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According to the World Health Organization (WHO), Chronic Heart Disease (CHD) is one of the greatest defies currently
confronting humankind which is sweeping the whole globe, with an expanding trend in developing countries. In this paper, a
mathematical model (MM) was proposed to study the connection between fish consumption and CHD mortality in Egypt, by
considering a system of ordinary differential equations (ODEs) involving time-fractional derivative (FD). We considered here the
study on Egypt for the ease of obtaining real data, but the method and approach adopted here is not limited to Egypt only and can
be applied to any country in the world with the information of the real data related to the subject of the study. Additionally, the
control function which represents the metabolic and the behavioural risk factors of CHD that help to reduce the number of
mortality due to CHD is incorporated in the proposedMM. A fractional optimal control problem (FOCP) with a proposed control
is formulated and studied theoretically using the Pontryagin maximum principle, to minimize the susceptible population and also
to decrease the mortality rate of CHD. Moreover, firstly we discussed the positivity and boundedness of solutions; then, the model
equilibria are determined and their local stability analysis was investigated; furthermore, we use the improved forward-backward
sweep method (FBSM) based on the predictor-corrector method (PCM) in order to obtain the solution of proposed FOCP. In
addition, some numerical simulations were performed to show the effect of the proposed optimal control (OC) besides the impact
of fish consumption on the mortality of CHD.

1. Introduction

CHD is defined as lack of oxygen supply to the heart due to
narrowing of the coronary arteries (so it is called coronary
artery disease). Precisely, the CHD occurs as a result of
deposition of fatty streaks “cholesterol” on the arterial
wall which is called atherosclerosis. Sometimes rupture or
erosion of fibrous cap of the coronary artery occurs
resulting in stimulation of platelet adhesion and aggre-
gation causing thrombus formation. (is thrombus may
cause partial obstruction of the arterial wall (unstable
angina) or complete obstruction myocardial infarction
(MI). CHD can lead to angina, which is symptomized by
chest pain exaggerated by exertion and relieved by rest or
nitrate, shortness of breath, sweating, nausea, and

cramping. Generally, complications mainly due to MI are
heart failure, myocardial rupture, rupture of free wall of
left ventricle, arrhythmia, post-MI pericarditis, heart at-
tack, and sudden death. In fact, there is no cure for CHD.
In this case, treatment tends to involve making healthful
lifestyle changes, such as quitting smoking and adopting a
healthful diet. However, some people may need to take
medications after undergoing medical procedures.

CHD can be prevented by addressing risk factors, which
is divided into uncontrollable risk: gender (in middle age,
common in males than females due to estrogen protective
effect, but after menopause, the percentage will be equal),
age (incidence increases by age), congenital predisposition
(positive family history), and controllable risk: metabolic
risk factors such as hypertension, diabetes, obesity, and
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dyslipidemia (the most common forms of dyslipidemia
involve high levels of low-density lipoproteins (LDL) or
bad cholesterol and low levels of high-density lipoproteins
(HDL) or good cholesterol), and behavioural risk factors
such as smoking, alcohol, physical inactivity, and unhealthy
diet (see for details [1]).

CHD is the most dangerous cardiovascular disease
(CVD), as it causes the most deaths of any heart disease in
Egypt. Based on the data published in the WHO 2017, the
mortality rate of CHD in Egypt reached 24.58% of total
mortality. So, Egypt ranks 18th in the world for CHD
deaths [2].

It is known that eating fish has multiple benefits on our
body as fish oils are rich in eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) which are the main
sources of polyunsaturated fatty acids (PUFAs) of the
family omega-3 [3]. Omega-3 is an unsaturated fatty acid
that has an anti-inflammatory effect, antithrombotic effect,
and antiatherogenic effect. So, it has a protective effect on
CHD.

