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In this paper, the covariance control algorithm for nonlinear stochastic systems using covariance feedback is studied. Covariance
control of nonlinear systems scenario involves the theory of covariance control based on the idea of the covariance feedback.
&erefore, the proposed covariance control algorithm is derived for our case, firstly by applying the covariance control method
and linear approximation of nonlinear systems, and then it is achieved by adopting this method for a class of nonlinear stochastic
systems by using feedback linearization idea and a covariance feedback controller. &e effectiveness of the proposed covariance
feedback algorithm is studied using numerous simulations concerning different nonlinear case studies.

1. Introduction

Most of the introduced approaches that analyze the dy-
namics of stochastic systems use a covariance control al-
gorithm to design a control rule to provide limited desired
covariance aims. &e variance of a random variable is very
important in most of the control researches such as pre-
dictive systems analysis and state estimation problems.
Many researchers have done huge researches to reach and
control the constrained variance objectives in related control
goals to have a convergence in identification and estimation
systems [1, 2] and data filtering fault detection and diagnosis
[3] or have a better convergence rate of some intelligent
algorithms such as genetic algorithm [4] and neural network
[5]. Choosing an incorrect variance can cause instability in
the whole system and can reduce the performance of the
system.

Most papers on covariance assignment focused on the
state covariance assignment (SCA) theory for linear systems.
In these studies, primary control purposes such as

constraints of the variances of the states were assumed.
Besides, secondary purposes could be assumed for the input
variance values. By expanding the Skelton linear methods
[6, 7], some theories about the covariance control of per-
turbed, bilinear, or nonlinear stochastic systems have been
presented and reviewed in [8–13].

By improving the SCA idea of a linear system, some
theories about the determining the desired range of state
covariance variations of nonlinear systems, multivariable,
multisensor systems, or placing and setting the system co-
variance matrix when system parameters change have been
presented [9–14]. For example, by expanding the linear
methods, Kalandros [10] and Kalandros and Pao [14] deal
with the problem of covariance control in multisensor
systems and its application for reducing bias effects in
interacting target scenarios is presented. Furthermore, in [8],
[11], and [12], bilinear random systems have been controlled
by the covariance control method.

Recently, finite-horizon covariance control problem for
stochastic discrete-time linear systems with complete state
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information subject to input constraints has been considered
in Bakolas [15]. Also, the optimal covariance control
problem for stochastic discrete-time linear systems subject
to probabilistic chance constraints has been studied by
Okamoto et al. [16]. &e practical covariance control theory
incorporating the concept of variance-constrained control
for the discrete TakagiSugeno (T-S) fuzzy stochastic systems
has been applied in Chang et al. [17].

Chang et al. [18] presented a novel multiobjective sliding
mode fuzzy control technique for a class of discrete-time
nonlinear stochastic systems, such that the closed-loop
system achieves passivity constraint and individual state
variance constraints, simultaneously. Also, the problem of
steering a linear dynamical system with complete state
observation from an initial Gaussian distribution in state
space to a final one with minimum energy control was
addressed in Chen et al. [19].

&e studies on linear stochastic systems are more than
nonlinear random systems. Besides, in conventional co-
variance control methods, according to the Riccati equation
limiting condition, it is not always possible to obtain co-
variance placement feedback for each desired covariance.
Since the reports for nonlinear random systems are few, the
researchers are interested in the application of linear systems
theories for nonlinear cases as far as it is possible without
wasting too much precision and without loss of
performance.

In this paper, the covariance control algorithm for
nonlinear systems using covariance feedback is investigated.
&e novel contributions of this paper are as follows: firstly, it
is shown that, under the condition that the linear approx-
imation of a nonlinear system is a good representation of a
nonlinear system, covariance control of nonlinear systems
scenario involves the theory of covariance control based on
the idea of the covariance feedback. Since, in practice with
real conditions, a linear approximation could not be used for
any prespecified covariance matrix and numerous class of
nonlinear systems; for nonlinear systems, we introduce the
theory of covariance control using the feedback linearization
approach developed in Khalil Hassan [20]. Also, according
to the feedback linearization and covariance feedback idea
stated in [12, 21], it is proved that any desired covariance
matrix can be placed to its corresponding nonlinear system.
For this purpose, we try to linearize the nonlinear stochastic
system via feedback linearization. &en, the existing co-
variance control theory is extended to address the nonlinear
stochastic control problems by the application of the linear
system covariance control method. By changing the vari-
ables method, the nonlinear system is transformed into an
equivalent linear system, and then, by using the state
feedback controller approach, the closed-loop system will be
stable and linear. According to the obtained covariance
equations for the new transformed linear closed-loop sys-
tem, the standard linear state-space model is presented for
the covariance system. States of the new modelled system
will be the covariance of the main nonlinear system states
and also the input of the presented covariance system will be

