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A reverse recycling supply chain consisting of two recyclers is established in this paper, which takes into account the fact that the
recyclers will consider the issue of fair concern in pricing. )e paper discusses the local stability of the Nash equilibrium point in
this price game model showing that the fair concern factors will reduce the stable area of the system. )e paper also discusses the
impacts of the sensitivity of the recovery price and the price cross coefficient on the stable area of the system.)rough the method
of system simulation and use of some indicators, such as the singular attractor, bifurcation diagram, attraction domain, power
spectrum, and maximum Lyapunov exponent, the characteristics of the system at different times will be illustrated.

1. Introduction

With the information technology innovation and the deep
integration of global economy in the postindustrial era,
product replacement has becomemore frequent, resulting in
more and more waste products, environmental degradation,
and resource shortages. )e green innovation strategy is a
new idea for achieving green development and an inevitable
choice for enterprise upgrading [1]. Closed-loop supply
chain, a new type of logistics management mode, realizes the
recycling and reuse of waste products. At present, closed-
loop supply chain management has attracted widespread
attention from various scholars [2].

Scholars such as Savaskan et al. [3, 4] have conducted a
more comprehensive study of the recycling models. Firstly,
they made analysis on three recycling models in a closed-
loop supply chain; secondly, they made an analysis on the
selection of the optimal recycling channels in the manu-
facturers’ closed-loop supply chains. Hong and Yeh [5]
examined the decision-making problems of the closed-loop
supply chain when the retailers and the third-party recyclers
make their recycling separately and pointed out that the
channel recovery rate, manufacturers’ profits, and total
channel profits for the retailers are not always better than

those when the third parties are responsible for recycling.
Choi et al. [6] studied the decision-making problem of the
closed-loop supply chains under different channel forces and
held that the overall performance of the closed-loop supply
chains dominated by retailers was the best. On the basis of
symmetric and asymmetric information, Wei et al. [7]
constructed four decision models for the closed-loop supply
chain under the power of two channels, namely, the man-
ufacturer-led and retailer-led.

According to the above literature, decision makers for
closed-loop supply chain are completely rational and take
profit maximization as the decision objective. However,
Kahnema, a behavioral economist, found that when people
pay attention to their own interests, they also pay attention
to the interests of others around them and show great at-
tention to fairness [8]. A large number of experimental
results show that the members in the game are generally
willing to give up part of their interests for achievement to
reach a fair result because of their fairness concerns. In the
case of the ultimatum game, Ruffle [9] made several analysis
on the decision in the case of the ultimatum game; thus, if
one party thinks the other party’s plan is unfair, the former
will make a decision to reject the plan. In addition, many
experiments, such as trust game experiment, authoritarian
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game experiment, and public goods game experiment, show
that people have the tendency to display fairness concern
behaviors. )e study conducted by Fehr and Schmidt [10]
showed that the disadvantaged decision-makers pay more
attention to their own benefits and compare their benefits
with those of other decision-makers, in an attempt to obtain
more equity through cooperation. Similarly, through other
experiments, Loch andWu [11] also showed that, in general,
members in a disadvantaged position would be more in-
clined to focus on their own benefits and find ways to co-
ordinate their sense of fairness by making comparison with
the benefits from the other party. Tversky and Kahneman
[12], on the contrary, believed that, in many cases, the ex-
istence of equity concerns has been common in organiza-
tions. In the process of operation, enterprises also constantly
pay attention to the fact of whether or not their profits are
“fair” compared with those of other enterprises. )erefore,
the fairness concern behavior impacts on the decision-
making subject of the supply chain to a certain extent. Haitao
Cui et al. [13] proposed the equity concern in the newsboy
model, which indicates that when the behavior of members
of the supply chain display equity concern behaviors, sup-
pliers can stimulate the coordination of the supply chain by
the utilization of the wholesale price which is above the
marginal cost. Li et al. [14] made study on the distribution
fairness in the reverse supply chain. A simple reverse supply
chain, which consisted of one recycler and one remanu-
facturer, was established and then extended to the situation
in which one remanufacturer and two recyclers were being
involved; the study made discussion on the impact which
was made on the transfer prices and optimal decision-
making by the fairness factors.