From the abovementioned view, the effect of fish con-
sumption on cardiac diseases, several studies have been
carried out, such as follows: in [4], Kris-Etherton et al.
concluded that omega-3 acid supplements which are highly
contained in fatty fish can reduce CVDs. In 2008, Virtanen
et al. achieved that the consuming fish can reduce the risk of
major chronic diseases (CVDs, cancer, etc) [5]. Raatz et al. in
2013 performed a statistical study on the USA population
and found that CVD risk is decreased while eating fish
frequently [6]. (e effects of fish consumption through the
relative risk measure on CHD is investigated in the paper of
Hooper et al. [7]. Zheng et al., in [8], concluded that fish
consumption has a significant protective effect on fatal
CHD.

In Egypt, the main fisheries are seas (Mediterranean Sea,
950 km (coastline length) [9] and Red Sea, 1500 km [9]),
northern lakes (Mariout, 250 km2 (surface area) [10]; Edku,
70 km2 [11]; Burullus, 410 km2 [12]; and Manzala, 700 km2

[13], coastal lagoons (Port Fuad, 60 km2 [14] and Bardawil,
650 km2 [15]), and inland lakes (Bitter and Temsah (Suez
Canal), 250 and 15 km2 [16]). With all that fisheries, there
exist shortage in fish protein supply due to the high rate of
local consumption of fish (for example, the average con-
sumption in 2012 was 20.55 kg of fish products per capita
[17]).

Optimal control theory is another area of mathematics
that arose after the Second World War with the formulation
of the famous Pontryagin maximum principle [18],
responding to practical needs of engineering, particularly in
the field of aeronautics and flight dynamics [19]. During the
last decades, MMs with OC have been largely used to epi-
demiological models and biomedicine, where it provides
more insight into the dynamics of the diseases and provides
preventive and appropriate strategies to combat these dis-
eases and controlling the spread of infectious diseases. An
example of some of the diseases that have been addressed
using OC theory HIV/AIDS (see, e.g., [20–23]), HBV [24],
Malaria and Cholera [25, 26], and many other diseases (see,
e.g., [27–29]).

Optimal control problems with fractional calculus are
called fractional optimal control problems (FOCPs) and
are considered the generalization of classical OC problems,
in which the dynamics of the control system are described
by fractional differential equations (FDEs), and the ob-
jective function may be given by a fractional integration
operator [30]. Several research papers in the literature
provided the theoretical basis and fundamentals of FOCPs.
Moreover, these papers extensively studied how to for-
mulate the FOCPs and derived the optimality conditions
for several states and control variables using analytical and
numerical methods (see, e.g., [31–41]). Recently, the
FOCPs have been applied to epidemiological models for
faster and more accurate behaviour to controlling of
diseases, as the fractional-order depends on the memory.
So, the FOCPs can be potential flexible tools for modeling
epidemiological and biological systems related to memory.
Ding et al. [42] applied fractional OC on the HIV-Immune
system model and solve this problem by a forward-
backward algorithm. Basir et al. [43]. presented a fractional
OC of an enzyme kinetic model and solved it numerically.
Kheiri et al. [44] formulated and discussed a fractional
model for HIV/AIDS with treatment and included three
control efforts (effective use of condoms, ART treatment,
and behavioural change control) into the model aimed at
controlling the spread of HIV/AIDS epidemic. Sweilam
et al. [45] proposed OC of a fractional novel West Nile
virus model and used two simple numerical methods to
solve this problem. Ali and Ameen [46] formulated and
studied the FOCP with three suggested controls to describe
the transmission dynamics of pine wilt disease and con-
trolling the spread of this disease.

(e main aim of this paper is to find the best strategy to
significantly reduce CHD mortality by using the fractional
OC technique with consumption of an appropriate amount
of fish. (is is carried out by formulating a fractional
mathematical model (FMM) involving a control function,
which depends on the relationship between fish consump-
tion from the fish population living along the Egyptian
coasts and the dynamics of a population at risk of CHD. To
simplify the computational complexities, we used developed
FBSM based on PCM to obtain the numerical solution of
state and costate equations for suggested FOCP with left
Caputo fractional derivative (CFD). Consequently, we have
two trends to reduce the rate of individuals at risk of CHD:
increasing fish consumption (depend on total production,
imports, and exports of fishery products) and controlling
metabolic and behavioural risk factors.