the covariance of the nonlinear system input.&en, based on
the proposed model, mathematical approaches are going to
be derived for nonlinear stochastic systems by using a state
feedback controller and a covariance feedback controller.
Finally, the simulation study is used to investigate the ef-
fectiveness of the introduced approach in a nonlinear case
study.

2. Preliminaries and Problem Formulation

In this section, to obtain the linearized approximation of the
nonlinear systems, two linearization ideas are brought that
include a linear approximation of nonlinear stochastic
systems and exact feedback linearization of nonlinear sto-
chastic systems.

2.1. Linear Approximation of Nonlinear Stochastic Systems.
Consider a general zero-mean nonlinear stochastic system as
follows:

_x(t) � f(x(t)) + Bu(t) + w(t),

y(t) � Cx(t),
(1)

where w(t) is a zero-mean white noise andw(t) has co-
variance Q and f(x(t)) is an odd function relative to x(t),
thereby all of the mean values are zero. &is system could be
also considered as a mapping function such as Ω: w⟶ x.
Linear approximation of the general system, presented by
Leithead [22, 23] in equation (1), can be considered by the
following form:

_z(t) � Az(t) + v(t), (2)

and the corresponding mapping function is defined by
ψ: υ⟶ z. &e relationship between Ω and ψ is defined as
follows [22, 23]:

x � Ωw � Ψw + Ψoh x, (3)

where h is a nonlinear coupling operator defined by the
following function [23]:

H(x(t)) � f(x(t)) − Ax(t). (4)

Leithead [22] proved that the linear system Ψ is an
acceptable representation of a nonlinear system Ω when the
error covariance matrix E is small, where

E � E ((Ω − Ψ)w)((Ω − Ψ)w)
T

 , (5)

where E is the expectation operator. To define “small”, the
evaluation of the accuracy of equation (2) from equation (1) is
required. &is assessment (a measure of the accuracy) can have
provided by the following covariancematrix of the error [22, 23]:

E � Tr
(ZC)

Tr(Zp)
, (6)

For some suitable positive symmetric matrix Z since p is
defined as system steady-state covariance matrix and C

would be defined as follows:
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C � E (ΨohΨw)(ΨohΨw)
T

 , (7)

where variable E can be used to determine the accuracy of
the low-order expansion when it is authentic. &erefore, the
linear system Ψ is an appropriate representation of the
systemΩ only if E is a minimum value, whichmeans that the
filtering action of (Ψoh) must be strong. Also, Tr(C)

represents the convergence rate of an asymptotic expansion,
and if C is small, the expansions will be reliable, thus there
will exist an estimation of nonlinear systems.

Remark 1. In [22], it was proved that the error measurement
criterionC is a function of the optimal covariance matrix p.
&erefore, in the proposed covariance control procedure, the
selection of the optimal control covariance matrix p should
be done in a way that is compatible with keeping the matrix
Cwith a small value. For practical applications in zero-mean
type systems, the appropriate estimation error value of the
variable C should be less than 25%, and in nonzero-mean
systems, the allowable estimation error range is assumed to
be about 10%.

In the following, a suitable optimal choice for the
nonlinear system can be achieved when the system non-
linearities are substituted by their stochastic-input charac-
terizing functions as follows:

_x(t) � Ax(t) +[f(x(t)) − Ax(t)] + Bu(t) + w(t),

u(t) � Gx(t),
(8)

with nonlinear coupling function H(x(t)) such as

H(x(t)) � f(x(t)) − Ax(t), (9)

where the matrix A could be calculated by the following
equation:

A � E f(x(t))x(t)
T

 P
− 1

, (10)

where E is the expectation operator and P is the steady-state
covariance of the states. To estimate the precision of the low-
order development of the system, the measurement of E can
be used when C is small.