Without a doubt, the supply chain is a complex eco-
nomic system, which entails features of human participa-
tion, being open and possessing information feedback
function, but at the same time, it is not able to realize the
changes in the competition process in accordance with the
predesigned blueprint and preset orbit. Instead, these
changes can only be realized through the interaction and
game of the main players in the system. Although many
studies have shown that static optimization is a stable state of
dynamic evolution and can also be regarded as the fixed
point of a dynamic system, the system often fails to achieve
static optimization due to the disordered competition caused
by different individual interests in the supply chain.

On the basis of the Cournot model, Rand [15] first found
that the game results of oligarchs sometimes did not con-
verge to the equilibrium point but presented periodic or
chaotic solutions. Subsequently, a large number of scholars
have conducted extensive research on the Cournot model,
and the construction of the bounded rationality and in-
complete information to the Cournot model is one such
study, which speaks the complex behavior of decision
makers. Based on Puu and Maŕın [16, 17], research on the
production adjustment process of the Cournot model with
the impacts of the elastic demand function came, and they
came to the conclusion that complex phenomena such as
bifurcation and chaos also occurred in the model. In respect
of Bischi and Kopel [18, 19], they also introduced the

bounded rationality to the Cournot game model. Addi-
tionally, further studies were made on the impacts of the
output adjustment rate on the system stability by making
analysis on the critical curve and attraction domain. Agiza
et al. [20] also studied mapping the symmetry of Cournot
model. Xin et al. [21, 22] proposed a fractional-order energy
resources demand-supply system and proposed a projective
synchronization scheme.

With the improvement in the demand function, Ahmed
and Hegazi [23, 24] established a duopoly game model at
nonlinear cost and extended the duopoly model to a mul-
tidimensional model. In effect, Elsadany [25] studied the
impacts of delay decision on Cournot model and found that
the appropriate employment of delay strategy could make
the system become more stable. Other scholars also intro-
duced the chaos theory into the study of the supply chain
game. Li and Ma [26, 27] studied the long-term price
competition in the multichannel supply chain and found
some complex phenomena like bifurcation and chaos. Li
et al. [28] also conducted studies on the chaos phenomenon
in the closed-loop supply chain and the control of the chaos
theory effectively in the system.

)is paper ultimately discussed the impacts of equity
fairness concerns on the stable domain of the system and
made simulation study on the system in the case of the
supply chain system for reverse recovery: (1) the manu-
facturer does not participate in the recovery but gives
subsidies to the recyclers; (2) it is assumed that one of the
retailers is concerned about equity.

)e structure of this paper is as follows: in the first part,
the literature is being summarized; in the second part, the
price game model of two recyclers would be constructed; in
the third part, analysis on the local and global stability of
equilibrium points should be given; in the fourth part, the
relation between the equilibrium point and the parameters
would be studied with the help of the simulation technique
and the characteristics of system in chaos would be pre-
sented; and in the fifth part, the conclusion of the paper
should be given.

2. Problem Description and Model Building

2.1. Model Description. In this article, two oligopoly recy-
clers in a reverse supply chain market and a competition
model will be established for the study of the product
recycling. Competition usually occurs through price strat-
egies, and essentially, the competition between the two ol-
igopolies conforms to the Bertrand game model. )e
structure of supply chain is as shown in Figure 1.

2.2. Symbol Description

a1 and a2 represent the amount of used products that
consumers are willing to recycle when the price is 0; to
some extent, this amount reflects the environmental
awareness of consumers and the recycling influence of
each recycler.
p1 andp2 represent the recycling prices of two recy-
clers, respectively.
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q1 and q2 represent the recycling quantity of two re-
cyclers respectively.
b represents the consumers’ sensitivity to recycling
prices.
d reflects the price cross coefficient between response
channels.
c1 and c2 mean the unit cost of the two recyclers, re-
spectively. For simplification of the analysis, we assume
c1 � c2 � c.
pm represents the subsidy given by the manufacturer to
the recycler for the recycled product per unit.

For the purpose of making the model economically
meaningful, we assume a1, a2, b, d> 0.

