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In this paper, we consider a time-delayed free boundary problem with time dependent Robin boundary conditions. �e special 
case where �푛 = 3 is a mathematical model for the growth of a solid nonnecrotic tumor with angiogenesis. In the problem, both the 
angiogenesis and the time delay are taken into consideration. Tumor cell division takes a certain length of time, thus we assume that 
the proliferation process leg behind as compared to the process of apoptosis. �e angiogenesis is reflected as the time dependent 
Robin boundary condition in the model. Global existence and uniqueness of the nonnegative solution of the problem is proved. 
When �푐 > 0 is sufficiently small, the stability of the steady state solution is studied, where � is the ratio of the time scale of diffusion 
to the tumor doubling time scale. Under some conditions, the results show that the magnitude of the delay does not affect the final 
dynamic behavior of the solutions. An application of our results to a mathematical model for tumor growth of angiogenesis is given 
and some numerical simulations are also given.

1. Introduction

In the past a few decades, there are a lot of focus on mathe-
matical models with regard to tumor growth for biological and 
mathematical interests. Many researchers developed various 
mathematical models from different aspects to detail the pro-
cess of tumor growth (see, e.g., [1–8]). �e tumor growth 
process can be classified into two different stages: the stage 
without a necrotic core (see, e.g., [2, 9–13]) and the stage with 
a necrotic core (see, e.g., [3, 14–16]). Almost all mathematical 
models are established by using reaction-diffusion dynamics 
and mass conservation law for the processes of proliferation 
and apoptosis.

�is paper focus on a time-delayed free boundary problem 
with the time dependent Robin boundary condition. �e 
model is as follows:

where �휎(�푟, �푡) and �푅(�푡) are two unknown functions. � is a posi-
tive constant. � and � are given functions, and(1)�푐�휕�휎�휕�푡 = Δ ��휎 − �푓(�휎), 0 < �푟 < �푅(�푡), �푡 > 0,

(2)
�휕�휎
�휕�푟 (0, �푡) = 0, �푡 > 0,

(3)
�휕�휎
�휕�푟 + �훽(�휎 − �̄휎) = 0, �푟 = �푅(�푡), �푡 > 0,

(4)
�푅�푛−1(�푡)�푅�耠(�푡) =∫�푅(�푡−�휏)

0
g(�휎(�푟, �푡 − �휏))�푟�푛−1�푑�푟

− ∫�푅(�푡)

0
ℎ(�휎(�푟, �푡))�푟�푛−1�푑�푟, �푡 > 0,

(5)�휎0(�푟, �푡) = �휓(�푟, �푡), 0 < �푟 < �푅(�푡), −�휏 ≤ �푡 ≤ 0,

(6)�푅0(�푡) = �휑(�푡), −�휏 ≤ �푡 ≤ 0,

(7)Δ �푟 = �휕2�휎
�휕�푟2 + �푛 − 1

�푟
�휕�휎
�휕�푟 .
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�e special case where �푛 = 3 is a mathematical model describ-
ing the growth of a nonnecrotic tumor with angiogenesis. In 
particular, when �푛 = 3, the biological meaning is as follows: � 
is the nutrient concentration at time � and radius �. �푅(�푡) rep-
resents the outer radius of tumor at time �. � represents the 
ratio between time scale of the diffusion and time scale of the 
tumor doubling, and � is a constant represents the time delay 
in the process of proliferation, i.e., � is the average time 
required from the beginning of cell division to the completion 
of division. In order to obtain nutrients, tumors attract blood 
vessels at a rate proportional to �, so that (�휕�휎/�휕�푟) + �훽(�휎 − �̄휎) = 0 
holds on the boundary, where �̄휎 is the nutrients concentration 
outside the tumor. It should be pointed out that the boundary 
condition (3) is a time dependent Robin boundary condition 
since the boundary changes with time. Equation (4) describes 
the changes of the volume of the tumor. Equations (3), (2),  
(5), and (6) are boundary and initial conditions. �푓, g, and ℎ are 
given functions. �푓(�휎) represents the nutrient consumption 
rate. It is assumed that the rate of nutrient consumption by 
tumor cells is an increasing function of nutrient concentration. 
g(�휎) represents the proliferation rate of tumor cells and ℎ(�휎) 
represents the apoptosis rate of tumor cells. It is reasonable to 
assume that the rate of tumor cell proliferation is an increasing 
function of nutrient concentration and the rate of tumor  
cell apoptosis is a nonincreasing function of nutrient 
concentration.

�e motivation for studying this model is as follows: 
Experiments have shown that changes in the proliferation rate 
modify apoptotic cell loss which does not occur immediately– 
there exists a time delay for this modification (see [1]), i.e., the 
proliferation process lags behind as compared to the process 
of apoptosis. As a result of this research, many researchers 
have grown interest in the study of mathematical models for 
tumor growth with time delays (see, e.g., [6, 11, 17–19] and 
their references). �e idea of considering the time delay in the 
process of proliferation is motivated by the work of Byrne [1], 
Cui and Xu [11], Foryś and Bodnar [18] and Xu et al. [20] 
where either linear or constant functions �푓, g, and ℎ are con-
sidered in the above mentioned papers. �e motivation of 
considering the nonlinear functions �푓, g, and ℎ is from the 
work of Cui [10] (where �푛 = 3 and �휏 = 0, i.e., the time delay is 
not considered). In this paper, we study a more general case, 
which not only considers both time-delay and nonlinear func-
tions �푓, ℎ, and ℎ, but also takes � as any positive integer greater 
than or equal to 3. �e main aim of this paper is to study the 
time-delayed problem (1)–(6) for Robin boundary conditions 
and general nonlinear functions �푓, g, and ℎ.

It also should be pointed out that only Dirichlet boundary 
conditions are considered in [1, 10–12, 20]. In the recent work 
of Friedman and Lam [21], the authors studied the special case 
of the problem (1)–(6) where �휏 = 0, the functions � and g  
are linear and ℎ is a constant (but where � is a given function 
of �). �e special cases of the model have been extensively 
studied by many researchers, such as for linear functions

and ℎ(�휎) = �휇�̃휎, where �휆, �휇, and �̃휎 are positive constants, Xu  
et al. [20] have studied the model with Gibbs–�omson 

(8)�푓(�휎) = �휆�휎, g(�휎) = �휇�휎,

relation, which appears as the Dirichlet boundary condition. 
In [20], by rigorous mathematical derivation and using theo-
ries of functional differential equations, the authors studied 
the asymptotic behavior of steady state solutions.

�roughout this paper, we suppose that the functions �푓, g,  
and ℎ satisfy the following conditions:

(P1) �푓, g , ℎ ∈ �퐶∞[0,∞);
(P2) �푓�(�휎) > 0 for all �휎 ≥ 0 and �푓(0) = 0;
(P3)  g �(�휎) > 0, ℎ�(�휎) ≤ 0 for all �휎 ≥ 0 and there exists �푎∗ > 0 such that g(�푎∗) = ℎ(�푎∗);
(P4) �̄휎 > �푎∗.

Moreover, we suppose the initial value functions � and � 
 satisfy the following conditions:

(�1) �휑 ∈ �퐶[−�휏, 0], �휑(�푡) > 0 for −�휏 ≤ �푡 ≤ 0.(�2)  �휓 ∈ �퐶([0,∞] × [−�휏, 0]), 0 ≤ �휓 ≤ �̄휎 and �휓(�푟, 0) = �휓0(�푟) ∈ �퐶3[0, �푅(0)].(�3) �휎�(0) = 0 and �휎�耠
0(�푅0) = �훽(�̄휎 − �휎(�푅0)).

�e paper is arranged as follows: Section 2 provides proof 
for the existence and uniqueness of a global solution to prob-
lem (1)–(6). Section 3 is devoted to studing asymptotic behav-
ior of the solutions to problem (1)–(6). In the final section, an 
application of our results to a mathematical model for tumor 
growth of angiogenesis is given and some numerical simula-
tions are also given.

2. Global Existence and Uniqueness

Lemma 1. Let (�휎(�푟, �푡), �푅(�푡)) be a solution to the problem  
(1)–(6). �e following priori estimates are valid.

where �푀1 = −ℎ(0)/�푛 and �푀2 = (�儨�儨�儨�儨�휑�儨�儨�儨�儨/�푅(0))�푛exp(ℎ(0)�휏)g(�̄휎), 
where �儨�儨�儨�儨�휑�儨�儨�儨�儨 = max−�휏≤�푡≤0�휑.

Proof. Obviously, �휎∗ = �̄휎 and �휎∗ = 0 are upper and lower solu-
tions to the problem (1)–(3), by the maximum principle, we 
immediately have 0 ≤ �휎 ≤ �̄휎, 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ −�휏.