&e main problem of this method is that the obtained
estimation of the nonlinear stochastic system with estima-
tion accuracy parameters (C, E) is dependent on the system
states’ covariance matrix. Moreover, the provided estima-
tion’s compatibility conditions, which are minimizing the
equations (6) and (7), must be satisfied simultaneously.
&erefore, in practice with real conditions, this method
could not be used for numerous class of nonlinear systems.
&us, with this method, we will not be able to place any
desired covariance matrix with high accuracy and always
there would be a considerable error value based on the
system’s final results.

2.2. Exact Feedback Linearization of Nonlinear Stochastic
Systems. Using state feedback control and change of vari-
ables method that transforms the nonlinear system into an

equivalent linearized system is one of the most commonly
used ideas of practical nonlinear control design [20].

Consider a more general form for zero-mean nonlinear
stochastic system as follows:

_x(t) � f(x(t)) + g(x(t))u(t) + Dw(t), (11a)

y(t) � c(x(t)), (11b)

where f, c, and g are smooth vector fields. Also, x(t), u(t),
w(t), and y(t) are state vector, input vector, white noise, and
output vector of system, respectively. w(t) is a zero-mean
noise with covariance Q and f(x(t)) is a function relative to
x(t). Consequently, all of the mean values are zero.

In an input-state linearization technique, the problem of
feedback linearization is going to be solved within two steps.

First, we consider a state transform z � z(x) and input
transform u � u(x, v) such that the nonlinear dynamics of
the system would be transferred into a linear time-invariant
dynamic as the following form:

_z(t) � Az(t) + bv(t) + dw(t), (12a)

where

A �

0 1 0 . . . 0 0

0 0 1 0 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 . . . 0 0 1

0 0 . . . 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b �

0

0

⋮

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12b)

u(t) � α(x(t)) + β(x(t))v(t). (12c)

&en, linear standard control techniques (such as pole
placement) are used to design v(t). So, by using the designed
linearization feedback and the suitable state transform
z � z(x), the problem of covariance control and stabiliza-
tion of the nonlinear system (11) would become a problem of
stabilization and covariance control with the new linear
system dynamic (12a) with the new input v(t).

It should be noticed that the suggested covariance
feedback idea Khaloozadeh and Baromand [21] is com-
pletely independent of the designed stabilizer state
feedback in the tracking or stabilizer problem. So, we try
to determine the statistical features of the control signal by
considering states’ covariance feedback of the system
(x(t) or z(t)), and then, we try to control the covariance of
the main system states as possible. Because of the inde-
pendence of this method of the input signal, it enables us
not to have some limitations for designing the control
signal u(t).
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Unlike most of the presented common methods for
placing the covariance matrix for linear or nonlinear sys-
tems, we can practically consider the issue of the system
output tracking at the same time as the covariance control
issue is considered as well. Another thing to pay attention to
is that the presented idea of feedback linearization is ob-
tained with a state transform and also an input transform,
with this issue varying with the presented common line-
arization idea in Leithead [22] and Chung and Chang [9],
that was determined and considered for the limited work
areas, but in the presented feedback linearization idea, we
will consider no limitations for this issue. Moreover, the idea
of using linearization feedback for nonlinear systems co-
variance control issues could be taken within two steps.

In the first step, by using the state transform z � z(x),
the nonlinear system (11) would become the linear standard
form (12a). &e condition of the existence of such a state
transform will be mentioned in the following.

In the second step, by using the idea of covariance
feedback, the covariance of the control signal would be
designed in such a way that the system states’ covariance will
be placed to the desired preset values.

&erefore, as a summary, the linearization feedback and
state variable change z � z(x) could be done by the fol-
lowing steps.

First, the vectorfield g, adfg, . . . , adn− 1
f g  should be

determined for the nonlinear system (11) where adfg �

[f, g] � ∇gf − ∇fg as a Lie Bracket operator. If we prove
the existence of two conditions which are controllability and
reversibility Khalil Hassan [20], then the first state zi (the
output function that leads to input-output linearization with
a relative degree of n) can be calculated as the following
equation:

∇ziad
i
fg � 0, i � 1, . . . , n − 2, (13)

where adi
fg � [f, adi− 1

f g]. Also, the state transform z(x)

and input transform u(x) can be calculated as follows:

Z(x) � z1, Lfz1, . . . , L
n− 1
f z1 ,

u(t) � α(x(t)) + β(x(t))v(t),
(14)

where α(x) � (Ln
fz1/LgLn− 1

f z1), β(x) � (1/LgLn− 1
f z1), and

Lfh � ∇hf are determined as a Lie derivatives of the
function h to the vector field f.

