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In this paper, a method of fault diagnosis (FD) and fault-tolerant tracking control (FTTC) is investigated for non-Gaussian
nonlinear stochastic distribution control (SDC) systems withmissingmeasurements.,e phenomenon of the randomly occurring
missing measurements is described as a Bernoulli process. ,e missing measurements during transmission are compensated with
the data successfully transmitted at the previous moment. ,e residual signal of the fault diagnosis observer is different from that
of the general system. Using the integral of the error of the output probability density function (PDF) as the driving information,
the system state and fault can be estimated by an adaptive fault diagnosis observer. ,en, a novel fault-tolerant tracking controller
is designed based on a discrete-time 2-order sliding mode to make the post-fault PDF still track the target. Two simulated
examples are included to illustrate the effectiveness of the theoretical results.

1. Introduction

Stochastic control is an important research field in control
science. At present, research on Gaussian stochastic system
control has achieved a lot of theoretical and practical results
[1–3]. However, the nonlinear characteristics of the actual
industry control system and the random noise which obeys
the non-Gaussian distribution may lead to the existence of
non-Gaussian random variables in the system. On the other
hand, with the rapid development of precision instruments
and data processing technology, the information that can be
measured and used for feedback control is no longer limited
to the measured value of the output signal but also can be the
output PDF or statistical information set. How to solve these
problems effectively is a new challenge for stochastic control
theory. Motivated by this, Professor Wang Hong proposed a
new research direction of stochastic control theory with the
output PDF as the research object, which is called stochastic
distribution control (SDC) theory [4]. After nearly a decade
of development, the non-Gaussian stochastic distribution

control is gradually forming a relatively complete framework
for modeling theory and control theory research, including
filtering [5, 6], iterative learning control [7], and tracking
control [8–10].

,e non-Gaussian stochastic distribution control theory
has a wide range of applications, such as the control of
molecular weight distribution of polymers in chemical
process [11, 12], the gray distribution control of paper-
making process [13], and the distribution control of tem-
perature field in combustion process [4]. ,e applications
mentioned above are complex large-scale industrial pro-
cesses. Once the fault happens in these systems, it may
reduce the stability of the system and cause huge economic
losses. With the increasing demand for system security, the
research on fault diagnosis and fault-tolerant control
methods for non-Gaussian stochastic distribution systems
has attracted more and more attention [14–18]. In [15], an
iterative learning fault diagnosis observer is designed, which
can be used to estimate both the fast-varying fault and the
slow-varying fault. ,e fault diagnosis algorithm based on
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unknown input observer and sliding mode fault-tolerant
controller are proposed in [16] for non-Gaussian uncertain
stochastic distribution control systems with PDF approxi-
mation error. A new operational fault-tolerant control al-
gorithm is proposed for collaborative stochastic distribution
control systems [18].

In practical engineering applications, due to the com-
plexity of the environment and the reliability of commu-
nication, the missing measurements are inevitable. ,e
influence of missing measurements on the control perfor-
mance of the system cannot be neglected. ,e research on
state estimation and fault diagnosis for the system with
missing measurements has attracted increasing interest. A
consistent parameter estimation algorithm is proposed to
solve the parameter estimation problem of linear systems
with missing measurements in [19]. In order to deal with the
state estimation problem for power systems with missing
measurements [20], a constrained optimization approach
based on the extended Kalman filter is carried out. For a class
of nonlinear systems with logarithmic quantization and
missing measurements, the corresponding state and fault
estimation problem is transmitted into the recursive filtering
problem by augmenting the state variables [21]. Until now,
the studies on fault diagnosis and fault-tolerant control for
non-Gaussian SDC systems with missing measurements are
rare to the best of our knowledge.

,e sliding mode control is a nonlinear and robust
control strategy. To solve the problem of the nonlinear
relationship between DC-link voltage and the control input,
a new supertwisting sliding mode control algorithm is
implemented in [22]. In [23], the disturbance observer based
on fixed-time supertwisting algorithm and the controller
based on fixed-time high-order sliding mode are designed
for high-order dynamic systems. ,e main disadvantage of
sliding mode control is the chattering problem. 2-order
sliding mode control can effectively suppress chattering and
improve the control accuracy [24]. ,e selection of design
parameters of a discrete-time neural second-order sliding
mode controller is studied for unknown nonlinear systems
in [25]. In [26], a novel discrete-time second-order sliding
mode control for multivariable systems is developed.