From Eq. (4), we have

It follows that �푅(�푡) ≥ �푅(0) exp(−ℎ(0)�푡/�푛) and

(9)0 ≤ �휎 ≤ �̄휎, 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ −�휏,

(10)
�푀1�푛 ≤ �̇푅(�푡)

�푅(�푡) ≤
�푀2�푛 , �푡 ≥ 0,

(11)�푅0exp(�푀1�푡�푛 ) ≤ �푅(�푡) ≤ �푅0 exp(�푀2�푡�푛 ), �푡 ≥ 0,

(12)−ℎ(0)�푛 �푅(�푡) ≤ �푑�푅(�푡)
�푑�푡 ≤ g(�̄휎)�푅(�푡)�푛 (�푅(�푡 − �휏)

�푅(�푡) )�, �푡 > 0.
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where �푀1 = −ℎ(0). Moreover, from the the inequality on the 
le�-hand side of (12), we can get

It infer that when �푡 ≥ �휏,

For 0 ≤ �푡 ≤ �휏, by the fact that �푅(�푡) ≥ �푅(0) exp(−ℎ(0)�푡/�푛) ≥ �푅(0)
exp(−ℎ(0)�휏/�푛), one can get

where �儨�儨�儨�儨�휑�儨�儨�儨�儨 = max−�휏≤�푡≤0�휑. Noticing the inequality on the right-
hand side of (12) and (�儨�儨�儨�儨�휑�儨�儨�儨�儨/�푅(0))� ≥ 1, we have

where �푀2 = g(�̄휎) exp(ℎ(0)�휏)(�儨�儨�儨�儨�휑�儨�儨�儨�儨/�푅(0))�푛. �e inequality (11) 
follows from (10). �is completes the proof. ☐

Theorem 1. Suppose the conditions (�1), (�2), and (�3) are 
satisfied. Suppose further that the functions � and � satisfy 
the conditions (�1)–(�3). �en, there exists a unique solution (�휎(�푟, �푡), �푅(�푡)) to (1)–(6) for all �푡 ≥ −�휏.

Proof. By setting �푟 = �푠�푅(�푡), one can change �푟 ∈ [0, �푅(�푡)] to �푠 ∈ [0, 1]. Let

�en

Let �푇 > 0 which will be given later. Consider the problem  
(1)–(6), by (19), it is equivalent to the following problem:

(13)�푅�耠

�푅 ≥ 1
�푛�푀1,

(14)(�푅 exp(ℎ(0)�푡�푛 ))� ≥ 0.

(15)(�푅(�푡 − �휏)
�푅(�푡) )� ≤ exp(ℎ(0)�휏).

(16)(�푅(�푡 − �휏)
�푅(�푡) )� ≤ ( �儨�儨�儨�儨�휑�儨�儨�儨�儨�푅(0))

�

exp(ℎ(0)�휏),

(17)
�푅�耠

�푅 ≤ g(�̄휎)
�푛 (�푅(�푡 − �휏)

�푅(�푡) )�푛 ≤ 1
�푛�푀2,

(18)�푢(�푠, �푡) = �휎(�푠�푅(�푡), �푡), �푠 ∈ [0, 1], �푡 ∈ [0,∞).

(19)
�휎(�푟, �푡) = �푢( �푟

�푅(�푡) , �푡), �휎�푟 = �푢�푠�푅(�푡) ,
�휎�푡 = �푢�푡 − �푢�푠

�푟�푅�耠(�푡)
�푅2(�푡) = �푢�푡 − �푢�푠

�푠�푅�耠(�푡)
�푅(�푡) ,

�휎�푟�푟 = �푢�푠�푠�푅2(�푡) .

(20)

�푐�휕�푢�휕�푡 = 1
�푅2(�푡)Δ �푟�푢 + �푐�푠�̇푅

�푅(�푡)
�휕�푢
�휕�푠 − �푓(�푢), 0 < �푠 < 1, 0 < �푡 ≤ �푇,

(21)
�휕�푢
�휕�푟 (0, �푡) = 0, 0 < �푡 ≤ �푇,

(22)
�휕�푢
�휕�푟 + �훽(�푢 − �̄휎) = 0, �푠 = 1, 0 < �푡 ≤ �푇,

We define the following metric space (�푀�, �푑): �e set �� 
consists of vector functions (�휎(�푟, �푡), �푅(�푡)) satisfying

(I) �푅 ∈ �퐶1[0, �푇] ∩ �퐶[−�휏, �푇] , �푅(�푡) = �휑(�푡) for −�휏 ≤ �푡 ≤ 0, and

where �푀1 = −ℎ(0) and �푀2 = g(�̄휎) exp(ℎ(0)�휏)(�儨�儨�儨�儨�휑�儨�儨�儨�儨/�푅(0))�푛.
(II) �푢 ∈ �퐶([0,∞) × [−�휏, �푇]), and

Define a metric � by

It is obvious that (�푀�, �푑) is a complete metric space.
Next, create a mapping �퐹 : (�휎, �푅) → (�̂휎, �̂푅) as follows. For 

any (�푢, �푅) ∈ �푀�, consider the following initial value 
problem:

�en, one can get 

where

By the facts that 0 ≤ �휎 ≤ �̄휎, and (�푅(�푡 − �휏)/�푅(�푡))� ≤ (�儨�儨�儨�儨�휑�儨�儨�儨�儨/�푅(0))�
exp(ℎ(0)�휏), one can get that

(23)
�푅�耠(�푡) = �푅(�푡)[(�푅(�푡 − �휏)

�푅(�푡) )�푛∫1

0
g(�푢(�푠, �푡 − �휏))�푠�푛−1�푑�푠

−∫1

0
ℎ(�푢(�푠, �푡))�푠�푛−1�푑�푠], 0 < �푡 ≤ �푇,

(24)�푢(�푠, �푡) = �휓(�푠�푅(�푡), �푡), 0 < �푠 < 1, −�휏 ≤ �푡 ≤ 0.
(25)�푅(�푡) = �휑(�푡), −�휏 ≤ �푡 ≤ 0.

(26)
−1�푛�푀1 ≤ �푅�耠(�푡)

�푅(�푡) ≤ 1
�푛�푀2,

(�푅(�푡 − �휏)
�푅(�푡) )�푛 ≤ ( �儨�儨�儨�儨�휑�儨�儨�儨�儨�푅(0))

�푛

exp(ℎ(0)�휏), 0 < �푡 ≤ �푇,

(27)0 ≤ �푢(�푠, �푡) ≤ �̄휎, 0 ≤ �푟 ≤ �푅(�푡), 0 < �푡 ≤ �푇,

(28)�푢(�푠, �푡) = �휓(�푠�푅(�푡), �푡), 0 ≤ �푠 ≤ 1, −�휏 ≤ �푡 ≤ 0.

(29)

�푑((�푢1, �푅1), (�푢2, �푅2)) = max
(�푠,�푡)∈[0,1]×[0,�푇]

�儨�儨�儨�儨�푢1(�푟, �푡) − �푢2(�푟, �푡)�儨�儨�儨�儨
+ max

�푡∈[0,�푇]
�儨�儨�儨�儨�푅1(�푡) − �푅2(�푡)�儨�儨�儨�儨.

(30)
�̃푅�耠(�푡) = �̃푅(�푡)[(�푅(�푡 − �휏)

�푅(�푡) )�푛∫1

0
g(�푢(�푠, �푡 − �휏))�푠�푛−1�푑�푠

−∫1

0
ℎ(�푢(�푠, �푡))�푠�푛−1�푑�푠], 0 < �푡 ≤ �푇,

(31)�̃푅(�푡) = �휑(�푡), −�휏 ≤ �푡 ≤ 0.

(32)�̃푅(�푡) = �푅(0) exp(∫1

0
�퐺(�휉)�푑�휉), 0 ≤ �푡 ≤ �푇,

(33)

�퐺(�푡) = (�푅(�푡 − �휏)
�푅(�푡) )�푛∫1

0
g(�푢(�푠, �푡 − �휏))�푠�푛−1�푑�푠 − ∫1

0
ℎ(�푢(�푠, �푡))�푠�푛−1�푑�푠.

(34)−1�푛�푀1 ≤ �퐺(�푡) ≤ 1
�푛�푀2,
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Lemma 3. Assume the conditions (P1)–(P4) are satisfied. Let

�en
 (1)  If g(�̄휎) > ℎ(�̄휎), there exists a unique steady state solu-

tion (�휎�(�푟), �푅�) to problem (1)–(6), where �� is a unique 
solution of �퐹(�푅) = 0 and �휎�(�푟) = �푈(�푟, �푅�). Moreover, �퐹(�푥) > 0  for 0 < �푥 < �푅�; �퐹(�푥) < 0 for � > ��.

 (2)  If g(�̄휎) < ℎ(�̄휎), the problem (1)–(6) has none steady 
state solution.

Proof. For given �푅� > 0, the function �휎�(�푟) = �푈(�푟, �푅�) satisfies 
the equations (36)–(38). Substituting it into (39) and letting � = ���, one can get

�erefore, the problem (36)–(39) has a solution (�휎�(�푟), �푅s) 
iff the function �퐹(�푅) = 0 has a solution �푅� > 0. Noticing the 
facts that

and

it follows that 

 (1)  If g(�̄휎) > ℎ(�̄휎), by intermediate value theorem, it can 
be inferred that the function �퐹(�푅) = 0 has a unique 
solution �푅� > 0.