By using the linearized new states and obtained control
law in the previous step, the mentioned nonlinear system
can be transferred into the standard linear system form
(12a). Furthermore, the unstable nonlinear system can be
stable by using the pole placement idea. Now, the covariance
feedback idea could be implemented by following to place
the desired preset covariance matrix to the new linearized
system.

Given that most of the nonlinear systems can be
transformed into the equivalent linear system by using

linearizable feedback, the feedback covariance idea can be
used for controlling most of the nonlinear systems.

3. Description of Covariance System and
Design of Covariance Controller

Covariance control theory was described in references to
find feedback gain sets that led to assign suitable state co-
variance by these sets. According to these mentioned ref-
erences, the following variance limitations will be satisfied:

lim
n⟶∞

E xi(t)
2

 ≤ δ2i , i � 1, 2, . . . , nx, (15)

where δi determines the root-mean squared (RMS) con-
straints of the variances related to the system states. In this
paper, to find the solution for zero-mean nonlinear sto-
chastic system (ZMNSS), it can be simplified to find the
covariance state feedback gain, that attains a determined
value of p to comply with the variance limitations (equation
(11)). If the small value of the measured matrixC is selected
and the strong filtering action (6) in statistical linearization is
assumed or by considering the controllability and involu-
tivity conditions for input-state feedback linearization idea,
finally, the linearized system ((2) and (12a)) will be obtained.
Besides, in both cases, the nonlinear system can be specified
as

_z(t) � Az(t) + Bv(t) + Dw(t), (16a)

u(t) � α(x(t)) + β(x(t))v(t), (16b)

where Az(t) is the describing function of f(x(t)) and u(t) is
a function of x(t) and v(t) in any suitable forms, and the
applied feedback gain G in the state feedback stabilizing signal
v(t) � Gz(t) is calculated based on the system parameters in
(16a) by using the pole-placement method. Also A ∈ Rn×n,
D ∈ Rn×m, B ∈ Rn×m, z(t) ∈ Rn, v(t) ∈ Rm, and w(t) ∈ Rm.
On the other hand, the input noise of the system w(t) in
equation (16a) satisfies the following statistical specification:

E[w(t)] � 0; E x(0)w
T
(t)  � 0, (17a)

E z(0)w
T
(t)  � 0, (17b)

E w(t)w
T
(s)  � Q δ(t − s), (17c)

where Q ∈ Rm×m is the process noise covariance matrix.
Also, with the assumption of E[u(t)] � 0, the positive

definite covariance matrix of final states, p(t) and p(t), can
be defined as follows:

p(t) � E [x(t) − E[x(t)]][x(t) − E[x(t)]]
T

 , (18a)

p(t) � E [z(t) − E[z(t)]][z(t) − E[z(t)]]
T

 , (18b)

where
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E[x(t)] �
1
t



t

k�1
x(t). (19)

&e objective is to impose lim
t⟶∞

E(x(t)) � 0 and assume
a prespecified positive definite covariance matrix for the
states, x(t). We name this problem as a covariance as-
signment problem.

In [21], to solve the covariance assignment problem, a
method based on the covariance feedback technique is
presented. In this research, we utilize the covariance as-
signment for nonlinear systems via the covariance feedback
method.

In the following discussion, the aim is to reach a sto-
chastic control signal v(t) with mean zero and the covari-
ance matrix, V(t) ∈ Rm×m, such that the steady-state
covariance p(t) converges to a prespecified value pd(t).
&en, an additional action input v(t) is determined in a way
to assign the prespecified covariance to a nonlinear system
based on the covariance feedback technique. Figure 1
demonstrates the structure of the overall control system.

&us, with the new additive control signal, v(t), (16a) can
be rewritten by

_z(t) � Az(t) + Bv(t) + Dw(t) + v(t),

y(t) � Cz(t),
(20)

where v(t) � Gz(t) is stabilizable control signal that imposes
the action input u(t) (u(t) � α(x(t)) + β(x(t))v(t)) and
v(t) is an additive input noise signal which is specified by a
method to assign the prespecified covariance matrix via
covariance feedback technique.

At first, the case with a zero-mean control signal v(t) is
considered. &en, the problem is referred to as a regulator
problem such that, for v(t), the following assumptions is
satisfied:

E[u(t)] � 0 ,

E z(0)v
T
(t)  � 0,

E v t1( w
T

t2(   � 0, ∀t1&t2.