Based on the aforementioned discussion, we make the
first attempt to address the problem of fault diagnosis and
fault-tolerant control for the non-Gaussian SDC system with
missing measurements. ,e main contents and contribu-
tions of this paper can be summarized as follows:

(1) In the presence of the randomly occurring missing
measurements, a Lipschitz nonlinear SDC model is
established. ,e phenomenon of the randomly oc-
curring missing measurements is described as a
Bernoulli process. In order to eliminate the influence
of missing measurements, the missing measurement
in the transmission process is compensated by the
data successfully transmitted at the previous
moment.

(2) An adaptive observer is used to estimate the system
state and fault simultaneously. ,en, a new discrete-
time 2-order sliding mode fault-tolerant tracking

controller is given to guarantee the reachability of the
sliding surface and make the postfault output PDF
still track the target.

(3) Compared with the first-order sliding mode fault-
tolerant control, a better fault-tolerant tracking
performance can be obtained by the proposed fault-
tolerant controller in this paper.

,e rest of this paper is organized as follows. Section 2
presents the problem description. Fault diagnosis method is
given in Section 3. In Section 4, the design of fault-tolerant
tracking controller based on a discrete 2-order sliding mode
is presented. Section 5 gives the simulation results, which is
followed by some concluding remarks in Section 6.

2. Model Description

For the nonlinear SDC system, y ∈ [a, b] is defined as the
bound and continuous random output variable of the system
and u(k) is the control input. ,e probability P(a≤y≤ b)

can be depicted by the output PDF c(y, u(k)) [7, 27], which
can be defined as follows:

P(a≤y≤ b) � 􏽚
b

a
c(y, u(k))dy. (1)

,e discrete-time output PDF model based on linear
B-spline [4] can be represented as follows:

c(y, u(k)) � 􏽘
N

s�1
ωs(u(k))φs(y), (2)

where c(y, u(k)) is the output PDF,
ωs(u(k))(s � 1, 2, . . . , N) are the corresponding dynamic
weights associated with the control input, and φs(y)(s �

1, 2, . . . , N) are the prespecified basis functions.
According to the condition that 􏽒

b

a
c(y, u(k))dy � 1,

equation (2) can be further expressed as follows:

c(y, u(k)) � φ0(y)W(k) + ωN(k)φN(y), (3)

where φ0(y) � [φ1(y) . . .φN− 1(y)], W(k) � [ω1(k) . . .

ωN− 1(k)]T.
Define ϕT � (ϕ1,ϕ2, . . . , ϕN− 1) ∈ RN− 1, ϕi � 􏽒

b

a
φi(y)dy;

it can be obtained that

c(y, u(k)) � φ(y)W(k) + ψ(y), (4)

where φ(y) � φ0(y) − (φN(y)/ϕN)ϕT,ψ(y) � (φN

(y)/ϕN).

Remark 1. ,e linear B-spline model is simple and intuitive,
which is the most mature model at present. ,ere are other
basic functions for approximating the output of PDF. In the
square root B-spline model, the relationship between the
output PDF and the weight is nonlinear, which increases the
design difficulty of the controller. For the radial basis
function (RBF) model, if the center and width are not
properly selected, it will lead to a large approximation error
[27]. ,erefore, the linear B-spline model is used to ap-
proximate the output PDF in this paper.

2 Complexity



In this paper, the following non-Gaussian nonlinear
SDC system is considered as follows:

x(k + 1) � Ax(k) + Bu(k) + g(x(k)) + Ef(k),

W(k) � Dx(k),

c(y, u(k)) � λkc(y, u(k)) + 1 − λk( 􏼁c(y, u(k − 1)),

(5)

where x(k) ∈ Rn is the state vector, W(k) ∈ Rm is the weight
vector, and f(k) is the fault vector. Ef(k) is the additive
fault item. A, B, E, D are known system parameter matrices
with appropriate dimensions. λ(k) is the random variable
obeying the Bernoulli distribution. λ(k) takes a value 0 or 1,
and Prob λ(k) � 1{ } � E λ(k){ } � λ and
Prob λ(k) � 0{ } � 1 − λ. When λ(k) � 1, it means that the
data are successfully transmitted. However, when λ(k) � 0,
it indicates that missing measurements have occurred, which
can be compensated by the data successfully transmitted at
the previous moment.

c(y, u(k)) can be further expressed as follows:

c(y, u(k)) � φ(y)W(k) + ψ(y), (6)

where W(k) � λ(k)Dx(k) + (1 − λ(k))W(k − 1).