2.3. Model Construction. We assume that, in reality, two
recyclers make recycling of waste products together.
According to the concept of the Bertrand game model, the
quantity of recycled products is related to the recycling price.
When there exists more than one recycling company, the
quantity is also related to the recycling prices provided by
other recyclers. )e model can be expressed as

q1 � a1 + bp1 − dp2,

q2 � a2 + bp2 − dp1.
(1)

)e model shows that when the recycler from one
channel raises the price, the product recycling volume of the
other channel will increase. )e profit of the two recyclers
can be written as

π1 � pm − p1 − c1( 􏼁q1,

π2 � pm − p2 − c2( 􏼁q2.
(2)

In making price decisions, recyclers will not only con-
sider their own profits but also the profits of their com-
petitors. Recyclers are unwilling to determine the profit
distribution of the supply chain by strength but are more
willing to express concerns about fairness by directly
comparing the profits with those of other recyclers. By
means of dependence on the reference point, this article tries
to characterize the retailer’s fair concern; that is, one recycler
will use the profit of another recycler as the reference point
for its own profits with the purpose of showing its perception
of fair concern. By introduction of λ as a fair concern co-
efficient, the utility function of the recycler is as follows:

U1 � π1 − λ π2 − π1( 􏼁,

U2 � π2.
􏼨 (3)

)e formula shows that, for recycler 1, when the profit of
recycler 2 is greater than that of recycler 1, the utility of
recycler 1 will decrease. λ, a fair concern coefficient, reflects
the sensitivity of recycler 1 to the profit gap between
competitors and themselves. Recycler 2 uses profit maxi-
mization as its decision criterion. When λ � 0, it could be
stated that recycler 1 was fair and neutral.

From the formula, we can get the marginal utility of the
recycler as

zU1

zp1
� dp2 − bp1 − a1 − λ a1 + bp1 − dp2 + b c + p1 − pm( 􏼁 + d c + p2 − pm( 􏼁( 􏼁 + b pm − c − p1( 􏼁,

zU2

zp2
� dp1 − bp2 − a2 + b pm − c − p2( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

From the formula (4), we can get

p∗1 � −
2a1b(1 + λ) + 2b2 c − pm − λpm + cλ( 􏼁 + a2d + bd c − pm − 2λpm + 2cλ( 􏼁

4b2(1 + λ) − d2 ,

p∗2 �
2a2b(1 + λ) + 2b2 c − pm − λpm + cλ( 􏼁

4b2(1 + λ) − d2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

In reality, corporate decisions could be limited by ob-
jective conditions like the individual ability of the decision
maker, which shows that it is impossible for the decision

maker to obtain all the information in the market. Here, we
make assumptions that the recycler is to be boundedly ra-
tional; price decision can be adjusted within a reasonable

Recycler 1

Recycler 2

ConsumerManufacturer

P1

P2

Pm

Pm

Figure 1: Game model for recycling supply chain.
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range in the next cycle. Recyclers wouldmake prediction and
determination on the price of the next period based on the
profit margin. In other words, if the marginal profit is

positive in the period t, the recycler will raise its price in the
period t+ 1. Conversely, recyclers will lower their prices. So,
we can build a corresponding dynamic model:

p1(t + 1) � p1(t) + α1p1(t) dp2(t) − bp1(t) − a1 − λ a1 + bp1(t) − dp2(t) + b c + p1(t) − pm( 􏼁((

+d c + p2(t) − pm( 􏼁􏼁 + b pm − c − p1(t)( 􏼁􏼁,

p2(t + 1) � p2(t) + α2p2(t) dp1(t) − bp2(t) − a2 + b pm − c − p2(t)( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

3. Stability Analysis of the Equilibrium Points

3.1.MarketEquilibrium. According to the definition of fixed
point, pi(t + 1) � pi(t), (i � 1, 2), we can get the equilib-
rium point of the system as

E1 � (0, 0),

E2 � 0,
a2 + bc − bpm

−2b
􏼠 􏼡,

E3 �
a1 + bc − bpm + λ a1 + bc − bpm + cd − dpm( 􏼁

−2b(λ + 1)
, 0􏼠 􏼡,

E
∗

� −
2a1b(1 + λ) + 2b2 c − pm − λpm + cλ( 􏼁 + a2d + bd c − pm − 2λpm + 2cλ( 􏼁

4b2(1 + λ) − d2 ,
2a2b(1 + λ) + 2b2 c − pm − λpm + cλ( 􏼁

4b2(1 + λ) − d2􏼠 􏼡.