(21)

Also, for additional input signal v(t), covariance matrix
V(t) is defined as

V(t) � E v(t)v(t)
T

 , (22)

where

E z(0)v
T
(t)  � 0, (23a)

E v t1( w
T

t2(   � 0, ∀t1&t2. (23b)

For a z(t) with mean zero, the covariance of the system
states is represented by

p(t) � E z(t)z
T
(t) . (24)

Using ((20)–(24)), the differential equation matrix of p(t)

can be derived by
dp(t)

dt
� (A + BG)�p(t) + p(t)(A + BG)

T
+ V(t) + DQ(t) D

T
,

� Ap(t) + p(t)(A)
T

+ V(t) + d(t).

(25)

3.1. Description of Covariance System. Let z(t) � [z1, z2,

. . . , zn]T be the vector of states, v(t) � [v1, v2, . . . , vm]T be
the additional control input, and w(t) � [w1, w2, . . . , wn]T

be the vector of process noise, respectively. By the symmetry
of p(t), Q, and V(t), we can partition and rearrange p(t),
V(t), and Q(t) by [24]

pcov(t) � E z1(t)z1(t)( E z1(t)z2(t)( , . . . , E z1(t)zn(t)( E z2(t)z2(t)( , . . . , E z2(t)zn(t)( , . . . , E zn(t)zn(t)(  
T
, (26)

Vcov(t) � E v1(t)v1(t)( E v1(t)v2(t)( , E v1(t)vm(t)( E v2(t)v2(t)( , . . . , E v2(t)vm(t)( , . . . , E vm(t)vm(t)(  
T

, (27)

Qcov(t) � E w1(t)w1(t)( E w1(t)w2(t)( E w1(t)wn(t)( E w2(t)w2(t)( , . . . , E w2(t)wn(t)( , . . . , E wn(t)wn(t)(  
T

, (28)

where pcov, Vcov, and Qcov are n((n + 1)/2 × 1),
(m(m + 1)/2 × 1), and (n(n + 1)/2 × 1) vectors,

respectively. Moreover, DQ(t)DT can be rearranged as
d(t) ∈ R(n(n+1)/2×1).

Covariance feedback
controller

Nonlinear stochastic
system Input u (t)

Additive action
input v~(t)

State covariance
estimator

State feedback linearization

w (t)

Figure 1: &e block diagram of the overall control system.
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As a result, the dynamic covariance system (25) can be
reduced to the standard state-space model by defining Acov,
Bcov, and Ccov as follows [24]:

dpcov(t)

dt
� Acovpcov(t) + BcovVcov(t) + d(t),

Ycov(t) � Ccovpcov(t),

(29)

where Bcov � I and the elements of
Acov ∈ R((n(n+1)/2)×(n(n+1)/2)) and d(t) are the state and dis-
turbance matrices of the proposed state-space covariance
system, respectively, and computed based on the nonlinear
mapping of A � (A + BG) and d(t). Also, d(t) is deter-
ministic, and we can assume it as a disturbance term. Also
Ccov is arbitrary output matrix of the presented covariance
system.

It should be noted that, although the model (20) is
stochastic, the given covariance state-space model (29) is
deterministic. Also, if Acov and Bcov are controllable, then
there exists a solution to the covariance assignment problem.

3.2. Design of Covariance Controller. In the previous dis-
cussions, for the state covariance of a nonlinear stochastic
system, a deterministic and linear model was introduced
based on the combination of stochastic approximation and
feedback linearization and rearrangement ideas. But, de-
signing the covariance feedback Vcov(t) � Kpcov(t) (that
imposes the action input v(t)) to control the covariance
assigned in the specified matrix pd is the main problem. By
the linearity of the covariance system presented in (29) using
the introduced technique in Khaloozadeh and Baromand
[21], with the integral state _q(t) � r − Ccovpcov(t), the new
augmented state space is defined by

_pcov(t)

_q(t)
  � A

pcov(t)

q(t)
  + BVcov(t) +

d

0
⎡⎣ ⎤⎦ +

0

I
 r,

(30)

where r is defined as the desired covariance vector and
Ccov � I and

A �
Acov 0

− Ccov 0
⎡⎣ ⎤⎦,

B �
Bcov

0
 .

(31)

&us, the covariance control problem results in the
stability of the augmented system (30). Controllability of the
pair (A, B) is the necessary condition to exist as a solution to
the covariance tracking problem.