 (2)  If g(�̄휎) < ℎ(�̄휎), then �퐹(�푅) < 0 for all �푅 > 0 since �퐹�(�푅) < 0. �us, the problem (1)–(6) has none steady 
state solution. �is completes the proof. ☐

Lemma 4 (see Lemma 3.1 in [23]). Suppose that (P1)–(P4) 
are satisfied. Let (�휎(�푟, �푡), �푅(�푡)) be the solutions of the problem 
(1)–(6) and let

where �푈(�푟, �푅(�푡)) is the unique solution to the following  
problem:

(42)�퐹(�푅) = ∫1

0
[g(�푈(�휌�푅, �푅)) − ℎ(�푈(�휌�푅, �푅))]�휌�푛−1�푑�휌.

(43)

�퐹(�푅�푠) = ∫1

0
[g(�푈(�휌�푅�푠, �푅�푠)) − ℎ(�푈(�휌�푅�푠, �푅�푠))]�휌�푛−1�푑�휌 = 0.

(44)lim
�푅→0+

�퐹(�푅) = ∫1

0
[g(�̄휎) − ℎ(�̄휎)]�휌�푛−1�푑�휌 = 1

�푛[g(�̄휎) − ℎ(�̄휎)],

(45)lim
�푅→∞

�퐹(�푅) = ∫1

0
[g(0) − ℎ(0)]�휌�푛−1�푑�휌 = 1

�푛[g(0) − ℎ(0)],

(46)
�퐹�耠(�푅) = ∫1

0
[g �耠(�푈(�휌�푅, �푅)) − ℎ�耠(�푈(�휌�푅, �푅))]

⋅ �푑
�푑�푅�푈(�휌�푅, �푅)�휌�푛−1�푑�휌 < 0,

(47)v(�푟, �푡) = �푈(�푟, �푅(�푡)), 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0,

where we use the monotonicity of the functions �푓, g and ℎ. It 
follows that

�us, �̃ satisfies the condition (I). Taking similar arguments 
as that in [24], it is not hard to prove � is a contractive mapping 
for �푇 > 0 is sufficiently small. By the Banach fixed point the-
orem, we have the local existence and uniqueness of a solution 
to the problem (1)–(6). To prove global existence and unique-
ness, we only need to prove that it is impossible for the local 
solution to blow up or tend to zero in a finite time. �is follows 
from the priori estimates (see Lemma 1). �e proof of  
�eorem 1 is complete. ☐

3. Asymptotic Stability of Steady State

First, we study the existence of a unique steady state solution 
of (1)–(6). If (�휎�(�푟), �푅�) is a steady state solution to (1)–(6), it 
must satisfy the following equations:

Consider the auxiliary boundary problem

where �푈�푟�푟(�푟, �푅) = �휕2�푈/�휕�푟2 and �푈�(�푟, �푅) = �휕�푈/�휕�푟.
Lemma 2 (see Lemma 2.1 [22]). Suppose that the conditions 
(P1)–(P4) are satisfied. For any �푅 > 0, the problem (40) and 
(41) has a unique solution �푈(�푟, �푅) and the following assertions 
hold:

 (1)  For all 0 ≤ �푟 ≤ �푅 and �푅 > 0, 0 < �푈(�푟, �푅) < �̄휎, 0 < �푈��(�푟, �푅) ≤ �푓(�̄휎). For all 0 < �푟 ≤ �푅 and �푅 > 0, 0 < �푈�(�푟, �푅) ≤ �푓(�̄휎)�푟/�푛.
 (2)  For all 0 < �푟 ≤ �푅 and �푅 > 0, −�푓(�̄휎)(1/�훽 + �푅/�푛) ≤�푈�(�푟, �푅) ≤ 0, �푈��(�푟, �푅) ≤ 0, where �푈��(�푟, �푅) =(�휕2�푈/�휕�푟�휕�푅)(�푟, �푅).
 (3)  For any fixed �휌 ∈ (0, 1), the function (�푑/�푑�푅)�푈(�휌�푅, �푅) < 0 

for �푅 > 0.
 (4)  For all �휌 ∈ (0, 1), lim�푅→0+�푈(�휌�푅, �푅) = �̄휎, and lim�푅→∞�(�휌�푅, �푅) = 0.

(35)�푅0exp(�푀1�푡�푛 ) ≤ �̃푅(�푡) ≤ �푅0exp(�푀2�푡�푛 ), 0 ≤ �푡 ≤ �푇.

(36)Δ ��휎�(�푟) = �푓(�휎�(�푟)), 0 < �푟 < �푅�,
(37)

�휕�휎�(�푟)�휕�푟 = 0, �푟 = 0,

(38)
�휕�휎�(�푟)�휕�푟 + �훽(�휎�(�푟) − �̄휎) = 0, �푟 = �푅�,

(39)
1

�푅�푛−1
�푠

(∫�푅�

0
g(�휎�푠(�푟))�푟�푛−1�푑�푟 − ∫�푅�

0
ℎ(�휎�푠(�푟))�푟�푛−1�푑�푟) = 0.

(40)�푈��(�푟, �푅) + �푛 − 1
�푟 �푈�(�푟, �푅) = �푓(�푈(�푟, �푅)), 0 < �푟 < �푅,

(41)�푈�(0, �푅) = 0, �푈�(�푅, �푅) = �훽(�̄휎 − �푈(�푅, �푅)),
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where

and

From Lemma 2, we know �푈(�푠�푅, �푅) is continuously differenti-
able on �. Since g , ℎ ∈ �퐶∞[0,∞), one can get that �퐻1, �퐻2 are 
continuous. It is apparent that the initial value problem (54)
has one unique solution �휂(�푡) which exists on [0,∞), since we 
may rewrite this problem in the following form:

and solve it using the method of steps (see, e.g., [24]) on inter-
vals [�푛�휏, (�푛 + 1)�휏], �푛 ∈ �푁. Since �퐻1(�푠) > 0 for �푠 > 0. �anks to 
Lemma 1.1 in [25], we obtain that the nonnegativity of the 
solution to equation (54) for any nonnegative initial value �.

�e steady state solution of (54) satisfies the equation

By (P3), we know that g(0) − ℎ(0) < 0, then we have

Noticing �퐹(�푥) is strictly monotone decreasing (see the proof 
of Lemma 3) and when g(�̄휎) > ℎ(�̄휎),

�erefore, one can get that there exists �푐0, �훼0 > 0 such that if 0 < �푐 ≤ �푐0 and 0 < �훼 ≤ �훼0, the problem (54) has a unique steady 
state solution �±

�푠 , where �±
�푠  is a unique solution of �퐺(�푥, �푥) ± �퐶�훼�푐 = 0.

Since �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0, �퐺(�푥, �푥) = �퐹(�푥) > 0 for 0 < �푥 < �푅±
�푠  and �퐺(�푥, �푥) = �퐹(�푥) < 0 for �푥 > �푅±

�푠 . By Lemma 3.2 
in [11], we can get (24) hold. �is completes the proof. ☐

Lemma 6. Suppose (P1)–(P4) are satisfied and �휕�퐺(�푥, �푦)/�휕�푦 > 0 
for �푥, �푦 > 0. Let �휎(�푟, �푡), �푅(�푡) be the solutions of the problem 
(1)–(6). If g(�̄휎) > ℎ(�̄휎) and �휀 ≤ |�휑| =: max−�휏≤�푡≤0�휑(�푡) ≤ 1/�휀 for 
some �휀 > 0, there exists a constant �0 depending on � such that

for all �푡 ≥ 0 and �푐 ∈ (0, �푐0], where �1 and �2 are as before.

(57)

�퐻1(�휂(�푡 − �휏)) = �푛�휂(�푡 − �휏)∫1

0
g(�푈(�푠 �√�휂(�푡 − �휏), �√�휂(�푡 − �휏)))�푠�푛−1�푑�푠

(58)

�퐻2(�휂(�푡)) = �푛�휂(�푡)∫1

0
ℎ(�푈(�푠 �√�휂(�푡), �√�휂(�푡)))�푠�푛−1�푑�푠 ± �푛�퐶�훼�푐�휂.

(59)

�휂(�푡) = �휂(0)�푒−∫�푡
0(�퐻2(�휂(�휉))±�퐶�훼�푐)�푑�휉

+ ∫�푡

0
�푒−∫�푡

�푠(�퐻2(�휂(�휉))±�퐶�훼�푐)�푑�휉�퐻1(�휂(�푠 − �휏))�푑�푠,

(60)�퐺(�푥, �푥) ± �퐶�훼�푐 = �퐹(�푥) ± �퐶�훼�푐 = 0.

(61)

lim
�푅→∞

�퐹(�푅) = ∫1

0
[g(0) − ℎ(0)]�휌�푛−1�푑�휌 = 1

�푛[g(0) − ℎ(0)] < 0.

(62)
lim
�푅→0+

�퐹(�푅) = ∫1

0
[g(�̄휎) − ℎ(�̄휎)]�휌�푛−1�푑�휌 = 1

�푛[g(�̄휎) − ℎ(�̄휎)] > 0.