(7)

Since the pricing cannot be negative in reality, in order to
ensure that the equilibrium point has economic meaning,
the value range of the parameters should meet
E1, E2, E3, E∗ ≥ 0. Obviously, E1, E2, andE3 are the bound-
ary equilibrium solution, and E∗ is the only NASH equi-
librium solution.

3.2. Local Stability Analysis of Equilibrium Points. For the
purpose of making analysis on the local stability of the
equilibrium point, we make calculation for the Jacobian
matrix of the system:

1 + α1f1 dp1α1
dp2α2 1 + α2f2

􏼠 􏼡. (8)

In this matrix,

f1 � dp2 − 2bp1 − a1 − λ a1 + 2bp1 − dp2(

+ b c + 2p1 − pm( 􏼁 + d c + p2 − pm( 􏼁􏼁 + b pm − c − 2p1( 􏼁,

f2 � dp1 − 2bp2 − a2 + b pm − c − 2p2( 􏼁.

(9)

)e stability of the equilibrium point is determined by
the properties of the eigenvalue corresponding to the
equilibrium point in the Jacobian matrix. When the equi-
librium points E1, E2, E3, andE∗ are substituted into the
matrix, we can get the following theorem.

Theorem 1. -e equilibrium point E1 is a stable equilibrium
point.

Proof. Substitute E1 into the following matrix:

1 + α1 −a1 − λ a1 + b c − pm( 􏼁 + d c − pm( 􏼁( 􏼁 + b pm − c( 􏼁( 􏼁 0

0 1 + α2 −a2 + b pm − c( 􏼁( 􏼁
􏼠 􏼡. (10)
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By calculation, we get to know that the two characteristic
roots of the corresponding characteristic equation for the
matrix are
r1 � 1 + α1 −a1 − λ a1 + b c − pm( 􏼁 + d c − pm( 􏼁( 􏼁 + b pm − c( 􏼁( 􏼁,

r2 � 1 + α2 −a2 + b pm − c( 􏼁( 􏼁.

(11)

Since the value of each parameter satisfies the condition
that the four equilibrium points could be positive, we can get
|r1,2|> 1, which shows that the eigenvalues of the charac-
teristic equation are usually greater than 1 when E1 has been
in correspondence with Jacobian matrix. According to the
stability judgment condition of equilibrium point, E1 is an
unstable equilibrium point. □

Theorem 2. -e equilibrium points E2 andE3 are unstable
saddle points.

Proof. Substitute the equilibrium point E2 into the matrix,
the two characteristic roots of the corresponding charac-
teristic equation could be calculated as

r1 � 1 − α1 2a1b(1 + λ) + 2b
2

c − pm − λpm + cλ( 􏼁 + a2d􏼐

+ bd c − pm − 2λpm + 2cλ( 􏼁􏼁> 1,

r2 � 1 + α2 a2 + bc − bpm( 􏼁< 1.

(12)

According to the judgment condition of stability for
equilibrium point, equilibrium point E2 is an unstable saddle
point. In the same way, E3 is also an unstable saddle
point. □

Theorem 3. -e local stability of the Nash equilibrium point
E∗ is related to the speed of price adjustment α1 and α2.

Proof. We will plug E∗ in and get

J E
∗

( 􏼁 �
1 + α1h1 dp1α1
dp2α2 1 + α2h2

􏼠 􏼡, (13)

in which
h1 � dp

∗
2 − 2bp

∗
1 − a1 − λ a1 + 2bp

∗
1 − dp

∗
2 + b c + 2p

∗
1 − pm( 􏼁(

+ d c + p
∗
2 − pm( 􏼁􏼁 + b pm − c − 2p

∗
1( 􏼁,

h2 � dp
∗
1 − 2bp

∗
2 − a2 + b pm − c − 2p

∗
2( 􏼁.