&e state covariance feedback Vcov(t) in (23a) is then
given as follows:

Vcov(t) � K1 K2 
pcov(t)

q(t)
  � K

pcov(t)

q(t)
 . (32)

&e controller gains K and thus Vcov(t) is then obtained
using the pole placement method.

&e elements of the vector Vcov(t) determine the co-
variance matrix of the action input, v(t) (i.e.,
V(t) � E[v(t)v(t)T] ). &us, v(t) must be produced such
that v has the covariance matrix V. Because of the regulatory
of the problem in the original state system, the control signal
v(t) is a white noise with mean zero and the covariance
matrix V. &erefore, in each iteration, the input signal v(t)

will be derived as follows:

v(t) � V(t)
0.5

× en(t), (33)

where en 
m
i�1 is denoted as white noise.

&us, with the presented idea, the control strategy is
composed of two stages. &e first, state feedback signal
v(t) � Gz(t) (feedback from the mean value of state) sta-
bilizes and linearized the system. &e second, covariance
feedback signal v(t) imposes the input strategy such that the
system’s states adopt the predefined covariance value.

Remark 2. In the presented covariance feedback and linear
approximation idea, unlike most of the derived strategies
based on the state feedback that they could not be able to
place any desired covariance matrices, with this mentioned
covariance feedback idea and obtaining a distinct control
signal from the stabilizer control signal, we can even place
any covariance matrices. &erefore, we can calculate the
desired covariance matrix that satisfies the expected con-
ditions of the control problem for representing a better
estimation of the nonlinear system according to the mini-
mum permitted value of the nonlinear error signal. Finally,
we can achieve the control goal of the problem.

In summary, the presented covariance assignment al-
gorithm is presented in Algorithm 1.

4. Illustrative Examples and Numerical Results

&is section is devoted to studying the ability of the proposed
control technique. For this purpose, four nonlinear sto-
chastic systems are considered. &e simulations are ac-
complished after 100 Monte Carlo runs using the MATLAB
R2014a software on a PC (processor: Intel (R) Core i5-4570
CPU @ 3.2GHz, RAM: 4.00GB, System Type: 64 bit). In the
simulation, the presented methods do not require any ad-
ditional assumption on the model; however, the result be-
comes ill-conditioned if the sampling time is large or if the
poles of the system are very fast. In all simulation results, the
sampling time selected is 0.05 sec.

&is section is divided into two parts. &e first part
considers two simple systems. &e performance of the in-
troduced covariance control technique is investigated, and
the ability of the presented control strategy is also compared
with other alternative methods presented by Chung and
Chang [9]. &e second part considers two complex systems.
For these systems, the performance of the introduced co-
variance control technique is investigated.

4.1. Performance Compression. &ese examples involve two
simple zero-mean and nonzero-mean nonlinear stochastic
systems that may be found in [22, 23].
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Example 1. Consider a zero-mean nonlinear stochastic
system described by

_x(t) � − (x(t))
3

+ u(t) + w(t), (34)

where d� b� 1 and w(t) is zero-mean white noise with
variance value 2. Assume that the goal of tracking is to satisfy
the variance condition pd(t) � var(x(t)) � 0.3. According
to the linear approximation idea and from [21, 22], the
linearized gain statistical matrix can be easily calculated as
A � − 3p � − 1.5. According to the A, the linearized system is
stable and it is not necessary to use state feedback (A � (A)).
Estimation error between the nonlinear system and line-
arized system is in Figure 2.

By substituting A and B � D � 1 in (12a) and assuming
pcov(t) � p(t) � var(x(t)), the covariance system param-
eters will be described as Acov � 2 × (− 1.5), Bcov � 1, and
Ccov � 1.

Using pole placement and the state-space model of the
system (30), the feedback gain matrix is calculated and the
covariance vector of additive input Vcov(t) (equation (32)) is
computed as

Vcov(t) � − 6.9 − 16 
pcov(t)

q(t)

⎡⎢⎣ ⎤⎥⎦,

_q(t) � 0.5 − pcov(t),

pcov(t) � E(x(t), x(t)).

(35)

&e performance compression between our covariance
feedback control design and state feedback controller ap-
proach [9]) is shown in Figure 3.