Assumption 1. g(x(t)) is a nonlinear function, and the
following Lipschitz condition is satisfied for any x1(t) and
x2(t):

g(0) � 0,

g x1(k)( 􏼁 − g x2(k)( 􏼁
����

����≤ c x1(k) − x2(k)( 􏼁
����

����,

⎧⎨

⎩ (7)

where c is a known Lipschitz constant.

Remark 2. Assumption 1 is a common assumption since
many nonlinear terms in practical systems satisfy the Lip-
schitz condition.

3. Fault Diagnosis

,e fault diagnosis observer is designed to estimate the size
of the fault so as to provide accurate fault estimation in-
formation for the design of fault-tolerant controller. Based
on the input signal c(y, u(k)) received by the fault diagnosis
observer, the fault diagnosis observer can be constructed as
follows:

􏽢x(k + 1) � A􏽢x(k) + Bu(k) + E􏽢f(k) + Lε(k) + g(􏽢x(k)),

􏽢W(k) � D􏽢x(k),

􏽢c(y, u(k)) � φ(y) 􏽢W(k) + ψ(y),

􏽢f(k + 1) � v1
􏽢f(k) + v2ε(k),

ε(k) � 􏽚
b

a
χ(y)(c(y, u(k))) − 􏽢c(y, u(k))dy,

(8)

where 􏽢x(k) is the state vector of the fault diagnosis observer,
􏽢W(k) is the estimation of the weight vector, and 􏽢c(y, u(k))

is the estimation of the output PDF. ε(k) is the residual and L

is the adaptive gain to be designed for this fault diagnosis

observer. v1 and v2 are learning operators to be determined
later. χ(y) is a prespecified adjustment factor and cannot be
equal to 1.

Denote the diagnosis error vector and the fault error as
follows:

e(k) � x(k) − 􏽢x(k),

􏽥f(k) � f(k) − 􏽢f(k).
(9)

Define ΔW(k) � W(k) − W(k); the residual signal can
be calculated as follows:

ε(k) � 􏽚
b

a
χ(y)(c(y, u(k))) − 􏽢c(y, u(k))dy

� 􏽚
b

a
χ(y)φ(y)(V(k) − 􏽢W(k))dy

� 􏽚
b

a
χ(y)φ(y)dy(V(k) − ΔW(k) − 􏽢W(k))

� ΣDe(k) − ΣΔW(k),

(10)

where Σ � 􏽒
b

a
χ(y)C(y)dy.

According to (5) and (8), the following observation error
dynamic system can be obtained:

e(k + 1) � (A − LΣD)e(k) + E􏽥f(k) + g(x(k))

− g(􏽢x(k)) + LΣΔW(k)

� (A − LΣD)e(k) + E􏽥f(k) + G(k) + LΣΔW(k)

� (A − LΣD)e(k) + E􏽥f(k) + D1w(k)

􏽥f(k + 1) � f(k + 1) − v1f(k) + v1
􏽥f(k)

− v2ΣDe(k) + v2ΣΔW(k)

� Δf(k) + v1
􏽥f(k) − v2ΣDe(k) + v2ΣΔW(k)

� v1
􏽥f(k) − v2ΣDe(k) + D2w(k),

(11)

where G(k) � g(x(k)) − g(􏽢x(k)),Δf(k) � f(k + 1)

− Γ1f(k), D1 � I 0 LΣ􏼂 􏼃 , D2 � 0 I v2Σ􏼂 􏼃, andw(k) �

G(k) Δf(k) ΔW(k)􏼂 􏼃
T.

Theorem 1. For the parameter κ> 0, it is supposed that there
exist matrices P � PT > 0, Q � QT > 0, R1, R2, and R3 such
that the LMI

Φ �

− P + κI 0 ATP − DTΣTRT
1 − DTΣTRT

2

∗ − Q + κI ETP RT
3

∗ ∗ − P 0

∗ ∗ ∗ − Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(12)

holds, where L � P− 1R1, v2 � Q− 1R2, and v1 � Q− 1R3. 3en,
observation error dynamic system (11) is stable when fault
occurs.

