], C2 � G[ v1, v4, v5, v7􏼈 􏼉],
Card3(Csub(G)) � G[ v2, v3, v6􏼈 􏼉], and Card4(Csub(G)) �

G[ v1, v4, v5, v7􏼈 􏼉].

Definition 4. Let G � (V, E) denote a system, M ⊂ V. For a
given syndrome σ, if the following conditions are satisfied,
then M ⊂ V is said to be an allowable fault set (AFS):

(1) σ(x, y) � 0, for any x, y ∈ V − M

(2) σ(x, y) � 1, for any x ∈ V − M and y ∈M

Lemma 1. Suppose that G � (V, E) is a system and σ is a
given syndrome. Let F1, F2 ⊆V be two AFSs, then F1∪F2 is
also an AFS.

Proof. To the contrary, assume that F1∪F2 is not an AFS;
then, there exists at least one condition in Definition 4,
which is not true.

If condition (1) is not true, then ∃x, y ∈ V − (F1∪F2)

such that σ(x, y) � 1, a condition to F1 and F2 are two AFS.
If condition (2) is not true, then ∃x ∈ V − (F1∪F2) and

y ∈ F1∪F2, where (x, y) ∈ E such that σ(x, y) � 0. If y ∈ F1,
then F1 is not an AFS; if y ∈ F2, then F2 is not an AFS, which
contradicts the hypothesis. □

Lemma 2. For a given syndrome σ on the system G � (V, E),
suppose that G has k AFSs for σ, say F1, F2, . . . , Fk ⊆V , then,
∩ k

i�1Fi is the fault set of the system.

Proof. Let Fc � ∩ k
i�1Fi. Let F be the maximal fault set, which

exactly consists of all faulty nodes. We will show that F is an
AFS for σ. To this end, let (u, v) ∈ E. u, v ∈ V − F implies that
u and v are fault-free nodes, and then σ(u, v) � 0. Hence,
condition (1) holds for F. For condition (2), u ∈ V − F and
v ∈ F implies that u is a fault-free node and v is a faulty node
and then that σ(x, y) � 1. Hence, condition (2) holds for F.
)en,F is an AFS for σ. According to the assumption, we have
that F ∈ F1, F2, . . . , Fk􏼈 􏼉. So, Fc � ∩ k

i�1Fi ⊆F. □

Definition 5. Let G � (V, E) be a system, t an integer, X⊆V

with 0< |X|< t. Suppose that X1, X2 ⊆V − X with
|X1∪X|≤ t and |X2∪X|≤ t are two different subsets.
(X1, X2) is called a pair of distinguishable subsets of V − X if
there exists an edge from X to X1ΔX2.
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According to Definition 5, the following results are true. In
the system G � (V, E), if X ⊆ V with |X|< k, any two subsets
X1 ⊆ V − X with |X1∪X|≤ t, X2 ⊆ V − X with |X2∪X|≤ t,
and (X1, X2) is a pair of distinguishable subsets in V − X, then
the system can determine the fault set, provided that G has less
than k faulty nodes and all faulty nodes inX have been repaired
or replaced with additional fault-free nodes.

Lemma 3. Suppose that that the undirected graph
G � (V, E) has less than t faulty nodes and G′ ⊂ G with
|V(G′)|≥ t + 1 is connected. If each result in G′ is 0, then G′
does not have faulty nodes.

Proof. To the contrary, let G′ ⊂ G with |V(G′)|≥ t + 1 be
connected, in which each result in it is 0 and there is a faulty
node, say u.)en, it is clear that each node in NG′(u) is faulty.
Similarly, each node in NG′(NG′(u)) is l faulty. As a result,
each node V(G′) is faulty. Note that |V(G′)|≥ t + 1; this
implies that the number of fault nodes in G′ exceeds t, a
contradiction.)erefore, each node inV(G′) is fault-free. □

3. Two-Round t-Diagnosable Systems

At the beginning of the section, the concept of a two-round
t-diagnosable system is presented as follows.

Definition 6. A system is two-round t-diagnosable if, for
given syndrome σ, after repairing or replacing the faulty
nodes identified by one-round diagnosis, the system can
diagnose the remaining faulty nodes without replacement,
provided that the system has less than t + 1 faulty nodes.

According to Definition 6, we can obtain the following
necessary conditions for a two-round t-diagnosable system.