(14)

In order to determine the stable region of the Nash
equilibrium point E∗ regarding the speed of price adjust-
ment α1 and α2, firstly we should obtain the characteristic
equation λ′2 + Aλ′ + B � 0 corresponding to its Jacobian
matrix, among that

A � 2 + h1α1 + h2α2,

B � 1 + h1α1 + h2α2 + h1h2 − d
2
p
∗
1p
∗
2􏼐 􏼑α1α2.

(15)

According to Jury’s argument for determining stability,
which is based on the Nash equilibrium of a discrete system,
the local stability E∗ is determined by the formula

1 − A + B> 0,

1 + A + B> 0,

1 − B> 0.

⎧⎪⎨

⎪⎩
(16)

Substitute the value of the parameters A andB to get
2 − h1h2 − d2p∗1p∗2( 􏼁α1α2 > 0,

4 + 2h1α1 + 2h2α2 + h1h2 − d2p∗1p∗2( 􏼁α1α2 > 0,

1 + h1α1 + h2α2 > 0,

⎧⎪⎪⎨

⎪⎪⎩
(17)

In the formula, after determining the values of the other
parameters α1 and α2, the local stability of E∗ is obtained if
and only if the parameters α1 andα2 satisfy the formula. To
satisfy all the values of this inequality formula, α1 and α2
means the stability domain of the Nash equilibrium point E∗

related to parameters α1 and α2. If the value of (α1, α2) is in
the stable region, (p1(t), p2(t)) will keep stable at the point
E∗ after a long game. If the value of (α1, α2) is not in the stable
region, after a series of games, the system will gradually lose
stability and the market price will become difficult for pre-
diction. )is shows that when recyclers continue to speed up
the price adjustment in order to obtain greater own profits,
market competition will become disordered. □

4. Numerical Simulation

For better understanding of the model, visual demonstration
will be made for the long-term competition of the system by
the means of numerical simulation. Taking the actual
competition of recyclers into consideration, we make it
possible as follows:

a1 � a2 � 1,

b � 1,

d � 0.3,

c � 1,

pm � 5,

λ � 0.3.

(18)

At this point, Nash equilibrium point is like
E∗ � (1.843, 1.777).

4.1. Relationship between the Stability of the Equilibrium
Points and the Parameters. As is shown in Figure 2, for
(α1, α2), the local stable area of the Nash equilibrium point is
the light blue part in the figure, which indicates that if and
only if the value of the price adjustment speed (α1, α2) is
within this stable range, the price (p1(t), p2(t)) will even-
tually get stable at (1.843, 1.777) after the long-term
competition.

For the study of the impact of fairness concerns on the
equilibrium point and stability of the system, we take the
values of λ 0, 0.5, and 1, respectively, which represent dif-
ferent degrees of fair concern. As shown in Figure 3, we can
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also obtain the stable domains of the system when λ takes
different values.)e corresponding Nash equilibrium points
are shown in Table 1.

In Figure 3, the red, green, and light blue scopes rep-
resent the corresponding values, respectively, when
λ � 0, 0.5, and 1. From Figure 3, we can know that when the
value of λ increases, that is to say, recycler 1 being more
concerned about the sense of fairness, the stable region of the
system will get smaller. )is shows that recycler 1 will adopt
a fierce competition strategy for obtaining fair utility. As a
result, this more intense pricing strategy will make it more
difficult for the market to maintain its stability.

When the recyclers continue to speed up the price ad-
justment, the market will become unstable, and the system
will become bifurcated or even chaotic. Figures 4 and 5 show
the bifurcation diagrams indicating price changes of recycler
1 and recycler 2 with changes in price adjustment speed,
respectively. From Figure 4, we can learn that when the price
adjustment speed of recycler 1 is relatively low, with limited
times of game, the price will get stable at the Nash equi-
librium point (1.843, 1.777).

When the price adjustment speed gets increased and
the doubling period makes bifurcation for the first time
and two equilibrium solutions appeared in the system,
then followed by four times period, eight times period,
and so on, the system finally entered into the chaotic state.
Figure 5 shows that the system will show a similar change
along with the change in the price adjustment speed for
the recycler 2.