(63)
�휀
2exp(

�푀1�휏�푛 ) < �푅(�푡) < 2
�휀 exp(

�푀2�휏�푛 )

where �푈�푟�푟(�푟, �푅) = �휕2�푈/�휕�푟2 and �푈�(�푟, �푅) = �휕�푈/�휕�푟. Suppose 
 further that for some �휀 > 0, 0 < �훼 ≤ �훼0 and 0 < �푇 ≤ ∞,

and �儨�儨�儨�儨�휓(�푟, 0) − v(�푟, 0)�儨�儨�儨�儨 ≤ �푀 ≤ �푀0 for 0 < �푟 ≤ �푅(0). �en there 
exists a positive constant �푐0, �휅 and � independent of �푐, �푇, �훼,�푀, 
and �0 (but may dependent on �휀, �훼0 and �0) such that

for all 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0, and 0 < �푐 ≤ �푐0.
Let

where w(�푠, �푡) = v(�푠�푅(�푡), �푡) = �푈(�푟, �푅(�푡)) = �푈(�푠�푅(�푡), �푅(�푡)), 0 ≤ �푠 ≤ 1, 0 ≤ �푠 ≤ 1, �푡 ≥ 0. �erefore, � could be rewritten in the follow-
ing form:

Lemma 5. Suppose the conditions (P1)–(P4) are satisfied. 
Suppose further that �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0. Consider 
the following two initial value problems

�en there exists a unique solution �푅±(�푡) to problem (54) and the 
following assertions hold: If g(�̄휎) > ℎ(�̄휎), there exists �푐0, �훼0 > 0 
such that if 0 < �푐 ≤ �푐0 and 0 < �훼 ≤ �훼0, the problem (54) has a 
unique steady state solution �±

�푠 , where �±
�푠  is a unique solution 

of �퐺(�푥, �푥) ± �퐶�훼�푐 = 0. Moreover, the steady state solution �±
�푠  is 

globally asymptotic stable, i.e., for any nonnegative continuous 
initial value function �,

Proof. Let �휂 = �푅�, then (54) takes the form:

(48)
�푈��(�푟, �푅(�푡)) + �푛 − 1

�푟 �푈�(�푟, �푅(�푡)) = �푓(�푈(�푟, �푅(�푡))), 0 < �푟 < �푅,

(49)�푈�(0, �푅(�푡)) = 0, �푈�(�푅(�푡), �푅(�푡)) = �훽(�̄휎 − �푈(�푅(�푡), �푅(�푡))),

(50)
�儨�儨�儨�儨�儨�̇푅(�푡)�儨�儨�儨�儨�儨 ≤ �훼 ≤ �훼0, �휀 ≤ �푅(�푡) ≤ 1

�휀 , 0 ≤ �푡 < �푇,

(51)|�휎(�푟, �푡) − v(�푟, �푡)| ≤ �퐶�훼�푐 +�푀 exp(−�휅�푡�푐 )

(52)
�퐺(�푅(�푡), �푅(�푡 − �휏)) = (�푅(�푡 − �휏)

�푅(�푡) )�푛∫1

0
g(w(�푠, �푡 − �휏))�푠�푛−1�푑�푠

− ∫1

0
ℎ(w(�푠, �푡))�푠�푛−1�푑�푠,

(53)
�퐺(�푅(�푡), �푅(�푡 − �휏)) = 1

�푅�푛(�푡)[∫
�푅(�푡−�휏)

0
g(v(�푟, �푡 − �휏))�푟�푛−1�푑�푟

−∫�푅(�푡)

0
ℎ(v(�푟, �푡))�푟�푛−1�푑�푟].

(54)
�̇푅±(�푡) = �푅±(�푡)[�퐺(�푅±(�푡), �푅±(�푡 − �휏)) ± �퐶�훼�푐], �푡 > 0;
�푅±(�푡) = �휑(�푡), −�휏 ≤ �푡 ≤ 0.

(55)lim
�푡→∞

�푅±(�푡) = �푅±
�푠 .

(56)�̇휂(�푡) = �퐻1(�휂(�푡 − �휏)) −�퐻2(�휂(�푡)),
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�en for � > �

where �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0 has been used. Choosing � small such that �푅(�푇) = (2/�휀) exp(�푀2�휏/�푛) > �푅�푠, one can get �퐺(�푅(�푇), �푅(�푇)) < 0. �en there exists �푐0 > 0 (sufficiently small), 
for 0 < �푐 < �푐0, there holds �̇푅(�푇) < 0 which is a contraction to 
the fact that �̇푅(�푇) ≥ 0.

If �푅(�푇) = (�휀/2)exp(�푀1�휏/�푛), by similar analysis, one can 
also show the contradiction. �is completes the proof. ☐

Remark 1. When �휏 = 0, �퐺(�푅(�푡), �푅(�푡 − �휏)) = �퐺(�푅(�푡), �푅(�푡)) =�퐹(�푅(�푡)). �us, if �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0, Lemma 6 
above extends Lemma 3.2 in [23] from the case �휏 = 0 to the 
case �휏 > 0. �e assumption that �휕�퐺(�푥, �푦)/�휕�푦 > 0 could be 
satisfied for some special cases. For example, in [21], when �휏 = 0, �푓(�휎) = �휎, g(�휎) = �휇�휎 and ℎ(�휎) = �휇�̃휎, where �휇, �̃휎 are two 
constants, the existence, uniqueness, and stability of steady 
state solutions are proved. For the above special case, in the 
last section, we will prove �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0 and 
apply our results to prove the existence, uniqueness and 
stability of steady state solutions when �휏 > 0.

Lemma 7. Assume that (P1)–(P4) are satisfied and �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0. Let (�휎(�푟, �푡), �푅(�푡)) be the solutions 
of the problem (1)–(6). If g(�̄휎) > ℎ(�̄휎), assume that there exists �휀 > 0 such that

for −�휏 ≤ �푡 ≤ 0. �en there exists positive constants �푐0, �푇0, �휃 and � independent of �푐, �푅 and �, for any �푐 ∈ (0, �푐0] and �훼 ∈ (0, �훼0], 
where �0 is a given constant, when

for 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ −�휏 and �儨�儨�儨�儨�儨�̇푅(�푡)�儨�儨�儨�儨�儨 ≤ �훼 for 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0, 
the following estimates

hold for � ≥ �0 and 0 ≤ �푟 ≤ �푅(�푡).
Proof. For the convenience of notation expression, in 
the following of the paper we use � to represents various 
constants independent of � and �. By Lemma 2 and (85), one 
can get

�̇푅(�푇) ≤ �푅(�푇)�퐺(�푅(�푇), �푅(�푇 − �휏))
+�퐶�푅(�푇)

�푛 [�퐿 g(�푐 + exp(− �휅(�푇−�휏)
�푐 ))(�푅(�푇−�휏)

�푅(�푇) )�푛

+�퐿ℎ(�푐 + exp(− �휅�푇
�푐 ))]

≤ �푅(�푇)�퐺(�푅(�푇), �푅(�푇)) + �퐶�푅(�푇)
�푛 [�퐿 g(�푐 + exp(− �휅(�푇−�휏)

�푐 ))
+�퐿ℎ(�푐 + exp(− �휅�푇

�푐 ))]
≤ �푅(�푇)�퐺(�푅(�푇), �푅(�푇)) + �퐶�푐�푅(�푇)

�푛 [�퐿 g(1 + 1
�휅(�푇−�휏)�푒)

+�퐿ℎ(1 + 1
�푒�휅�푇)],

(72)�휀 ≤ �휑(�푡) ≤ 1
�휀

(73)|�푅(�푡) − �푅�
�儨�儨�儨�儨 ≤ �훼, |�휎(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 ≤ �훼,

(74)

�儨�儨�儨�儨�푅(�푡) − �푅�
�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + exp(�휃�푡)), �儨�儨�儨�儨�휎(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + exp(�휃�푡)),�儨�儨�儨�儨�儨�̇푅(�푡)�儨�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + exp(�휃�푡)),

(75)
�儨�儨�儨�儨v(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 = �儨�儨�儨�儨�푈(�푟, �푅(�푡)) − �푈(�푟, �푅�)�儨�儨�儨�儨 ≤ �퐶�儨�儨�儨�儨�푅(�푡) − �푅�

�儨�儨�儨�儨 ≤ �퐶�훼,

Proof. By (11), we can get that

for all �푡 ∈ [0, �휏]. If (53) is not true for some � > �. �en there 
exists � > � such that

for −� ≤ � < � and either �푅(�푇) = (2/�휀) exp(�푀2�휏/�푛) or �푅(�푇) =(�휀/2) exp(�푀1�휏/�푛).
If �푅(�푇) = (2/�휀) exp(�푀2�휏/�푛), then �̇푅(�푡) ≥ 0. By (10) in 

Lemma 1, we obtain

Noticing �儨�儨�儨�儨�휓(�푟, 0) − v(�푟, 0)�儨�儨�儨�儨 ≤ �̄휎 =: �푀0 for �푟 ∈ (0, �푅(0)], by 
Lemma 4, one can get that there exists positive constants �푐0, �휅 
and � independent of �푐, �푇, �훼,�푀 and �0 (but may dependent 
on �휀, �훼0 and �0) such that

for all 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0, and 0 < �푐 ≤ �푐0. Denote �퐿 g =
max0≤�휎≤�̄휎g

�耠(�휎) and �퐿ℎ = max0≤�휎≤�̄휎g
�耠(�휎). By using the 

 differential mean value theorem, we obtain

for 0 ≤ �푟 ≤ �푅(�푡), 0 ≤ �푡 ≤ �푇 and 0 < �푐 ≤ �푐0. �erefore,

(64)

�휀
2 exp(�푀1�휏�푛 ) < �휀 exp(�푀1�휏�푛 ) ≤ �푅(�푡) ≤ 1

�휀 exp(
�푀2�휏�푛 )

< 2
�휀 exp(

�푀2�휏�푛 )

(65)
�휀
2exp(

�푀1�휏�푛 ) < �푅(�푡) < 2
�휀 exp(

�푀2�휏�푛 ),

(66)
�儨�儨�儨�儨�儨�̇푅(�푡)�儨�儨�儨�儨�儨 ≤ 1

�푛�휀 (�儨�儨�儨�儨�푀1
�儨�儨�儨�儨 +�푀2) =: �훼0, 0 ≤ �푡 < �푇.