Theorem 1. Let G � (V, E) represent a system. 4en, G is
two-round t-diagnosable if and only if for any a subset Y⊆V

with |Y|≤ t and any two distinct subsets Y1, Y2 ⊆V − Y,
where |Y∪Y1|≤ t, |Y∪Y2|≤ t, and Y1 ∩Y2 � ϕ, there exists at
least an edge from V − Y1 − Y2 to Y1ΔY2.

Proof.
Necessity: since for any Y⊆V with |Y| � t, the result is
trivial, next, we show that the result is true for the case of

|Y|< t. To the contrary, suppose that there exists a subset
Y⊆V, where |Y|< t and distinct subsets Y1, Y2 ⊆V − Y

with |Y∪Y1|≤ t, |Y∪Y2|≤ t, Y1 ∩Y2 � ϕ, such that there
are no edges from V − Y1 − Y2 to Y1ΔY2. Without loss of
generality, suppose that each node in Y is faulty and G has
more than |Y| faulty nodes. Define a syndrome σ as fol-
lows. Let x, y ∈ V with (x, y) ∈ E:

(1) If x, y ∈ V − Y − Y1 − Y2, then σ(x, y) � 0
(2) If x ∈ V − Y − Y1 − Y2 and y ∈ Y, then σ(x, y) � 1
(3) If x ∈ Y1 − Y2 and y ∈ Y2 − Y1, then σ(x, y) � 1
(4) If x ∈ Y2 − Y1 and y ∈ Y1 − Y2, then σ(x, y) � 1
(5) )e remaining test results are arbitrary

Both (Y∪Y1) and (Y∪Y2) are allowable sets for syndrome
σ. Suppose that F1, F2, . . . , Fk ⊆V are all the allowable
fault sets for σ. Let Fc � ∩ k

i�1Fi; Fc is a fault set of G and
Fc ⊆Y, which implies that the fault set Y1 identified by the
first-round diagnosis is a subset of Y. Let G′ denote the
system after replacing the nodes ofY1, and σ is a syndrome
obtained by performing a test task on G′. Since there are
no edges from V − Y1 − Y2 to Y1ΔY2, then σ(x, y) �

σ(x, y) � 1 for x ∈ Y1 − Y2, y ∈ Y2 − Y1, and σ(x, y) �

σ(x, y) � 1 for x ∈ Y2 − Y1, y ∈ Y1 − Y2. Hence, both
Y1 and Y2 are AFSs for σ, which is a contradiction to the
hypothesis that G � (V, E) is two-round t-diagnosable.

Sufficiency: for a syndrome σ, letFc be the intersection of
all AFSs for σ. According to Lemma 2, Fc is a fault set,
where |Fc|≤ t. If |Fc| � t, then each system has been
diagnosed by syndrome σ, which implies that G is two-
round t-diagnosable. If |Fc|< t, then let G′ denote the
system for which all the nodes in Fc are repaired or
replaced with additional fault-free nodes from G. )en,
the number of faulty nodes in G′ will not be more than
t − |Fc|, and these faulty nodes belong to V − Fc. Let σ
denote a syndrome obtained by performing the test task
to G′. We claim that the fault set Y1 ⊆V − Fc of G′
where |Y1|≤ t − |Fc| can be determined by σ. In contrast,
there exists another nonempty allowable subset Y2 ⊆V −

Fc of G′, where |Y2|≤ t − |Fc| for σ, and we derive a
contradiction. Consider the following situations.

Case 1: there is an edge (x, y) from V − Fc − Y1 − Y2 to
Y1ΔY2. Without loss of generality, let y ∈ Y1. Since Y2
is an allowable subset of V − Fc for σ, σ(x, y) � 0. On
the contrary, since Y1 is a fault subset of V − Fc for σ,
σ(x, y) � 1 is a contradiction.

Case 2: there are no edges from V − Fc − Y1 − Y2 to
Y1ΔY2. According to this assumption, there exists an
edge (x, y) from Fc to Y1ΔY2. Without loss of gen-
erality, suppose that y ∈ Y1 − Y2. Since Y2 is an al-
lowable set for σ, σ(x, y) � 0. On the contrary, since Y1
is a fault set of G′, σ(x, y) � 1 is a contradiction. Hence,
G is two-round t-diagnosable.