By making a comparison between Figures 4 and 5, we
can easily find another phenomenon: although the recyclers
could gain the preferential advantage to some degrees in
price competition through continuous speeding up of price
adjustment, when the system enters into chaos, the party,
which continues to speed up the price adjustment, would
experience a huge price fluctuation, while at the same time,
another party who employs the “follow strategy” will ex-
perience a smaller price fluctuation.

)e type of system bifurcation, the periodic behavior of
the solution, and the path to chaos are analyzed by means of
the parameter 2D bifurcation diagram. First, we use the price
input adjustment coefficient as the bifurcation parameter.
Figure 6 shows a two-dimensional bifurcation diagram of
the system, among which blue scope represents the system’s
stable domain, that is, the 1-period solution; red scope
represents the 2-period solution, green scope for the 3-
period solution, pink scope for the 4-period solution, light
blue scope for the 5-period solution, purple scope for the 6-
period solution domain, yellow scope for the 7-period so-
lution domain, brown scope for the 8-period solution do-
main, dark purple scope for the 9-period solution, and dark
green scope for the 10-period solution; gray scope represents
the chaotic region of the system, and white scope indicates
that the system variables have overflowed and no meaning
exists. From Figure 6, we could see that the faster the price
adjustment speed becomes (that is, the more frequent the
price adjustment), the more unstable the entire system will
be, and the market is more prone to enter into chaos. From
Figure 6, wemay also see that the system can enter into chaos
in two ways: firstly, the system will lead to chaos through a
period-doubling bifurcation channel which is composed of
those red, pink, purple, and brown scopes, called flip bi-
furcation; secondly, the system leads to chaos through the
odd cycle which is represented by the green and light blue
scopes. Finally, those intermittent odd cycle points can be
found from Figure 6.

Stable region

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

α1

α 2

Figure 2: Local stability region of Nash equilibrium about (α1, α2).

λ = 0

λ = 1

λ = 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

α1

α 2

Figure 3: When λ is different, the local stability region of the Nash
equilibrium points at (α1, α2).

Table 1: Nash equilibrium.

λ λ � 0 λ � 0.5 λ � 1
Nash equilibrium (1.765, 1.765) (1.878, 1.782) (1.934, 1.79)
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Figure 7 shows a two-dimensional bifurcation diagram
which reflects consumers’ sensitivity to recycling prices and
the speed α1 of recycling price adjustment. It can be con-
cluded from Figure 7 that when b becomes larger, that is, the
more sensitive the consumer is to the recycling price, the
narrower the blue area will become in the figure, which
indicates that the stability region of the system is decreasing.
)e result shows that if companies can reduce the con-
sumer’s sensitivity to prices by means of advertising or
improvement of consumers’ environmental awareness,
leading to more consumers’ awareness of the importance of
recycling products, they can effectively reduce consumers’

perception of products, increase the speed of price adjust-
ment for themselves, gain more competitive advantages, and
surely create more space.

Figure 8 shows a two-dimensional bifurcation diagram
of the cross-elasticity of prices between channels and the
speed of adjustment of recycling prices α1. It can be learned
from Figure 8 that the larger the price cross-coefficient d

becomes between channels, the smaller the system’s stable
region will get. )is also shows that when consumers are
more sensitive to price factors, for recyclers, the strategic
space, which is employed to increase competitive advantage
through price adjustment, will become smaller. At the same
time, it also shows that if the manufacturer could make
effective reduction of the competition between two recyclers

2.5

2

1.5

1

0.5

0
0 0.1 0.2

p1

p2

0.3 0.4
α1

p i
 (t

)

0.5 0.6 0.7

Figure 4: Price bifurcation diagram of the systemwith variations in
α1.
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1
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0
0 0.1 0.2 0.3 0.4 0.5
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p i
(t)

0.6 0.7 0.8 0.9 1

Figure 5: Price bifurcation diagram of the systemwith variations in
α2.