(67)

|�휎(�푟, �푡) − v(�푟, �푡)| ≤ �퐶�훼�푐 +�푀 exp(−�휅�푡�푐 ) ≤ �퐶�훼(�푐 + exp(−�휅�푡�푐 ))

(68)�儨�儨�儨�儨g(�휎(�푟, �푡)) − g(v(�푟, �푡))�儨�儨�儨�儨 ≤ �퐿 g�퐶(�푐 + exp(−�휅�푡�푐 )),

(69)|ℎ(�휎(�푟, �푡)) − ℎ(v(�푟, �푡))| ≤ �퐿ℎ�퐶(�푐 + exp(−�휅�푡�푐 ))

(70)

�̇푅(�푡) = 1
�푅�푛−1(�푡)(∫

�푅(�푡−�휏)

0
g(�휎(�푟, �푡 − �휏))�푟�푛−1�푑�푟

−∫�푅(�푡)

0
ℎ(�휎(�푟, �푡))�푟�푛−1�푑�푟)

≤ 1
�푅�푛−1(�푡)(∫

�푅(�푡−�휏)

0
g(v(�푟, �푡 − �휏))�푟�푛−1�푑�푟

−∫�푅(�푡)

0
ℎ(v(�푟, �푡))�푟�푛−1�푑�푟)

+ �푅(�푡)
�푛 �퐿 g�퐶(�푐 + exp(−�휅(�푡 − �휏)

�푐 ))(�푅(�푡 − �휏)
�푅(�푡) )�푛

+ 1
�푛�퐿ℎ�퐶(�푐 + exp(−�휅�푡�푐 ))�푅(�푡)

= �푅(�푡)�퐺(�푅(�푡), �푅(�푡 − �휏)) + �퐶�푅(�푡)
�푛

⋅ [�퐿 g(�푐 + exp(−�휅(�푡 − �휏)
�푐 ))(�푅(�푡 − �휏)

�푅(�푡) )�푛

+ �퐿ℎ(�푐 + exp(−�휅�푡�푐 ))].

(71)
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For both stationary solutions �±
�푠 , using the linearization the-

orem, one can get that the characteristic equations are equal to

where

and

Since ℎ�(�푥) ≤ 0, g �(�푥) > 0 and (�푑/�푑�푥)�푈(�푠�푥, �푥) < 0 (see Lemma 
2(3)) for �푥 > 0, noticing that �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0, one 
can get that �퐴 > �퐵 > 0 which infers that all complex roots of 
Equation (85) have negative real parts. �en, there exists pos-
itive constant �, �, and �0 such that for any � ≥ �0

where |�휑(�푡) − �푅±
�푠 | = max�푡∈[−�휏,0]|�휑(�푡) − �푅±

�푠 |. It follows that

By Lemma 2(2) and (72), using the differential mean value 
theorem, we obtain

for 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0. �en

for �푡 ≥ 0, 0 ≤ �푟 ≤ �푅(�푡). Specially, |�휓(�푟, 0) − v(�푟, 0)| ≤ �퐶�훼 for 0 ≤ �푟 ≤ �휑(0). Noting |�푅�(�푡)| ≤ �훼 for all �푡 ≥ 0, by Lemma 4,  
there exists a positive constant �0 independent � and � such 
that

for arbitrary �푡 ≥ 0, 0 ≤ �푟 ≤ �푅(�푡) and 0 < �푐 ≤ �푐0. Set

(84)�儨�儨�儨�儨�푅±
�푠 − �푅�푠

�儨�儨�儨�儨 ≤ �퐶�훼�푐.

(85)�퐷±(�푧) = −�퐴 + �퐵 exp(−�휏�푧),

(86)
�퐴 = �푛∫1

0
g(�푈(�푠�푅±

�푠 , �푅±
�푠 ))�푠�푛−1�푑�푠 − �푅±

�푠 ∫
1

0
g �耠(�푈(�푠�푅±

�푠 , �푅±
�푠 ))

− ℎ�耠(�푈(�푠�푅±
�푠 , �푅±

�푠 )) �푑
�푑�푅 �푈(�푠�푅, �푅)|�푅=�푅±

�푠
�푠�푛−1�푑�푠

(87)

�퐵 = �휕�퐺
�휕�푦 (�푥, �푦)�儨�儨�儨�儨�儨�儨�儨�儨�푥=�푦=�푅±

�푠

= �푛∫1

0
g(�푈(�푠�푅±

�푠 , �푅±
�푠 ))�푠�푛−1�푑�푠

+ �푅±
�푠 ∫

1

0
g �耠(�푈(�푠�푅±

�푠 , �푅±
�푠 )) �푑

�푑�푅�푈(�푠�푅, �푅)
�儨�儨�儨�儨�儨�儨�儨�儨�푅=�푅±

�푠

�푠�푛−1�푑�푠.

(88)�儨�儨�儨�儨�푅±(�푡) − �푅±
�푠
�儨�儨�儨�儨 ≤ �퐾�푒−�휃�푡�儨�儨�儨�儨�휑(�푡) − �푅±

�푠
�儨�儨�儨�儨,

�儨�儨�儨�儨�푅(�푡) − �푅�푠 | ≤ max|�푅±(�푡) − �푅�푠
�儨�儨�儨�儨

≤ max[�儨�儨�儨�儨�푅
±(�푡) − �푅±

�푠 | + |�푅±
�푠 − �푅�푠

�儨�儨�儨�儨]
≤ max[�퐾�푒−�휃�푡�儨�儨�儨�儨�휑(�푡) − �푅±

�푠
�儨�儨�儨�儨] + �퐶�훼�푐

≤ [�퐾�푒−�휃�푡(�儨�儨�儨�儨�휑(�푡) − �푅�푠| + |�푅�푠 − �푅±
�푠
�儨�儨�儨�儨)] + �퐶�훼�푐

≤ �퐶�훼(�푐 + �푒−�휃�푡). (89)

(90)

�儨�儨�儨�儨v(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 = �儨�儨�儨�儨v(�푟, �푡) − v�(�푟)�儨�儨�儨�儨 ≤ �퐶 �儨�儨�儨�儨�푅(�푡) − �푅�
�儨�儨�儨�儨 ≤ C�훼

(91)
|�휎(�푟, �푡) − v(�푟, �푡)| ≤ �儨�儨�儨�儨�휎(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 + �儨�儨�儨�儨v(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 ≤ �퐶�훼

(92)|�휎(�푟, �푡) − v(�푟, �푡)| ≤ �퐶�훼(�푐 + exp(−�휅�푡�푐 ))

(93)

�푓(�푡) = 1
�푅�푛(�푡)[∫

�푅(�푡−�휏)

0
g(�휎(�푟, �푡 − �휏))�푟�푛−1�푑�푟 − ∫�푅(�푡)

0
ℎ(�휎(�푟, �푡))�푟�푛−1�푑�푟].

for 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0. �en

for 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0. Specially,

Noticing that 
�儨�儨�儨�儨�儨�̇푅(�푡)�儨�儨�儨�儨�儨 ≤ �훼 for �푡 ≥ 0, by Lemma 4 we know that 

there exists positive constant �0 and � such that

for 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ 0 and 0 < �푐 ≤ �푐0, where �0 is independent 
of � and �.

Since

by (78), we have

for �푡 ≥ 2�휏, where we have used the facts that exp(−�푥) < (�푥�푒)−1.
Consider the auxiliary initial value problem

By Lemma 5, there exists unique solutions denoted by �푅±(�푡) 
to problem (81). Moreover, if g(�̄휎) > ℎ(�̄휎), there exists �푐0, �훼0 > 0 
such that if 0 < �푐 ≤ �푐0 and 0 < �훼 ≤ �훼0, the problem (81) has 
unique steady state solutions �±

�푠 , where �±
�푠  is a unique solution 

of �퐺(�푥, �푥) ± �퐶�훼�푐 = 0. �e steady state solutions �±
�푠  are globally 

asymptotic stable, i.e.,

for any nonnegative initial value function �.
By the comparison principle (see Lemma 3.1 in [11]), we 

obtain that

for all �푡 > −�휏. Since �퐹(�푥) is decreasing, �퐹(�푅±
�푠 ) ± �퐶�훼�푐 = 0 and �퐹(�푅�) = 0, we can get

(76)
|�휎(�푟, �푡) − v(�푟, �푡)| ≤ �儨�儨�儨�儨�휎(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 + �儨�儨�儨�儨v(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 ≤ �퐶�훼

(77)�儨�儨�儨�儨�휓(�푟, 0) − v(�푟, 0)�儨�儨�儨�儨 ≤ �퐶�훼, 0 < �푟 ≤ �휑(0).