Proof. Define the following Lyapunov function:
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π(k) � e
T
(k)Pe(k) + 􏽥f

T
(k)Q􏽥f(k). (13) ,en, it can be obtained that

Δπ � π(k + 1) − π(k)

� e
T
(k + 1)Pe(k + 1) + 􏽥f

T
(k + 1)Q􏽥f(k + 1)

− e
T
(k)Pe(k) − 􏽥f

T
(k)Q􏽥f(k)

� (A − LΣD)e(k) + E􏽥f(k) + D1w(k)􏼐 􏼑
T
P (A − LΣD)e(k) + E􏽥f(k) + D1w(k)􏼐 􏼑

+ v1
􏽥f(k) − v2ΣDe(k) + D2w(k)􏼐 􏼑

T
Q v1

􏽥f(k) − v2ΣDe(k) + D2w(k)􏼐 􏼑 − e
T
(k)Pe(k) − 􏽥f

T
(k)Q􏽥f(k)

� e
T
(k)(A − LΣD)

T
P(A − LΣD)e(k) + 2e

T
(k)(A − LΣD)

T
PE􏽥f(k) + 2e

T
(k)(A − LΣD)

T
PD1w(k)

+ 2􏽥f
T
(k)E

T
PD1w(k) + w

T
(k)D

T
1 PD1w(k) + 􏽥f

T
(k)E

T
PE􏽥f(k) + 􏽥f

T
(k)v

T
1 Qv1

􏽥f(k)

+ e
T
(k) v2ΣD( 􏼁

T
Qv2ΣDe(k) + w

T
(k)D

T
2 QD2w(k) − 2e

T
(k) v2ΣD( 􏼁

T
Qv1

􏽥f(k) + 2􏽥f
T
(k)v

T
1 QD2w(k)

− 2e
T

(k) v2ΣD( 􏼁
T
QD2w(k) − e

T
(k)Pe(k) − 􏽥f

T
(k)Q􏽥f(k)

� e
T
(k)Φ1e(k) + w

T
(k)Φ2w(k) + 2e

T
(k)Φ3w(k),

(14)

where

Φ1 �
(A − LΣD)TP(A − LΣD) + v2ΣD( 􏼁

T
Qv2ΣD − P (A − LΣD)TPE − v2ΣD( 􏼁

T
Qv1

∗ ETPE + vT
1 Qv1 − Q

⎡⎣ ⎤⎦,

Φ2 � D
T
1 PD1 + D

T
2 QD2,

Φ3 �
(A − LΣD)TPD1 − v2ΣD( 􏼁

T
QD2

ETPD1 + vT
1 QD2

⎡⎣ ⎤⎦.

(15)

By using the Schur complement formula, it can be
obtained that Φ< 0⇒Φ1 + κI< 0. ,us, it can be seen that

Δπ < − κ‖e(k)‖
2

+ Φ2
����

����‖w(k)‖
2

+ 2 Φ3
����

����‖e(k)‖‖w(k)‖.

(16)

It is shown that when the inequality

‖e(k)‖≥ κ− 1 Φ3
����

����‖w(k)‖ +

���������������������

κ− 1 Φ3
����

���� + Φ2
����

����􏼐 􏼑‖w(k)‖2
􏽱

􏼒 􏼓,

(17)

is satisfied, it can be obtained that Δπ < 0. ,en, observation
error system (11) is stable. □

4. Discrete-Time 2-Order Sliding Mode Fault-
Tolerant Tracking Control

A new 2-order discrete-time sliding mode fault-tolerant
tracking strategy is implemented based on the estimated

fault information, which can guarantee perfect tracking
performance even when the system is subject to the actuator
fault. Denote the weight error vector as
ew(k) � Dx(k) − Wg, where Wg is the desired weight vector
and cg(y, u(k)) � φ(y)Wg + ψ(y), where cg(y, u(k)) is the
desired output PDF.

,e discrete-time sliding function is designed as follows:

s(k) � s(k − 1) + ew(k). (18)

Furthermore, the following 2-order sliding mode
function is designed as [26]

ρ(k) � Gs(k) + Gθs(k − 1), (19)

where 0≤ θ≤ 1 and G will be designed later to ensure the
nonsingularity of GDB.