&e conventional state feedback only guarantees the
upper band of the desired state variance and fails to track the
desired trajectory. Compared to conventional state feedback,
our proposed controller can track the desired trajectory. &e
mean value of CPU times for 100 runs (with sample time
0.05 sec) is 16.15 sec. Low CPU time also verified that this
approach is not too time-consuming.

Example 2. Consider the nonzero-mean nonlinear sto-
chastic system described by

_x(t) � − sin(x(t)) + 0.4 + bu(t) + dw(t), (36)

If the small value of the measured matrix c is selected and the strong filtering action (6) in statistical linearization is assumed or by
input-state feedback linearization idea, finally, in both cases, the nonlinear system can be specified as follows (16a):
Step 1: consider a state transform z � z(x) and feedback control input (16b) such that the nonlinear dynamic (2) or (11) would be
transferred into the linear dynamic (16a).
Step 2: online state covariance estimation of the main system (20).
Step 3: rearrange and modify the covariance vector Vcov and Pcov from (26) and (27).
Step 4: calculate the covariance control variable Vcov(k) from ((29)–(32)).
Step 5: modify the covariance matrix V(k) from Vcov(k) as covariance of control signal v(k).
Step 6: generate the covariance control signal v(t) with covariance matrix V(k) from (33).

ALGORITHM 1: Nonlinear covariance assignment strategy.
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where d� b� 1 and w(t) is the zero-mean white noise with
variance value 0.5. Assume that the goal of tracking is to
satisfy the variance condition pd(t) � var(x(t)) � 0.1.

&e gain statistical matrix can be easily calculated as
follows [22]:

A � − exp − 0.5p
d

 . (37)

According to the A, the linearized system is stable, and
using pole placement and the state-space model of the
system (29), the feedback gain matrix is calculated and the
covariance vector of additive input Vcov(t) (32) is computed.
&e performance compression between our covariance
feedback control design and state feedback controller ap-
proach [9] is shown in Figure 4.

Compared to conventional state feedback, our proposed
controller can track the desired trajectory. As can be seen,
the variance of the state will converge to the desired co-
variance matrix value with a relatively good convergence
rate.&emean value of CPU times for 100 runs (with sample
time 0.05 sec) is also 24.96 sec.

4.2. Examples for More Complex Nonlinear Systems. In
methods based on linear approximation idea, the feedback
gain is dependent on estimation accuracy parameters (C, E),
so in examples that are more complex, we do not have an
acceptable estimation or the obtained feedback gains do not
have an acceptable response. In the next examples, the
simulation results are presented for a wide class of nonlinear
systems with more complexity.

Example 3. To introduce the idea of feedback linearization,
consider a nonlinear stochastic continuous system (11) with

_x1(t) � x2(t) + w(t),

_x2(t) � − α sin x1(t) + δ(  − sin δ  − bx2(t) + u(t) + 2w(t),

(38)
where w(t) is the zero-mean white noise with variance value
1. In this example, the goal is to force the system states to
track the desired covariance matrix:

p
d
(t) � cov x1(t), x2(t)(  �

0.2 − 0.1

− 0.1 0.3
 . (39)

To remove the nonlinear term, we can choose a change of
variables and state feedback control as

u(t) � α sin x1(t) + δ(  − sin δ  + v(t),

z(t) �
z1(t)

z2(t)
  �

x1(t)

x2(t)
 ,

(40)

which yields

_z(t) � Az(t) + Bv(t) + Dw(t) + v(t), (41)

where

A �
0 1
0 − b

 , B �
0
1 , D �

1
2 , α � 1, δ � (π/4), b � 1,

and v(t) is zero-mean additive covariance controller input.
&us, the stabilization problem for the nonlinear system has
been reduced to a stabilization problem for a controllable
linear system with a proper linear state feedback control law
v(t) � [− k1 − k2]z(t) � [− 3 − 2]z(t), where the poles of the
closed-loop systems are assigned to the value
[− 1.5 + 0.86j − 1.5 − 0.86j]. It is worth noting that the
values of k1 and k2 are obtained by applying the pole-
placement method stated in Chang et al. [25].

Assume

pcov(t) � var x1(  cov x1, x2(  var x2(  
T
,

Vcov(t) � var v1(  cov v1, v2(  var v2(  
T
,

r � 0.2 − 0.1 0.3 
T
,

_q(t) � r − pcov(t).