(78)|�휎(�푟, �푡) − v(�푟, �푡)| ≤ �퐶�훼(�푐 + exp(−�휅�푡�푐 ))

(79)

�푅(�푡)�퐺(�푅(�푡), �푅(�푡 − �휏)) = �푅(�푡)[(�푅(�푡 − �휏)
�푅(�푡) )�푛∫1

0
g(�푢(�푠, �푡 − �휏))�푠�푛−1�푑�푠

−∫1

0
ℎ(�푢(�푠, �푡))�푠�푛−1�푑�푠]

�儨�儨�儨�儨�儨�̇푅(�푡) − �푅(�푡)�퐺(�푅(�푡), �푅(�푡 − �휏))�儨�儨�儨�儨�儨
= �儨�儨�儨�儨�儨�儨�儨�儨�儨

1
�푅�푛−1(�푡){∫

�푅(�푡−�휏)

0
[g(�휎(�푟, �푡 − �휏)) − g(v(�푟, �푡))]�푟�푛−1�푑�푟

− ∫�푅(�푡)

0
[ℎ(�휎(�푟, �푡)) − ℎ(v(�푟, �푡))]�푟�푛−1�푑�푟}�儨�儨�儨�儨�儨�儨�儨�儨�儨

≤ 1
�푛�푅(�푡)[�퐿 g�퐶�훼(�푐 + exp(−�휅(�푡 − �휏)

�푐 )) + �퐿ℎ�퐶�훼(�푐 + exp(−�휅(�푡)�푐 ))]
≤ 1
�푛�푅(�푡)[�퐿 g�퐶�훼(�푐 + �푐

�휅(�푡 − �휏)) + �퐿ℎ�퐶�훼(�푐 + �푐
�휅�푡)]

≤ 1
�푛�푅(�푡)[�퐿 g�퐶�훼(�푐 + �푐

�휅�휏) + �퐿ℎ�퐶�훼(�푐 + �푐
2�휅�휏)]≤ �퐶�훼�푐�푅(�푡) (80)

(81)
�̇푅±(�푡) = �푅±(�푡)[�퐺(�푅±(�푡), �푅±(�푡 − �휏)) ± �퐶�훼�푐], �푡 > 0;
�푅±(�푡) = �휑(�푡), −�휏 ≤ �푡 ≤ 0.

(82)lim
�푡→∞

�푅±(�푡) = �푅±
�푠

(83)�푅−(�푡) ≤ �푅(�푡) ≤ �푅+(�푡)



Complexity8

for all �푡 ≥ 0. By Lemma 1 and Equation (2.4), we obtain that 
for all �푡 ≥ 0,

Obviously |�휎(�푟, �푡) − �휎�(�푟)| ≤ 2�̄휎 holds for all 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ −�휏. 
�erefore, the conditions of Lemma 7 are satisfied for �훼 = �훼0 =: max{�훼1, �훼2, 2�̄휎}. �en by Lemma 7, one can get

hold for all 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ �푇0 + �휏. For any given � satifying 2�퐶�푐 < 1, we define �0 by 

By induction, we obtain

hold for all 0 ≤ �푟 ≤ �푅(�푡), �푡 ≥ �푛�푇0 + �휏.
�en, determine �훾 > 0 by using the following formula:

and for given �푡 > 0, there exists an integer � satisfying �푛�푇0 + �휏 ≤ �푡 ≤ (�푛 + 1)�푇0 + �휏. It follows that

By similar arguments, one can get |�푅�耠(�푡)| ≤ �퐶�푒−�훾�푡, |�휎(�푟, �푡) − �휎�푠(�푟)| ≤ �퐶�푒−�훾�푡 for all �푡 ≥ �푇0 + �휏, 0 ≤ �푟 ≤ �푅(�푡).
Next, we prove when �푐 = 0, (109) is also valid. From (48) 

and (48), we know that

is the unique solution to (1)–(3). Substituting (110) into (4), 
we have

where �퐺(�푅(�푡), �푅(�푡 − �휏)) is defined in (52). Noting �퐺(�푥, �푥) = �퐹(�푥), by Lemma 3, we have: If g(�̄휎) > ℎ(�̄휎), there 
exists a unique steady state solution (�휎�(�푟), �푅�) to problem 
(1)–(6), where �� is a unique solution of �퐺(�푥, �푥) = �퐹(�푅) = 0 
and �휎�(�푟) = �푈(�푟, �푅�). Moreover, �퐺(�푥, �푥) = �퐹(�푥) > 0 for 

(100)�儨�儨�儨�儨�푅�耠(�푡)�儨�儨�儨�儨 ≤ 2(�儨�儨�儨�儨�푀1
�儨�儨�儨�儨 +�푀2)�푛�휀 exp(�푀2�휏�푛 ) =: �훼2.

(101)�儨�儨�儨�儨�푅(�푡) − �푅�푠
�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + �푒−�휃�푡) ≤ 2�퐶�푐�훼,

(102)�儨�儨�儨�儨�푅�耠(�푡)�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + �푒−�휃�푡) ≤ 2�퐶�푐�훼,

(103)�儨�儨�儨�儨�휎(�푟, �푡) − �휎�푠(�푟)�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + �푒−�휃�푡) ≤ 2�퐶�푐�훼

(104)�푒−�휃(�푇0+�휏) = �푐.

(105)

�儨�儨�儨�儨�푅(�푡) − �푅�푠
�儨�儨�儨�儨 ≤ �퐶�훼(2�퐶�푐)�푛−1(�푐 + �푒−�휃(�푡−(�푛−1)�푇0)) ≤ (2�퐶�푐)�푛�훼,

(106)�儨�儨�儨�儨�푅�耠(�푡)�儨�儨�儨�儨 ≤ �퐶�훼(2�퐶�푐)�푛−1(�푐 + �푒−�휃(�푡−(�푛−1)�푇0)) ≤ (2�퐶�푐)�푛�훼,

(107)

�儨�儨�儨�儨�휎(�푟, �푡) − �휎�푠(�푟)�儨�儨�儨�儨 ≤ �퐶�훼(2�퐶�푐)�푛−1(�푐 + �푒−�휃(�푡−(�푛−1)�푇0)) ≤ (2�퐶�푐)�푛�훼

(108)2�퐶�푐 = �푒−�훾�푇0 < 1

(109)
�儨�儨�儨�儨�푅(�푡) − �푅�푠

�儨�儨�儨�儨 ≤ �훼(2�퐶�푐)�푛�훼 = �훼�푒−�훾�푛�푇0 = �훼�푒−�훾�푡�푒−�훾(�푛�푇0−�푡)
≤ �훼�푒�훾(�푇0+�휏)�푒−�훾�푡 = �퐶�푒−�훾�푡.

(110)v(�푟, �푡) = �푈(�푟, �푅(�푡)), 0 < �푟 ≤ �푅(�푡),

(111)
�푑�푅
�푑�푡 = �푅(�푡)�퐺(�푅(�푡), �푅(�푡 − �휏)), �푡 > 0,

�en for �푡 ≥ 2�휏

By the differential mean value theorem and (72), we obtain 
that for � ≥ �0 + �

�en by the equation �푅�(�푡) = �푅(�푡)�푓(�푡) and the inequality (72), 
we have |�푅�耠(�푡)| ≤ �퐶�훼(�푐 + �푒−�휃�푡). By (93), we have

�is completes the proof of Lemma 7. ☐

Theorem 2. Suppose that the conditions (P1)–(P4) are 
satisfied and �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0. Let (�휎(�푟, �푡), �푅(�푡)) 
be the solution to the problem (1)–(6). If g(�̄휎) > ℎ(�̄휎), then for 
any �휀 > 0, if �휀 < |�휑|, �푅� < 1/�휀, there exist positive constants �푐0, �훾 
and C such that if 0 ≤ �푐 ≤ �푐0, we have the following estimates:

for all �푡 ≥ �푇0 + �휏, 0 ≤ �푟 ≤ �푅(�푡).
Proof. First, we prove that there exist positive constants �푐0, �훾 and � such that if 0 < �푐 ≤ �푐0, (98) holds. Choosing � 
sufficiently small such that �휀 < �儨�儨�儨�儨�휑�儨�儨�儨�儨, �푅� < 1/�휀, by Lemma 6 we 
know there exists a positive constant �0 such that.

for all �푡 ≥ 0 and 0 < �푐 ≤ �푐0, where �1 and �2 are as before. 
�en

�儨�儨�儨�儨�푅(�푡)�푓(�푡) − �푅(�푡)�퐺(�푅(�푡), �푅(�푡 − �휏))�儨�儨�儨�儨
= �儨�儨�儨�儨�儨�儨�儨�儨�儨