From equations (5) and (19), ρ(k + 1) can be expressed
as follows:
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ρ(k + 1) � Gs(k + 1) + Gθs(k)

� Gs(k) + Gew(k + 1) + Gθs(k)

� Gew(k + 1) + G(1 + θ)s(k)

� GDx(k + 1) − GWg(k + 1) + G(1 + θ)s(k)

� GD(Ax(k) + Bu(k) + g(x(k)) + Ef(k))

− GWg(k + 1) + G(1 + θ)s(k).

(20)

Let ρ(k + 1) � 0, and the following equivalent controller
can be obtained:

ueq(k) � (GDB)
− 1

G Wg(k + 1) − (1 + θ)s(k) − D(Ax(k)􏼐

+ g(x(k)) + Ef(k))􏼁.

(21)

A discontinuous term is applied to ensure the robustness
of the sliding mode control law [25]:

udis(k) � udis(k − 1) +(GDB)
− 1

h(− δ sgn((ρ(k)) − qρ(k))),

(22)

where δ < 0, q> 0, 1 − qh> 0.
,e overall control law can be represented as follows:

u(k) � ueq(k) + udis(k). (23)

Theorem 2. 3e trajectory of the closed-loop system can be
driven onto the sliding surface in finite time with control law
(23).

Proof. It can be deduced that

ew(k + 1) � Dx(k + 1) − Wg(k + 1)

� D Ax(k) + B ueq(k) + udis(k)􏼐 􏼑􏼐

+ g(x(k)) + Ef(k)􏼁 − Wg(k + 1)

� DB udis(k) − (1 + θ)s(k).

(24)

According to (19) and (23), it can be obtained that

ρ(k + 1) � Gs(k + 1) + Gθs(k)

� Gs(k) + Gew(k + 1) + Gθs(k)

� Gew(k + 1) + G(1 + θ)s(k)

� GDBudis(k).

(25)

,en, it is deduced from equation (25) that

ρ(k) � GDBudis(k − 1). (26)

It can be further obtained that

ρ(k + 1) − ρ(k) � h(− δ sgn(ρ(k)) − qρ(k)). (27)

When the sampling time h is very small, the existence
and arrival conditions of the discrete-time sliding mode are
as follows [28]:

[ρ(k + 1) − ρ(k)]sgn(ρ(k)) < 0,

[ρ(k + 1) + ρ(k)]sgn(ρ(k)) > 0.
(28)

From equation (27), it can be obtained that

[ρ(k + 1) − ρ(k)]sgn(ρ(k))

� [h(− δ sgn(ρ(k)) − qρ(k))]sgn(ρ(k))

� − qh|ρ(k)| − δh|ρ(k)|< 0.

(29)

When the sampling time h is very small, 2 − qh≫ 0, and
we have

[ρ(k + 1) + ρ(k)]sgn(ρ(k))

� [− δhsgn(ρ(k)) +(2 − qh)ρ(k)]sgn(ρ(k))

� (2 − qh)|ρ(k)| − δh|ρ(k)|> 0.

(30)

,us, it can be seen that control law (23) satisfies the
reachability of the sliding surface.

By utilizing the state estimated information 􏽢x(k) and the
fault estimated information 􏽢f(k), the following practical
fault-tolerant tracking controller can be obtained:

u(k) � (GDB)
− 1

G Wg − (1 + θ)s(k) − D(A􏽢x(k)􏼐

+ g(􏽢x(k)) + E􏽢f(k))􏼑 + udis(k − 1)

+(GDB)
− 1

h(− δ sgn(ρ(k)) − qρ(k)).

(31)

□

Remark 3. ,e overall fault diagnosis and fault-tolerant
control diagram is shown in Figure 1.,e fault diagnosis and
fault-tolerant process is described as follows:

(1) When fault occurs, calculate
L � P− 1R1, v2 � Q− 1R2, and v1 � Q− 1R3 using (12).

(2) Formulate 􏽢f(k) using (8).
(3) On the basis of fault diagnosis result, a new 2-order

discrete-time sliding mode fault-tolerant tracking
control method is designed, and the controller u(k)

can be obtained by using (23).
(4) When fault occurs, the practical reconfigured con-

troller in (31) can be obtained based on the estimated
information.