(e organization of this paper as follows. In Section 2, we
present a formulation of the FMM. In Section 3, we in-
troduce some mathematical preliminaries of the fractional
calculus which are needed to demonstrate our main results.
Moreover, positivity and boundedness of solutions for the
proposedmodel are presented. In Section 4, we discussed the
equilibrium points (EPs) and stability analysis of the model.
(e formulation of the FOCP and the derivation of the
necessary optimality conditions are given in Section 5. In
Section 6, the numerical method is introduced for solving
the proposed model with and without control. In Section 7,
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we present numerical simulations of our results to devise the
best strategy for the reduction of the disease. In Section 8, the
conclusions are given.

2. Model Formulation

(e first available MM was proposed by Lamlili et al. [47]
to study the impact of fish consumption on CHD mor-
tality in Morocco. Extension of the results in reference
[47] can be found in [48], where the authors presented an
OC strategy which can be obtained by acting on the
controllable risk factors. (e MM proposed in [48] is
based on ODEs. Here, we introduced a more generalized
model that is governed by a system of ODEs involving
time FD; moreover, the parameters in this model are
modified parameters of fractional-order (for more de-
tails, see [49, 50]). (e modified model is considered as
the following:

C
0 D

α
t S(t) � Λα − cα + ηdα(1 − u)( S(t) + βαI(t),

C
0 D

α
t I(t) � − cα + δαRR + βα( I(t) + ηdα(1 − u)S(t),

C
0 D

α
t X(t) � bα 1 −

X(t)

K
 X(t) − cαEX(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

subject to

S t0(  � N1 > 0, I t0(  � N2 > 0, X t0(  � N3 > 0, (2)

where we assume the population of size N constituted of
S(t), the number of persons without CHD risk, and I(t), the
number of persons with CHD risk, which is given by the
equation Pt ≔ N(t) � S(t) + I(t) at any time t ∈ [0, tf].
X(t) denoted the biomass of the fish population at any time
t. In [47], the logistic function, which describes the likeli-
hood of developing CHD in a group of individuals eating
fish compared to individuals who have little or no con-
sumption, is given by RR(t) � a1/a2 + ea3μX(t) with
μ � (cαE/Pt)aΥ (see Figure 1). We use the variable u to
represent how to control risk factors (i.e., controllable risk).
So, the factor (1 − u) is used to minimize the susceptible
population and also to decrease the mortality rate of CHD
and d ∈ (0, 1) be a real positive constant to measure the
efficacy of u. (e meaning of parameters for the fractional-
order model (FOM) (1) is given in Table 1.

3. Preliminaries

Firstly, we introduce some basic concepts of fractional
calculus which help us complete this research (see e.g., [53]).
(en, in Section 3.1, we state the main theorem about the
nonnegative solutions of the FOM (1).

Definition 1. For a given function f: R+⟶ R and α> 0,
the left and right Riemann–Liouville fractional integrals
(RLFIs) are, respectively, defined by

aI
α
t f(t) �

1
Γ(α)


t

a
(t − τ)

α− 1
f(τ)dτ,

tI
α
bf(t) �

1
Γ(α)


b

t
(τ − t)

α− 1
f(τ)dτ,

(3)

where Γ(·) is the Euler gamma function defined by

Γ(z) � 
∞

0
e

− t
t
z− 1dt, Re(z)> 0. (4)

Let f(·) be absolutely continuous functions on [a, b] and
n − 1< α≤ n, where n ∈ N. (en, the left and right for
Riemann–Liouville fractional derivatives (RLFDs) and CFDs
are defined as follows.

Definition 2. (e left and right RLFDs are, respectively,

aD
α
t f(t) �

1
Γ(n − α)

d
dt

 

n


t

a
(t − τ)

n− α− 1
f(τ)dτ,

tD
α
bf(t) �

1
Γ(n − α)

−
d
dt

 

n


b

t
(τ − t)

n− α− 1
f(τ)dτ.