1
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0.6

0.4

0.2

0
0 0.2 0.4 0.6

α1

α 2

0.8 1

Figure 6: Two-dimensional bifurcation of the system with changes
in (α1, α2).
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2

1

0

b

0 0.2 0.4 0.6
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0.8 1

Figure 7: Impact of consumers’ sensitivity to recycling prices on
system’s stability.
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by means of reasonable setting of the recycling sites for two
competing recyclers, he could reduce the price cross-coef-
ficient between channels with the result that the market will
become more stable. All these factors, which include con-
sumer’s sensitivity to the recycling price, the cross-elasticity
of the price between channels and the retailer’s recycling
price adjustment speed α2 are similar to those in Figures 7
and 8, so they will not be mentioned here again.

In fact, the initial value of the price is not necessarily
close to the equilibrium point of the market. )erefore, it is
necessary to make analysis on the global stability of the
system (6). Figure 9 shows the attractive domain when the
equilibrium points are α1 � 0.1 and α2 � 0.1.)e LC curve is
a trajectory of points that are mapped once and have 2 or
more images. )e set of these images is defined as LC−1. )e
LC curve divides the plane into different regions
Z0, Z2, andZ4 by the number of images [29], and the LC−1
set belongs to the set of points whose determinant Jacobian
value is 0. So, we can get

LC−1 ⊆ J0 � pm, pr( 􏼁 ⊂ R
2
|detJ pm, pr( 􏼁 � 0􏽮 􏽯. (19)

System (19) defines the mapping M so that we can get
LC � M(LC−1). At the same time, since the price should be
nonnegative in reality, that is, pm, pr > 0 we define a feasible
region:

R1 � pm, pr( 􏼁 ⊂ R
2
|pm > 0, pr > 0􏼐 􏼑􏽮 􏽯. (20)

Figure 9 shows the attractive domain of the Nash
equilibrium point at that time when α1 � 0.1 and α2 � 0.1. In
Figure 9, the gray area represents a feasible attractor area that
satisfies the publicity (20). By making a comparison between
Figures 9 and 10, we could find that the attraction domain
will change from simple connection to multiple connection
with the increased adjustment speed for recycler 1, and the
feasible area in the direction of p1 will also be significantly
reduced which also leads to significant reduction of the
entire feasible area.

4.2. Characteristics of the System in Chaos. Figure 11 shows
the maximum Lyapunov index in correspondence with
Figure 4 as the price adjustment coefficient α1 increases. )e
maximum Lyapunov index can characterize the degree of
separation between two points starting at the same time and
running over time. When the system is in a stable state, the
maximum Lyapunov index of the system is less than zero;
when the system is in the chaotic state, the maximum
Lyapunov index of the system is greater than zero. From
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Figure 8: Effects of price cross coefficient on system’s stability.
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Figure 9: Attraction domain for equilibrium point when
α1 � 0.1 and α2 � 0.1.
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Figure 10: Attraction domain for equilibrium point when
α1 � 0.55 and α2 � 0.1.
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Figure 11, we can clearly see that when the maximum
Lyapunov exponent is equal to 0 for the first time, the system
enters into a double period bifurcation, and when the
maximum Lyapunov exponent is greater than 0, it indicates
that the system has entered into a chaotic state.

When the system is in chaos, another characteristic is
that the system has singular attractors. )e strange attractor
is the result of the overall stability and local instability of
the system, and it has self-similarity and fractal structure.
Figure 12 shows the formation process of the singular
attractor in this model at 0.1, 0.46, 0.52, and 0.54 and α2 � 0.1,
and the system experienced a stable period, a double period, a

quadruple period, and then entered into the chaotic state.
Figure 13 corresponds to the rules of price changes in different
periods of the system. Figure 13(a) shows the price changes
over time when the system is in a stable state. After a limited
number of games, the price of the system will stabilize at the
Nash equilibrium point. Figures 13(b) and 13(c) show the
price changes in the system in the two-cycle and four-cycle
cycles, respectively. Figure 13(d) shows the price change over
time when the system is in the chaotic state. It is clearly il-
lustrated that compared with price in the stable state, the
pricing decision becomes uncertain, disordered, and unpre-
dictable when the system is in the chaotic state.
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Figure 11: )e system’s largest Lyapunov index.
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Figure 12: Formation process for attractor in system: (a) α1 � 0.1, α2 � 0.1; (b) α1 � 0.46, α2 � 0.1; (c) α1 � 0.52, α2 � 0.1; (d)
α1 � 0.54, α2 � 0.1.
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Sensitive initial value is another important charac-
teristic when the system is in chaos; that is, the evolution
result of the system has extremely sensitive dependence on
the initial value, which is what we often call the butterfly
effect. Figure 14 shows the evolution of the recovery price
over time when the initial pricing of recycler 1 and