5. Simulation Examples

To verify the effectiveness of the proposed algorithm, two
illustrative examples are simulated based on the MATLAB/
Simulink platform in this section. By using the real-time
toolbox in MATLAB, the proposed methodology can be
implemented in real time.

Example 1. A numerical simulation is given in this example.
,e following functions are selected as the basis functions
for approximating the output PDF:

φi(y) �
|sin 2πy|, y ∈ [0.5(i − 1); 0.5i]

0, y ∈ [0.5(j − 1); 0.5j]
􏼨 , i≠ j.

(32)
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,e system parameter matrices are given as follows:

A �
− 1.80 − 1.21

2.46 1.4
􏼢 􏼣,

B �
0.5 − 0.8

− 0.3 0.9
􏼢 􏼣,

D �
0.11 0

0 − 0.2
􏼢 􏼣,

H �
1.4

1.1
􏼢 􏼣,

g(x(k)) �
0.3 1 − exp− x2

1(k)􏼐 􏼑

0.1x2 sinx2

⎡⎣ ⎤⎦,

Wg �
0.17

0.21
􏼢 􏼣.

(33)

By solving LMI (12), it can be obtained that

v1 � 1,

v2 � 0.2,

L �
− 0.1

− 0.21
􏼢 􏼣,

P �
0.3156 0.2057

0.2057 0.1770
􏼢 􏼣,

Q � 298.9297.

(34)

It is assumed that the fault is given as follows:

f(t) �

0, t< 30,

1, 30≤ t≤ 60,

2 − exp(− 0.35(t − 60)), t> 60,

⎧⎪⎨

⎪⎩
(35)

where t � k · h.
Figure 2 shows the missing measurements when the

probability of missing measurements is 0.3 in the system.
,e simulation results of the proposed algorithm are given in
Figures 3–7. Figure 3 shows the fault estimation can track the
change of fault quickly and accurately. It manifests that the
fault diagnosis algorithm is effective. Figure 4 shows the
input signal, and Figure 5 shows the desired output PDF.,e
output PDF with FTTC is shown in Figure 6, and the output

rg(y, u(k)) r(y, u(k))
Controller Actuator Plant Sensor

Fault diagnosis
observer

Controller
reconfiguration

mechanism

Missing
measurements

Buffer
r(y, u(k))-

f(k)

x(k), f(k)

‹ ‹

Figure 1: ,e overall fault diagnosis and fault-tolerant control diagram.

The probability of missing measurements is 0.3
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Figure 2: ,e missing measurements in feedback channel.
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Figure 4: ,e input signal.
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Figure 5: ,e desired output PDF.
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Figure 6: ,e output PDF with the proposed FTTC strategy.
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PDF presents an obvious oscillation when fault occurs at
t� 30 s, which can be returned to stability in a very short
time through fault tolerance measures. ,e expected output
PDF and the final output PDF with FTTC strategy are shown
in Figure 7. It can be seen that the postfault output PDF can
still follow the desired output PDF, leading to good fault-
tolerant tracking control results.

Example 2. In this example, a papermaking machine system
[6] is considered to illustrate the applicability of the pro-
posed method as follows:

_α
_β

􏼢 􏼣 �
− K1 K2

K3 K4 − K2
􏼢 􏼣

α

β
􏼢 􏼣 +

K5 0

0 K6
􏼢 􏼣U(t) +

0

K7 sin α
􏼢 􏼣,

(36)

where α and β are the shape parameter and inverse scale
parameter controlling the fibre length distribution in the
white water pit. ,e flow rate and the concentration of the
retention polymer are selected as the control input U(t), and
K1, K2, K3, K4, and K7 are machine-dependent constants
which are related to the headbox geometry and the wire table
arrangement. K5 and K6 are machine-dependent constants
related to the wet design of the paper machine.

By applying the Euler discretization method, the
following discrete-time system parameters can be ob-
tained as

A �
− 1.80 − 0.81

3.44 1.10
⎡⎣ ⎤⎦,

B �
− 1.5 0

0 1.7
⎡⎣ ⎤⎦,

D �
0.2 0.1

0 0.1
⎡⎣ ⎤⎦,

H �
0.4

0.51
⎡⎣ ⎤⎦,

g(x(k)) �
0

sinx1

⎡⎣ ⎤⎦,

Wg �
0.22

0.70
⎡⎣ ⎤⎦.