(5)

Definition 3. (e left and right CFDs are, respectively,

C
a D

α
t f(t) �

1
Γ(n − α)


t

a
(t − τ)

n− α− 1
f

(n)
(τ)dτ,

C
t D

α
bf(t) �

(− 1)n

Γ(n − α)


b

t
(τ − t)

n− α− 1
f

(n)
(τ)dτ.

(6)

(ere is a relation between left and right for RLFDs and
CFDs as described in the following theorem.

Theorem 1. Let t> 0 and n − 1< α≤ n ∈ N. 5en, the fol-
lowing relation holds:

aD
α
t f(t) �

C
a D

α
t f(t) + 

n− 1

j�0

f(j)(a)

Γ(j − α + 1)
(t − a)

(j− α)
,

tD
α
bf(t) �

C
t D

α
bf(t) + 

n− 1

j�0

f(j)(b)

Γ(j − α + 1)
(b − t)

(j− α)
.

(7)

5erefore,

if f(a) � f′(a) � · · · � f
(n− 1)

(a) � 0,

then aD
α
t f(t) �

C
a D

α
t f(t),

if f(b) � f′(b) � · · · � f
(n− 1)

(b) � 0,

then tD
α
bf(t) �

C
t D

α
bf(t).

(8)

Now, we recall the definitions of Laplace transform of
Caputo’s derivative and Mittag-Leffler function in two
arguments.

Definition 4. Let F(s) be the Laplace transform of the
function f(t). (en, Laplace transform of the Caputo de-
rivative is given by
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L
C

D
α
f(t), s  � s

α
F(s) − 

n− 1

i�0
s
α− i− 1

f
(i)

(0),

(n − 1< α≤ n), n ∈ N.

(9)

Definition 5. For x ∈ R, the Mittag-Leffler function El,m(x)

is defined by

El,m(x) � 
∞

n�0

xn

Γ(ln + m)
, l> 0, m> 0. (10)

(en, the Laplace transform of the function tm− 1El,m

(±λtl) is defined as follows:

L t
m− 1

El,m ±λt
l

   �
sl− m

sl ∓ λ
. (11)

3.1. Positivity and Boundedness of Solutions. Let Ω � (S, I,{

X) ∈ R3
+ | 0≤ S + I≤ (Λ/c)α, 0≤X≤K}. (en, we can show

that the biological feasible region Ω is positivity invariant
and bounded by the following theorem.

Theorem 2. 5ere is a unique solution for the FOM (1) at
t≥ 0 (where t0 � 0) and it remains in the set Ω.

Proof. We know that from (eorem 1 and Remark 3.2 in
[54], the solution on (0,∞) is existent and unique. Now, it
remains to prove that Ω is a positivity invariant. We can
write the fractional-order differential equation representing
the total population as follows:

C
0 D

α
t N(t) + c

α
N(t) � g(t), (12)

where g(t) � Λα − δαRRI(t) is a constant function of time.
Solving equation (12) using the Laplace transform method
[53], then we have the following solution:

N(t) � 
t

0
(t − τ)

α− 1
Eα,α − c

α
(t − τ)

α
( g(τ)dτ ≥ 0, (13)

where 0< α< 1, c> 0, and Eα,α(− cα (t − τ)α) is the two-pa-
rameter Mittag-Leffler function (see Definition 5). Since
Mittag-Leffler function is an entire function [53], thus
Eα,α(− cα(t − τ)α) is bounded for all t> 0. (erefore, as
t⟶∞, we have N≤ (Λ/c)α. For the last equation in the
fractional system (1), we apply Laplace-Adomian decom-
position method (LADM) (see, e.g., [55]) as follows:

Table 1: Meaning and values of the parameters in system (1).