According to the proof of )eorem 1, the two corollaries
described as follows are obvious. □

Corollary 1. A system G � (V, E) is two-round t-diagnosable
if for any subset Y⊆V with |Y|< t, and for any distinct disjoint

V2
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V4

V5

V1

V7

V6

Figure 1: A graph with 7 nodes.
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subsets Y1, Y2 ⊆V − Y, where |Y∪Y1|≤ t and |Y∪Y2|≤ t, and
(Y1, Y2) is a pair of distinguishable subsets of V − Y.

Definition 7. Let S be a network system. )e maximum
nonnegative integer t that guarantees S to be two-round
t-diagnosable is called the two-round diagnosability of S.

For convenience, it is necessary to introduce a notation
Γ− 12 v � Γ− 1v∪Γ− 1(Γ− 1v) − v{ } for the coming corollary, where
G � (V, E) is a system, v ∈ V.

Corollary 2. For the system G � (V, E), let
α � min |Γ − 1

2 v| | v ∈ V􏼈 􏼉 + 1. 4en, the system is not two-
round α-diagnosable.

Proof. Let v ∈ V be a node such that α � |Γ− 12 v| + 1. Consider
the case such that F � Γ− 12 v∪ v{ } is a fault set that consists of
exactly all faulty nodes in the system. Note that |F| � α.
Define a syndrome σ as follows. Let x, y ∈ V with (x, y) ∈ E

(see Figure 2):

(i) If x, y ∈ V − Γ− 12 v − v{ }, then σ(x, y) � 0
(ii) If x ∈ V − Γ− 12 v − v{ } and y ∈ Γ− 1(Γ− 1v) − v{ }, then

σ(x, y) � 1 (before replacement)

(iii) If x ∈ Γ− 1(Γ− 1v) − v{ } and y ∈ V − Γ− 12 v − v{ }, then
σ(x, y) � 0

(iv) If x ∈ Γ− 1(Γ− 1v) − v{ } and y ∈ Γ− 1v, then
σ(x, y) � 1

(v) If x ∈ Γ− 1v, then σ(v, x) � 1
(vi) If x ∈ Γ− 1(Γ− 1v) − v{ }, then σ(v, x) � 0
(vii) If x ∈ Γ− 1v, then σ(v, x) � 1
(viii) If x ∈ Γ− 1(Γ− 1v) − v{ }, then σ(v, x) � 1 (before

replacement)
(ix) )e other test results are arbitrary

For σ, the nodes of subset Γ− 1(Γ− 1v) − v{ } can be
identified correctly as faulty, which implies that the nodes of
subset Γ− 1v∪ v{ } cannot be identified by syndrome σ. After
the faulty nodes of subset Γ− 1(Γ− 1v) − v{ } are repaired, there
exist no edges from fault-free nodes to v, and the test results
from v to faulty (fault-free) nodes are 1 (0), which implies
that we cannot judge the state of node v. )erefore, to
identify the state of node v, we need a second replacement.
So, the system is not two-round α-diagnosable. □

4. Two-Round Diagnosability of
Hypercube Networks

Qn is a regular graph with 2n nodes and n2n edges. Each node
in Qn can be denoted by an n-bit binary string.
(x, y) ∈ E(Qn) if and only if there is exactly different one bit
position between x and y. Figure 3 is an illustration of a 4-
dimensional hypercube network Q4.

Lemma 4 (see [17]). Let X ⊂ V(Qn) with |Y| � s and
0> s≤ n + 1. 4en, the size of the neighbor set of Y is more
than (sn − s(s + 1)/2).

Lemma 5. For Qn (n≥ 5), let S � vi | vi ∈ V(Qn),􏼈

1≤ i≤ n, | ∩ n
i�1N(vi) | � 1}. 4en, |N(S)| � (n2 − n/2) + 1.