(37)

In order to approximate the output PDF, the following
B-spline functions are considered as

φ1(y) �
1
2
(y − 2)

2
I1 + − y

2
+ 7y − 11.5􏼐 􏼑I2 +

1
2
(y − 5)

2
I3,

φ2(y) �
1
2
(y − 3)

2
I1 + − y

2
+ 9y − 19.5􏼐 􏼑I2 +

1
2
(y − 6)

2
I3,

φ3(y) �
1
2
(y − 4)

2
I1 + − y

2
+ 11y − 29.5􏼐 􏼑I2 +

1
2
(y − 7)

2
I3,

(38)

where Ii(y) �
1, y ∈ [i + 1, i + 2]

0, otherwise􏼨 , i � 1, 2, 3, 4, 5.

By solving the conditions in ,eorem 1, it can be for-
mulated as follows:

v1 � 1,

v2 � − 0.8,

L �
− 0.01

− 0.005
⎡⎢⎣ ⎤⎥⎦,

P �
1.2710 0.5339

0.5339 0.3088
⎡⎢⎣ ⎤⎥⎦,

Q � 827.0393.

(39)

It is assumed that the form of the fault is constructed as
follows:

f(t) �
0, t< 50,

sin(0.5t), t≥ 50.
􏼨 (40)

When the probability of the missing measurements is
0.4, Figure 8 shows the simulation result of the measurement
signal dropouts. Figure 9 gives the results of fault diagnosis;
it can be seen that the proposed fault diagnosis method has a
faster action to track the changes of the fault. Figure 10
shows the input signal, and Figure 11 shows the desired
output PDF. ,e output PDF with FTTC is shown in Fig-
ure 12. It can be seen that the degradation of the tracking
performance can be eliminated with fault-tolerant measures.
,e expected output PDF and the final output PDF with the
FTTC strategy are shown in Figure 13.

Considering the first-order sliding mode control and
choosing sliding mode function ρ(k) � Gew(k), the corre-
sponding fault-tolerant controller is obtained as follows:

γ

The desired PDF
The final output PDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 1.50
y

Figure 7: ,e expected output PDF and the final output PDF with
the proposed FTTC strategy.
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u(k) � (GDB)
− 1

G Wg − D(A􏽢x(k) + g(􏽢x(k)) + E􏽢f(k))􏼐 􏼑

+ udis(k − 1) +(GDB)
− 1

h(− δ sgn(ρ(k)) − qρ(k)).

(41)

Figure 14 shows the final output PDF with the first-order
sliding mode fault-tolerant controller in Example 1, and
Figure 15 shows the final output PDF with the first-order

sliding mode fault-tolerant controller in Example 2. It can be
seen that the proposed fault-tolerant controller in this paper
has better tracking performance than the first-order sliding
mode fault-tolerant controller.

Remark 4. From the simulation results, it can be seen that
both the slow-varying fault and the fast-varying fault can be
well estimated by the proposed fault diagnosis method.

The probability of missing measurements is 0.4
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Figure 8: ,e missing measurements in feedback channel.
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Figure 10: ,e input signal.
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Figure 12: ,e output PDF with the proposed FTTC strategy.
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Remark 5. In this paper, we just focus on the fault di-
agnosis and fault-tolerant control for the actuator additive
fault. ,e problem of fault-tolerant control of actuator
multiplicative fault and sensor fault for stochastic dis-
tribution control systems with missing measurements is
still a challenging one, which will be our future research
work.

6. Conclusions

In this paper, the fault-tolerant tracking control problem is
investigated for non-Gaussian nonlinear SDC systems with
missing measurements. ,e phenomenon of missing mea-
surements is described by a random variable satisfying the
Bernoulli distribution. An adaptive fault diagnosis observer
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Figure 13: ,e expected output PDF and the final output PDF with the proposed FTTC strategy.
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Figure 14:,e expected output PDF and the final output PDF with
the first-order sliding mode FTTC strategy.
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Figure 15:,e expected output PDF and the final output PDF with
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is designed to estimate the state and fault. ,en, a new
discrete-time 2-order sliding mode fault-tolerant tracking
controller is designed to make the postfault output PDF still
track the desired one. At the same time, it can be proved that
the control law can guarantee the reachability of the sliding
surface. ,e simulation results show that the proposed al-
gorithm not only can tolerate high data packet dropout rate
but also has good fault-tolerant tracking results.
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