recycler 2 is 1 and 1.01 and when the system is in a chaotic
state (α1 � 0.56, α2 � 0.4). We get to know that even the
initial value has only a slight difference. However, over
time, the price competition has undergone a long-term
evolution process, and its process has become very
different.
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Figure 14: Sensitivity of the system to initial values: (a) α1 � 0.56, α2 � 0.4; (b) α1 � 0.56, α2 � 0.4.
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Figure 13: Price power spectrum of the system at different times.
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4.3. Impact of Price Adjustment Speed on Recyclers’ Profits.
Figure 15 shows the changes in the profits of two recyclers
with the speed of price adjustment. From Figure 15(a), we
find that as the price adjustment speed of recycle 1 continues
to accelerate, the profit of recycler 1 starts to decline. It is
when the system is chaotic, it declines rapidly, but at the
same time, the profit of recycler 2 is rising. Comparing to the
enlightenment given in Figure 4, this shows that when re-
cycler 1 speeds up the price adjustment to obtain a greater
competitive advantage, exaggerated price fluctuations have
also affected their own profits. Figure 15(b) and Figure 5 say
that when recycler 2 speeds up the price adjustment, its
profit also decreases.

5. Conclusion

)is article establishes a reverse supply chain consisting of
two recyclers. )e two recyclers make competition through
price strategies. We assume that one of the retailers is of fair
concern, which makes the competition for recycling of
products more intense. )rough analysis on the equilibrium
point stability, we find three unstable bounded equilibrium
points and a Nash equilibrium point with local stability.
)en, the simulation study of the system is performed. So,
the following conclusions are made:

(1) With the increase in the price adjustment speed for
recyclers, some complex phenomena like bifurca-
tion and chaos will appear in the system during the
long-term process of competition. In this paper, the
characteristics of the system in different periods are
simulated numerically through means of the

bifurcation diagram, the maximum Lyapunov in-
dex, and the power spectrum diagram of price
changes.

(2) )e fairness concerns of recyclers have a significant
impact on the stability of the system. It is found that
when the fair concern coefficient of the recycler
becomes larger, the recyclers will care more about
the sense of fairness, and the result of it is that re-
cyclers may adopt a more aggressive price compe-
tition strategy, which may also make the system
become more likely to lose its stability. By making
analysis on the stability of the system, we find that
amounts of the stability area for the system has
decreased significantly.

(3) Speeding up the price adjustment is a common
business strategy for companies to gain competitive
advantage. However, in a reverse supply chain where
there is a fair concern, speeding up the price ad-
justment will not only cause complex phenomena
such as chaos in the system but also actively accel-
erate the recovery of price adjustment speed. Not
only does the price fluctuate greatly during chaos but
profits also significantly decrease after complex be-
haviors such as bifurcation and chaos occurred in the
system. At the same time, the relative profit of re-
cyclers who have not actively adjusted the price
adjustment rate has increased. )is conclusion is
different from many previous studies, which indi-
cates that although it is easier to actively adjust prices
to obtain a competitive advantage, we must also
strive to maintain a competitive balance in the
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Figure 15: Changes in recyclers’ profits with that of the price adjustment speed.
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market. Once the market loses its stability, continual
speeding up of the price adjustment will only have
negative effects on its own profits but positive effects
on the profits of the opponent.

In our research, the impact of fairness factors on the
complexity of the system has been taken into consideration,
but many other behavioral factors that could have some
influence on the retailer’s decision-making still account for a
large proportion. At the same time, fractional order equa-
tions, being an important form of demand function, also
means an important research direction for the study which is
mainly about the operators’ behavior of reverse supply chain
in the future.
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