Proof. We use add(v) to denote v′ address. Suppose that
∩ n

i�1N(vi) � v0􏼈 􏼉 and add(v0) � a1a2 · · · an. According to
the definition of Qn, without loss of generality, assume that
add(v1) � a1a2 · · · an, add(v2) � a1a2 · · · an, . . . , add(vn) �

a1a2 · · · an. For some i, we have that N(vi) � a1a2 · · · a􏼈

i · · · an, a1a2a3 · · · ai · · · an, . . . , a1a2 · · · ai · · · an}. )en,
N(vi)∩N(vj) � v0, u􏼈 􏼉, where add(u) � a1a2 · · · ai · · ·

aj · · · an and 1≤ i, j≤ n, i≠ j. So, |N(S)| � n(n − 1) − Cn
2 +

1 � n2 − (n(n + 1)/2) + 1 � (n2 − n/2) + 1.
According to Lemmas 4 and 5, for an n-dimensional

hypercube and a subset S⊆V, where |S| � n + 1, if ∃v ∈ S

with N(v)⊆ S, then |N(S)| � (n2 − n/2). □

Lemma 6 (see [19]). Suppose that Qn is modelled by a graph
G(V, E) (n≥ 5). Let S ⊂ V with n≤ |S|≤ 2(n − 1) − 1. If
G[V − S] is disconnected and Csub(G[V − S]) �

C1, C2, . . . , Cm􏼈 􏼉, then the following conditions hold:

(i) Σ1i�0i|Cardi(Csub((G[V − S])))|≤ 1
(ii) 4ere is unique Ci ∈ Csub(G[V − S]), where

|V(Ci)|≥ 2

Lemma 7 (see [24]). Suppose that Q5 is modelled by a graph
G(V, E). Let S ⊂ V with ≤ 5k − (k(k + 1)/2) (1≤ k≤ 4). If
G[V − S] is disconnected and Csub(G[V − S]) �

C1, C2, . . . , Cm􏼈 􏼉, then the following conditions hold:

(i) Σk− 1
i�0 i|Cardi(Csub(G[V − S]))|≤ k − 1

(ii) 4ere is unique Ci ∈ Csub(G[V − S]), where
|V(Ci)|≥ k

1 or 0

1 or 0

1 or 0

1

1

0
0 1: before replacement

0: a�er replacement

1: before replacement
0: a�er replacement

V Γ–1v Γ–1(Γ–1v) – (v)

V – Γ2
–1v – {v}

Figure 2: A syndrome of Corollary 2.
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Lemma 8 Let x> 0 and y> 0 are two integers. 4en,
(x + y)≤ 1 + xy.

Proof. Consider the function g(x, y) � (1 + xy) − (x + y).
It is obvious that g(x, y) � (x − 1)(y − 1). Since x≥ 1 and
y≥ 1, then g(x, y)≥ 0, which implies that
(x + y)≤ 1 + xy. □

Lemma 9 (see [24]). Suppose that Qn is modelled by a graph
G(V, E) (n≥ 5). Let S ⊂ V with |S|≤ kn − (k(k + 1)/2)

(1≤ k≤ n − 1). If G[V − S] is disconnected and
Csub(G[V − S]) � C1, C2, . . . , Cm􏼈 􏼉, then the following con-
ditions are true:

(i) Σk− 1
i�0 i|Cardi(Csub(G[V − S]))| ≤ k − 1

(ii) 4ere is unique Ci ∈ Csub(G[V − S]), where
|V(Ci)|≥ k

Lemma 10 (see [24]). Suppose that Q5 is modelled by a graph
G(V, E). Let S ⊂ V with |S|≤ 9. If G[V − S] is disconnected
and Csub(G[V − S]) � C1, C2, . . . , Cm􏼈 􏼉, then the following
conditions are true:

(i) Σk− 1
i�0 i|Cardi(Csub(G[V − S]))| ≤ 4

(ii) 4ere is unique Ci ∈ Csub(G[V − S]), where
|V(Ci)|≥ 5

Lemma 11 (see [24, 25]). Suppose that Qn is modelled by a
graph G(V, E) (n≥ 5). Let S ⊂ V with
|S|≤ n2 − (n(n + 1)/2) − 1. If G[V − S] is disconnected and
Csub(G[V − S]) � C1, C2, . . . , Cm􏼈 􏼉, then the two conditions
as follows are true:

(i) Σn− 1
i�0 i|Cardi(Csub(G[V − S]))| ≤ n − 2

(ii) 4ere is unique Ci ∈ Csub(G[V − S]), where
|V(Ci)|≥ n

With the above preliminaries, we shall discuss the two-
round diagnosability of Qn.

Theorem 2. An n-dimensional (n≥ 6) hypercube given by
G � (V, E) is not two-round (n2 + n/2) + 1-diagnosable.