1
�푅�푛−1(�푡)∫

�푅(�푡−�휏)

0
[g(�휎(�푟, �푡 − �휏)) − g(v(�푟, �푡 − �휏))]�푟�푛−1�푑�푟

−∫�푅(�푡)

0
[ℎ(�휎(�푟, �푡)) − ℎ(v(�푟, �푡))]�푟�푛−1�푑�푟�儨�儨�儨�儨�儨�儨�儨�儨�儨

≤ �푅(�푡)
�푛 �퐿 g�퐶�훼(�푐 + exp(−�휅(�푡 − �휏)

�푐 ))(�푅(�푡 − �휏)
�푅(�푡) )�푛

+ 1
�푛�퐿ℎ�퐶�훼(�푐 + exp(−�휅�푡�푐 ))�푅(�푡)

= �퐶�훼�푅(�푡)
�푛 [�퐿 g(�푐 + exp(−�휅(�푡 − �휏)

�푐 ))(�푅(�푡 − �휏)
�푅(�푡) )�푛

+ �퐿ℎ(�푐 + exp(−�휅�푡�푐 ))]
≤ �퐶�훼�푐�푅(�푡)

�푛 [�퐿 g(1 + 1
�휅(�푡 − �휏)�푒) + �퐿ℎ(1 + 1

�푒�휅�푡)]
≤ �퐶�훼�푐. (94)

(95)

�儨�儨�儨�儨�퐺(�푅(�푡), �푅(�푡 − �휏)) − �퐺(�푅�푠, �푅�푠)�儨�儨�儨�儨
≤ �퐶(�儨�儨�儨�儨�푅(�푡) − �푅�푠

�儨�儨�儨�儨 +�儨�儨�儨�儨�푅(�푡 − �휏) − �푅�푠
�儨�儨�儨�儨)

≤ �퐶�훼(�푐 + �푒−�휃�푡).

(96)�儨�儨�儨�儨�휎(�푟, �푡) − �휎�푠(�푟)�儨�儨�儨�儨 ≤ �퐶�훼(�푐 + �푒−�휃�푡).

(97)

�儨�儨�儨�儨�푅(�푡) − �푅�푠
�儨�儨�儨�儨 ≤ �퐶�푒−�훾�푡, �儨�儨�儨�儨�푅�耠(�푡)�儨�儨�儨�儨 ≤ �퐶�푒−�훾�푡, �儨�儨�儨�儨�휎(�푟, �푡) − �휎�푠(�푟)�儨�儨�儨�儨 ≤ �퐶�푒−�훾�푡

(98)
�휀
2exp(

�푀1�휏�푛 ) < �푅(�푡) < 2
�휀 exp(

�푀2�휏�푛 )

(99)�儨�儨�儨�儨�푅(�푡) − �푅�푠
�儨�儨�儨�儨 ≤ 2

�휀 exp(
�푀2�휏�푛 ) + �푅�푠 =: �훼1
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and

Let �푥(�푡) = �푅�(�푡), then (121) is reduced to the following 
equation:

Consider the following auxiliary linear initial value problem

Since 0 < g(�̄휎) < ℎ(�̄휎), by a well known result of functional 
differential equations, one can get lim�푡→∞�푋(�푡) = 0. Let �퐺(�푥, �푦) = g(�̄휎)�푦 − ℎ(�̄휎)�푥  . �en � is strictly monotone increas-
ing in � and �퐺(�푥, �푥) < 0 for all �푥 > 0. By using Lemma 2.1 [11], 
one can get �푥(�푡) ≤ �푋(�푡). �en lim�푡→∞�푥(�푡) = 0 follows from 
(120) and lim�푡→∞�푋(�푡) = 0. On account of �푥(�푡) = �푅�(�푡) > 0, we 
have lim�푡→∞�푅(�푡) = 0. �is completes the proof. ☐

4. An Application

In this section, for the special case of the problem (1)–(6) 
where �푛 = 3, �푓(�휎) = �휎, g(�휎) = �휇�휎 and ℎ(�휎) = �휇�̃휎, we will apply 
our results to prove the existence, uniqueness and stability of 
steady state solutions when �휏 > 0. In this section we assume �푛 = 3, �푓(�휎) = �휎, g(�휎) = �휇�휎, ℎ(�휎) = �휇�̃휎 and �휏 > 0.

First, it is obvious that �푓, g, and ℎ satisfy the conditions 
(P1) and (P2). Since g �(�휎) = �휇, ℎ�(�휎) = 0 for �휎 ≥ 0 and there 
exists �푎∗ = �̃휎 such that g(�푎∗) = ℎ(�푎∗) = �휇�̃휎, the functions �푓, g, 
and ℎ satisfy the condition (P3). �erefore, by �eorem 2, if 
the initial value functions � and � satisfy the conditions  (�1)–(�3), then, problem (1)–(6) has a unique solution (�휎(�푟, �푡), �푅(�푡)) for all � ≥ −�.

For any �훽 > 0 and 0 < �̃휎 < �̄휎, by �eorem 3.1 in [21], we 
know that there exists a unique steady state solution denoted 
by (�휎�(�푟), �푅�) of (1)–(6) which is determined by

and

where �휂 = �̃휎/�̄휎, 0 < �푟 < �푅�, �푘(�푥) = �푥�푝(�푥), �푝(�푥) = (�푥 coth�푥 − 1)/�푥2 
and �휁(�푥) = sinh�푥/�푥.

�e solution to problem (40) and (41) is

By (49) and a direct computation, one can get that

(120)�푅(�푡) ≥ �휑(0)exp(−ℎ(0)�푛 �푡) → 0, �푡 → ∞

(121)�푅�푛−1 �푑�푅�푑�푡 ≤ g(�̄휎)�푅�푛
�휏�푛 − ℎ(�̄휎)�푅�푛

�푛 .

(122)
�푑�푥
�푑�푡 ≤ g(�̄휎)�푥(�푡 − �휏) − ℎ(�̄휎)�푥(�푡).

(123)

�푑�푋
�푑�푡 = g(�̄휎)�푋(�푡 − �휏) − ℎ(�̄휎)�푋(�푡), �푋(�푡) = �휑(�푡), −�휏 ≤ �푡 ≤ 0,

(124)�휎�(�푟) = �훽�̄휎
�훽 + �푘(�푅�)

�휁(�푟)
�휁(�푅�)

(125)
�훽

�훽 + �푘(�푅�)�푝(�푅�) = �휂
3 ,

(126)v(�푟, �푡) = �푈(�푟, �푅(�푡)) = �훽
�훽 + �푘(�푅(�푡))

�휁(�푟)
�휁(�푅(�푡)) .

0 < �푥 < �푅�; �퐺(�푥, �푥) = �퐹(�푥) < 0 for � > ��. Since �퐺(�푥, �푦) is 
strictly monotone increasing in �, thanks to Lemma 3 [11], it 
follows that lim�푡→∞�푅(�푡) = �푅�푠.

By using the linearization method, linearizing the equation 
(111) at the steady state solution ��, one can get the charac-
teristic equation of the linearized equation

where

and

By the facts g �(�푥) > 0, ℎ�(�푥) ≤ 0 and (�푑/�푑�푥)�푈(�푠�푥, �푥) < 0 (see 
Lemma 2(3)) for �푥 > 0, noticing that �휕�퐺(�푥, �푦)/�휕�푦 > 0, one can 
get that �퐴1 > �퐵1 > 0  which infer that all complex roots of 
equation (112) have negative real parts. �erefore, there exits 
positive constant �, � and �0 such that such that for any � ≥ �0

From (115), one can get when �0 is sufficiently large, �푅�/2 < �푅(�푡) > 3�푅�/2 for � ≥ �0. Notice that � is bounded, and 
when �0 is sufficiently large, there is a positive lower bound of �푅(�푡) for � ≥ �0, and notice that

and

using the differential mean value theorem, one can get |�푅�耠(�푡)| ≤ �퐶�푒−�훾�푡, |�휎(�푟, �푡) − �휎�푠(�푟)| ≤ �퐶�푒−�훾�푡 for all �푡 ≥ �푇0 + �휏,0 ≤ �푟 ≤ �푅(�푡). �e proof of �eorem 2 is complete.
 ☐

Theorem 3. Suppose that the conditions (P1)–(P4) are 
satisfied and �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0. Let (�휎(�푟, �푡), �푅(�푡)) be 
the solution to the problem (1)–(6). If g(�̄휎) < ℎ(�̄휎), then for 
any �푐 > 0 and initial value function �휑(�푡) > 0, −�휏 ≤ �푡 ≤ 0,

Proof. From Lemma 1(1) and Equation (4), we obtain

where �푅� = �푅(�푡 − �휏). It follows that

(112)�퐿(�푧) = −�퐴1 + �퐵1exp(−�휏�푧),

(113)

�퐴1 = �푛∫1

0
g(�푈(�푠�푅�푠, �푅�푠))�푠�푛−1�푑�푠 − �푅�푠∫

1

0
[g �耠(�푈(�푠�푅�푠, �푅�푠))

− ℎ�耠(�푈(�푠�푅�푠, �푅�푠))] �푑
�푑�푅�푈(�푠�푅, �푅)

�儨�儨�儨�儨�儨�儨�儨�儨�푅=�푅�

�푠�푛−1�푑�푠

(114)

�퐵1 = �휕�퐺
�휕�푦 (�푥, �푦)�儨�儨�儨�儨�儨�儨�儨�儨�푥=�푦=�푅�

= �푛∫1

0
g(�푈(�푠�푅�푠, �푅�푠))�푠�푛−1�푑�푠

+ �푅�푠∫
1

0
g �耠(�푈(�푠�푅�푠, �푅�푠)) �푑

�푑�푅�푈(�푠�푅, �푅)
�儨�儨�儨�儨�儨�儨�儨�儨�푅=�푅�

�푠�푛−1�푑�푠.