(42)

By computing Acov, Bcov, and Ccov � I and considering
that the poles of the closed-loop covariance systems were
assigned to the value − 2 − 2 − 2 − 3 − 3 − 3 , the feed-
back gain is calculated and the covariance vector of additive
input Vcov(t) will be computed as

Vcov(t) � −

5 2 0 − 6 0 0

0 4 1 0 − 6 0

0 0 3 0 0 − 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pcov(t)

q(t)
 . (43)
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Figure 4: State variance and control signal of controlled system with proposed controller and state feedback approach [9]: (a) covariance
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&e elements of vector Vcov(t) determine the covariance
matrix V(t), where V(t) � E[v(t)v(t)T] is the covariance of
additive controller input v(t).

&e performance of the proposed controller for this
system is illustrated in Figures 5–7.

Simulation results proposed that the controller can track
the desired trajectory. As can be seen, the covariance and
variance of the states are converged to the optimal covari-
ance matrix value with a relatively good convergence rate.

&emean value of CPU times for 100 runs (with sample time
0.05 sec) is also 11.56 sec.

Example 4. Consider the nonlinear stochastic system de-
scribed by the following equations:

_x1(t) � − 2x1(t) + ax2(t) + sin x1(t)(  + 2w(t),

_x2(t) � − x2(t)cos x1(t)(  + u(t)cos 2x1(t)( ,
(44)
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where w(t) is zero-mean white noise with variance value 1.
In this example, the goal is to force the system states to track
the desired covariance matrix:

p
d
(t) � var x1(t)(  � 0.3. (45)

To remove the nonlinear term, we can choose the change
of variables and state feedback control as

u(t) �
1

a cos z1( 
v(t) − cos z1( sin z1(  + 2z1 cos z1(  ,

z(t) �

z1(t)

z2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

x1(t)

ax2(t) + sin x1( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(46)

which yields

_z(t) � Az(t) + Bv(t) + Dw(t) + v(t), (47)

where A �
− 2 1
0 0 , B �

0
1 , D �

2
0 , a � 1, and v(t) is

zero-mean additivecovariance controller input.
&e proper linear state feedback control law is assumed

to be as v(t) � [0 − 5]z(t), where the poles were assigned to
the value [− 2 − 5] using the developed pole-placement
approach in [25].

By assuming pcov(t) and Vcov(t) similar to Example 3
and _q(t) � 0.3 − pcov(t), computing Acov, Bcov, and
Ccov � [1 0 0], and supposing that the poles of the closed-
loop covariance systems assign to the − 10 − 1 − 2 − 9 ,
the feedback gain is calculated and the covariance vector of
additive input Vcov(t) is computed as

Vcov(t) � −

8 2 0 − 20

0 7 1 0

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pcov(t)

q(t)
 . (48)

Additionally, the elements of the vector Vcov(t) deter-
mine the covariance matrix V(t), where
V(t) � E[v(t)v(t)T] is the covariance of additive controller
input v(t).

&e performance of the proposed controller applied to
this system is illustrated in Figures 8 and 9.

Simulation results proposed that the controller can track
the desired trajectory with a relatively good convergence
rate.&emean value of CPU times for 100 runs (with sample
time 0.05 sec) is 58.29 sec.
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5. Conclusion

In this research, the covariance control algorithm for
nonlinear systems using covariance feedback was investi-
gated. At first, we showed that, under the condition that the
linear approximation of a nonlinear system is a good rep-
resentation of a nonlinear system, covariance control of
nonlinear systems scenario involves the theory of covariance
control based on the idea of the covariance feedback.

Since in practice with the real condition, a linear ap-
proximation could not be used for any prespecified co-
variance matrix and numerous classes of nonlinear systems
or we have poor linear approximation condition, we in-
troduced the theory of covariance control of nonlinear
systems based on the idea of feedback linearization. We
showed that, with the feedback linearization idea and co-
variance feedback approach, we can be able to place the
desired covariance matrix to a nonlinear system with almost
high accuracy in steady state.

6. Future Recommendation

Because in some of practical applications, the actual
structure of the system is unknown, nonlinear, or time
varying, for a grope of time variant stochastic systems, we
can introduce the adaptive nonlinear control theory for
covariance control. Also, we can introduce presented co-
variance control theory for more complex systems such as
underactuated systems with external disturbances [26] or
chaotic systems with nonlinear functions under uncer-
tainties and time-varying delays [27, 28]. Besides, the use of
the idea of the prespecified covariance matrix placement is
not limited to industrial or applied systems, and for example,
the proposed system can produce various types of cyber
attacks.
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