Proof. Note that, for each node v ∈ V, we have |Γ− 12 v∪ v{ }| �

(n2 + n/2) + 1 by Lemma 5. According to Corollary 2, it is
easily determined that an n-dimensional hypercube is not
two-round (n2 + n/2) + 1-diagnosable. □

Theorem 3. An n-dimensional (n≥ 6) hypercube given by
G � (V, E) is two-round (n2 + n/2)-diagnosable.

Proof. Let X⊆V be a subset of V, where |X|< (n2 + n/2).
According to )eorem 1, we will show that, for any two
distinct subsets S1, S2 ⊆V − X, where |X∪S1|≤ (n2 + n/2),

|X∪S2|≤ (n2 + n/2), and S1 ∩ S2 � ϕ, there exists at least an
edge from V − S1 − S2 to S1ΔS2. Without loss of generality,
let S1 − S2 ≠ ϕ.

Now, consider the two situations:

Case 1: |X|≥ (n2 − n/2).
Note that |S1|< (n2 + n/2) − |X|≤ (n2 + n/2)−

(n2 − n/2) � n and |S2|< (n2 + n/2) − |X|≤ (n2 + n/2)−

(n2 − n/2) � n, which implies that |(S1 − S2)|< n. Let
k � |(S1 − S2)|; then, 1≤ k< n. According to Lemma 4,
we have that N(S1 − S2)≥ kn − (k(k + 1)/2) + 1. Since
f(k) � kn − (k(k + 1)/2) + 1 is an increasing function
for k ∈ [1, n − (1/2)], f(k)≥f(1) � n, which implies
that |S1 − S2| � f(k)> n> |S2|. Hence, there exists at
least an edge from V − S1 − S2 to S1 − S2.
Case 2: |X |< (n2 − n/2).
To the contrary, assume that ∃S1, S2 ⊆V − X with
|X∪S1|≤ (n2 + n/2), |X∪S2|≤ (n2 + n/2), and
S1 ∩ S2 � ϕ, but that there are no edges from V − S1 − S2
to S1ΔS2. Next, we derive a contradiction. According to
Lemma 11, we know that the system can be divided into
three parts by a subset X (shown in Figure 4). Note that
A is the largest component of G[V − X], where
|A|≥2n − ((n2 − n/2) − 1) − (n − 1) � 2n +2 − (n2+ n/2),
and B is the union of the remaining components of
G[V − X], where |B|≤n − 1. Since |B|≤n − 1 and Qn is a
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Figure 3: A 4-dimensional hypercube.
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n-regular graph, S1∩B � ϕ. A similar argument can be
used to obtain that S2∩B � ϕ. Hence, S1⊆A, and S2⊆A.

Note that |A − S1∪ S2| � |A| − |S1| − |S2|≥ 2n − |X|−

|S1| − |S2| − (n − 1)≥ 2n − (3/2)(n2 + n/2) − (n − 1)> 0
(n≥ 6), andA is a component of V − S.)is property implies
that N(S1ΔS2)∩A≠ϕ, which is a contradiction.

In summary, we conclude that Qn (n≥ 6) is two-round
(n2 + n/2)-diagnosable. □

As we know, Qn is n-diagnosable, (2n − 2/2n − 2)-di-
agnosable, and conditionally 4n − 7-diagnosable. A previous
study has shown that Qn is also two-round (n2 + n/2)-di-
agnosable. Figure 5 gives an intuitive comparison between
these diagnosabilities for Qn.

5. A Fault Diagnosis Algorithm of Two Round
t-Diagnosable Hypercubes

In Section 4, we observed that an n-dimensional hypercube
(Qn) was two-round (n2 + n/2)-diagnosable. )en, identi-
fying all faults with at most a one-round replacement re-
mains an open question. )is section presents a fast
identification algorithm to address this issue (Algorithm 1.
)e completeness of the identification algorithm is dem-
onstrated, provided that the system has less than t + 1 faulty
nodes (t≤ (n2 − n/2) − 1). )e fast identification algorithm
is described in detail in Algorithm 2.

Algorithm 1 is applied to each node of Qn with at most t

faulty nodes (t≤ (n2 − n/2) − 1). According to Lemmas 9
and 11, the unique set S can be output by Algorithm DFS,
where |S|≥ t + 1.