(115)�儨�儨�儨�儨�푅(�푡) − �푅�푠
�儨�儨�儨�儨 ≤ �퐶�푒−�훾�푡.

(116)�푅�(�푡) = �푅(�푡)�儨�儨�儨�儨�퐺(�푅(�푡), �푅(�푡 − �휏)) − �퐺(�푅�, �푅�)�儨�儨�儨�儨

(117)�儨�儨�儨�儨�휎(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 = �儨�儨�儨�儨�푈(�푟, �푅(�푡)) − �푈(�푟, �푅�)�儨�儨�儨�儨,

(118)lim
�푡→∞

�푅(�푡) = 0.

(119)

−∫�푅(�푡)

0
ℎ(0)�푟�푛−1�푑�푟 ≤ �푅�푛−1 �푑�푅�푑�푡 ≤ ∫�푅�

0
g(�̄휎)�푟�푛−1�푑�푟 − ∫�푅(�푡)

0
ℎ(�̄휎)�푟�푛−1�푑�푟,
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where we used �푘�(�푦) > 0 for �푦 > 0 (see Lemma 2.1 in [21]), it 
follows that �휕�퐺(�푥, �푦)/�휕�푦 > 0 for �푥, �푦 > 0.

Since the condition (P4) �̄휎 > �푎∗ and

then all conditions of �eorem 2 are satisfied. By  
�eorem 2, let (�휎(�푟, �푡), �푅(�푡)) be the solution of the system 
(1)–(6). For any �휀 > 0 satisfying �휀 < �儨�儨�儨�儨�휑�儨�儨�儨�儨, �푅� < 1/�휀, there exist 
corresponding positive constants �푐0, �훾 and � such that if 0 ≤ �푐 ≤ �푐0 such that

for all �푡 ≥ �푇0 + �휏, 0 ≤ �푟 ≤ �푅(�푡).

(130)�̄휎 > �푎∗ ⇔ 0 < �̃휎 < �̄휎,

(131)

�儨�儨�儨�儨�푅(�푡) − �푅�
�儨�儨�儨�儨 ≤ �퐶�푒−��, �儨�儨�儨�儨�푅�(�푡)�儨�儨�儨�儨 ≤ �퐶�푒−��, �儨�儨�儨�儨�휎(�푟, �푡) − �휎�(�푟)�儨�儨�儨�儨 ≤ �퐶�푒−��

where �푅� = �푅(�푡 − �휏). �us,

Next we prove �휕�퐺(�푥, �푦)/�휕�푦 > 0. From [11], we know �푙�耠(�푦) = (�푦3�푝(�푦))�耠 > 0 for �푦 > 0. �erefore,

(127)�퐺(�푅, �푅�휏) = �휇�̄휎�훽
�훽 + �푘(�푅�휏)

�푅3
�휏�푝(�푅�휏)�푅3 − �휇�̃휎

3 ,

(128)�퐺(�푥, �푦) = �휇�̄휎�훽
�훽 + �푘(�푦)

�푦3�푝(�푦)
�푥3 − �휇�̃휎/3.

�푥3

�휇�̄휎
�휕�퐺
�휕�푦 = �푙�耠(�푦)(�훽 + �푘(�푦)) − �푘�耠(�푦)�푙(�푦)

(�훽 + �푘(�푦))2
= �훽�푙�耠(�푦)
(�훽 + �푘(�푦))2 + ( �푙(�푦)

�푘(�푦))
�耠 �푘2(�푦)
(�훽 + �푘(�푦))2

= �훽�푙�耠(�푦)
(�훽 + �푘(�푦))2 + 2�푦 �푘2(�푦)

(�훽 + �푘(�푦))2 > 0, (129)
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Figure 1: �e curve of the function �푓(�푥) for �̄휎 = 10, �휇 = 1, �̃휎 = 3, �훽 = 2.
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Figure 2:  Asymptotic behavior of �푅(�푡) for �푐 = 0, �̄휎 = 10, �휇 = 1,�휏 = 3, �̃휎 = 3, �훽 = 2, �푅0 = 2, 12.
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Figure 3:  Asymptotic behavior of �푅(�푡) for �푐 = 0, �̄휎 = 5, �휇 = 1,�휏 = 3, �̃휎 = 6, �훽 = 2, �푅0 = 12, 50.

0 20 40 60 80 100 120 140 160 180 200
t

5

6

7

8

9

10

11

12

τ = 3
τ = 6

τ = 9

R(
t)

Figure 4:  Asymptotic behavior of �푅(�푡) for �푐 = 0, �̄휎 = 10, �휇 = 1,�̃휎 = 3, �훽 = 2, �푅0 = 12 and �휏 = 3, 6, 9 respectively.
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positive steady state solution, which can be solved by Matlab 
R2016a and �푅� ≈ 5.86. Figure 2 shows the dynamic change of 
tumor radius �푅(�푡) with parameters taken as (126). From the 
above analysis, as well as notice

we know all conditions of �eorem 2 are satisfied. As can be 
seen from Figure 2, whether the initial value is taken �푥0 = 2 
or 12, all the solutions eventually tend to the unique steady 
state solution �푅� ≈ 5.86. �is verifies the results of �eorem 2.

Next, if we take the parameter values as follows:

where

one can get all conditions of �eorem 3 satisfied. As can be 
seen from Figure 3, whether the initial value is taken �푥0 = 12 
or 50, all the solutions eventually tend to zero, which verifies 
the results of �eorem 3.

It can be seen from �eorems 2 and 3 that time delay 
does not affect the final tendency of tumor growth to the 
steady state or to disappear. In the following, by using the 
Figures 4–6, we show that the time delay has an effect on the 
speed of tumor growth towards to the steady state solution 
or toward extinction. In Figures 4–6, except for the size of 
time delay, the other parameters take the same value (please 
refer to captions of Figures 4–6). In Figures 4 and 6, the  
top curve of three curves corresponds to the larger � where �휏 = 9, the bottom curve of the three curves corresponds to a 
smaller � where �휏 = 3, the remaining curve corresponds �휏 = 6. In Figure 5, the top curve of three curves corresponds 
to the smaller � where �휏 = 3, the bottom curve of the three 
curves corresponds to a larger � where �휏 = 9, the remaining 
curve corresponds �휏 = 6. From Figures 4–6, we see that when 
other conditions remain unchanged, the larger the time 
delay, the slower the tumor tends to the steady state solution 
or tends to disappear.

Data Availability 

No empirical data were used for this study.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

Acknowledgments

�e authors would like to thank the editor and the referees for 
their very helpful suggestions on modification of the  original 
manuscript. �is work of the first author is  supported by 
NNSF of China (11301474), NSF of Guangdong Province 
(2018A030313536). �is work of the second author is 
 supported by Shanghai Pujiang Program (2019PJC062).

(134)�̄휎 = 10 > �̃휎 = 3 ⇔ g(�̄휎) = �휇�̄휎 = 10 > ℎ(�̄휎) = �휇�̃휎 = 3,

(135)�푐 = 0, �̄휎 = 10, �휇 = 1, �휏 = 3, �̃휎 = 3, �훽 = 2,

(136)
�̄휎 = 5 < �̃휎 = 6 ⇔ g(�̄휎) = �휇�̄휎 = 5 < ℎ(�̄휎) = �휇�̃휎 = 6,

Next, using Matlab R2016a, we will do some numerical 
simulation of the tumor growth model discussed above. First, 
we take the following parameter values:

�e steady state solution �� is determined by (124). Let

where � and � are as before. In Figure 1, we plot the curve of � (the blue curve). As can be seen from Figure 1, noting the 
red curve is the curve of �휂/3, where �휂 = �̃휎/�̄휎, there is only one 

(132)�푐 = 0, �̄휎 = 10, �휇 = 1, �휏 = 3, �̃휎 = 3, �훽 = 2.

(133)�푓(�푥) = �훽
�훽 + �푘(�푥)�푝(�푥),
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Figure 5:  Asymptotic behavior of �푅(�푡) for �푐 = 0, �̄휎 = 10, �휇 = 1,�̃휎 = 3, �훽 = 2, �푅0 = 2 and �휏 = 3, 6, 9 respectively.
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Figure 6:  Asymptotic behavior of �푅(�푡) for �푐 = 0, �̄휎 = 5, �휇 = 1,�̃휎 = 6, �훽 = 2, �푅0 = 12 and �휏 = 3, 6, 9 respectively.
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