Theorem 4. 4e time complexity of the fast identification
algorithm is O(N log2 N), where N � 2n.

Proof. For the sake of convenience, let F denote a set exactly
consisting of faulty nodes in the system, L the largest
component of the induced subgraph by V − F, and S a set
consisting of all remaining small components in the induced
subgraph by V − F. When ui ∈ L), Step 1 takes an amount of
time equal to O(N log2 N). When the (ui) ∈ S∪F, Step 1
takes an amount of time equal to
O((n2 + n/2) + N log2 N) � O(N log2 N). Hence, Step 1
takes an amount of time equal to O(N log2 N). Step 2 and
Step 3 take an amount of time equal to O(N). So, the total
time for Fast Identification is O(N log2 N).

According to Lemmas 9 and 11, the completeness of the
fast identification algorithm is obvious, provided that Qn has
no more than (n2 − n/2) − 1 faulty nodes. Note that Qn is
two-round (n2 + n/2)-diagnosable. )en, there is a question
of whether our algorithm is suitable for the scenario in which
there are t((n2 − n/2)≤ t≤ (n2 + n/2)) faults in the system.
We perform a simulation to evaluate the system; in the
following simulation, we assume that Qn has (n2 + n/2)
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Figure 4: System divided into A, B, and X by subset X.
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faulty nodes, and each node of the system may be faulty with
the same probability. We run our algorithm 1000 times.
Table 1 gives the corresponding experimental results.

)e simulation shows that our algorithm is suitable for
Qn, provided that it has no more than (n2 + n/2) faulty
nodes. □

6. Conclusion

In this article, we introduce a novel diagnosis strategy called
the two-round diagnosis strategy that implies that each node
can be determined by at most a one-round replacement. A
necessary and sufficient condition of the system being two-
round t-diagnosable is presented. Additionally, several
important properties of this system are described. Using the
theory of a two-round t-diagnosable system, we show that
Qn is two-round (n2 + n/2)-diagnosable. Compared to the
traditional diagnosis strategy, the two-round diagnosability
of Qn is (n + 1/2) times as large as n, the classic diagnos-
ability of Qn. Furthermore, an O(n2n) algorithm is provided

to identify faulty nodes for Qn. )e conditionally t-diag-
nosable network systems are a lass of typical nonlinear
systems, in which the state (syndrome) of a node impacted
these nodes in its surrounding area. Recent years, there are
some studies to analyze nonlinear systems by using online
policy iterative optimization algorithms [20, 26]. )e
combination of these algorithms and our algorithm will be a
try to obtain an optimal fault set for considered conditionally
t-diagnosable network system; this is one of our studies in
the future.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Input:
An undirected graph G � (V, E) with |V| � 2n, a positive integer t (t≤ (n2 − n/2) − 1) and a syndrome σ.

(i) Output:
A fault set A, a fault-free node set B and a second-round fault set C, where A∪B∪C � V.

(1) Let Si � ∅ (1≤ i≤ 2n) and B � A � C � ∅.
For any ui ∈ V − ∪ij�1Si (1≤ i≤ 2n), perform DAS(ui); Si DAS(ui).
while |Si|≥ t + 1, let B � B∪ Si, and A � A∪N(B).

(2) While V � B∪A, output B and A. Otherwise, go to Step 3.
(3) While |A|≥ t, let B � V − A, output B and A.

Otherwise, repair the faulty nodes in A and execute
Best (A, B, C) until B∪A∪C � V. Additionally, output subsets B, A, and C.
Best (A, B, C):
For any v ∈ V − A − B, if σ(u, v) � 1 (u ∈ A∪B), then C � C∪ v{ }; otherwise, B � B∪ v{ }.

ALGORITHM 2: Fast identification.

Table 1: Number of faulty nodes identified by the two-round algorithm applied to an n-dimensional hypercube.

n 7 8 9 10 11 12
Faults 28 36 45 66 78 91
Identified faults 28 36 45 66 78 91

Input:
(i) An undirected graph G � (V, E) with |V| � N representing a network system of interest and a network node x ∈ V. Let S � x{ }.

Output:
A subset S⊆V.

(1) DFS(v):
for each u ∈ N(x),
if σ(y, x) � σ(x, y) � 0,
S � S∪ y􏼈 􏼉 and DFS(y).

(2) Output the node set S.

ALGORITHM 1: Depth-first search.
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