Parameter Description Value Ref.
Λα (e recruitment of persons without CHD risk (0.0268)α [51]
cα (e natural mortality rate (0.0057)α [51]
η5 (e probability to have CHD 0.06 Assumed
βα (e rate of patients with CHD who are cured (0.005)α Assumed
δα (e mortality rate due to CHD (0.002)α [51]
bα (e biotic potential (1)α [17]
K (e carrying capacity 112 × 0.4 × (10)9 [17]
cα (e catchability coefficient (0.04)α [17]
E (e total harvesting effort 9 [17]

a1, a2 and a3 (e negative coefficients of nonlinear regression a1 � − 0.73, a2 � − 1.71, [47]
a3 � − 0.0616

a (e rate of fish consumed from the total harvested Varies Assumed

Υ (e coefficient that transforms the consumption of
fish per capita and per year to a frequency per month 559.5 [52]
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Figure 1: (e relative risk RR with a � 1 for different values of α.

4 Complexity



s
α
L X{ } − s

α− 1
X(0) �

− bα

K
L X

2
  + b

α
− c

α
E( L X{ },

L X{ } �
X(0)

s
−

bα

Ksα
L X

2
  +

bα − cαE( )

sα
L X{ }.

(14)

(e method assumes the solution as an infinite series,
and the nonlinearity X2 is decomposed as follows:

X(t) � 
∞

n�0
Xk(t),

X
2
(t) � 

∞

n�0
An(t),

(15)

where An is the so-called Adomian Polynomial given as

An �
1
n!

dn

dλn 

n

j�0
λj

X(j)
⎡⎢⎢⎣ ⎤⎥⎥⎦

2λ�0

. (16)

Substituting from equations (15) and (16) into (14), the
result is

L X0  �
X(0)

s
, (17)

L X1  �
− bα

Ksα
L A0  +

bα − cαE( )

sα
L X0 ,

. . .

L Xn+1  �
− bα

Ksα
L An  +

bα − cαE( )

sα
L Xn .

(18)

Applying the inverse fractional Laplace transform to
equation (17), hence the value of X0 can be obtained.
Substituting the value of X0 in equation (16), the first
Adomian polynomial A0 is obtained, and then substituting
X0 and A0 in equation (18) to obtain X1 and proceeding in a
similar way, the other terms X2, X3, . . . can be computed
recursively and we can write the solution as X(t) � X0 +

X1 + X2 + . . ..(is show that ifX(t)> 0, then for the term in
the series of solution (i.e., X1) to be a positive value; hence, it
is necessary to have K>A0 this implies that X(t)≤K for all
t ∈ [0, tf]. Obviously, the subinterval for the biomass X (i.e.,
X(t)≤K) is adaptive with the ecological assumption that the
biomass X cannot be greater than the carrying capacity
K. □

4. Equilibrium Points and Stability Analysis

For the FOM (1), EPs are defined such that the left CFDs of
I, S, and X is equal to zero, namely,

C
0 D

α
t S � 0,

C
0 D

α
t I � 0,

C
0 D

α
t X � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

then our model (1) has two EPs.

4.1. First Equilibrium Point (EP) atXeq � X0 � 0. In the case
of X0 � 0, means that there is no biomass of fish population
which implies that the mortality rate due to CHD is not
affected by fish consumption:

E0 � S0, I0, X0( , (20)

where

S0 �
Λα βα + cα + δαΘ1( 

βαcα + c2α + cαηdα(1 − u) + δα cα + ηdα(1 − u)( Θ1
,

I0 �
ηdα(1 − u)Λα

βαcα + c2α + cαηdα(1 − u) + δα cα + ηdα(1 − u)( Θ1
,

Θ1 � RR(t)
 X0�0 �

a1

a2 + 1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

4.2. Second EP at Xeq � X∗ ≠ 0. We now consider the case
where there is biomass of fish population; thus,

X
∗

�
K

bα
b
α

− c
α
E( . (22)

By substituting in other equations in (1), then we have

E
∗

� S
∗
, I
∗
, X
∗

( , (23)

where

S∗ �
Λα βα + cα + δαΘ2( 

βαcα + c2α + cαηdα(1 − u) + δα cα + ηdα(1 − u)( Θ2
,

I∗ �
ηdα(1 − u)Λα

βαcα + c2α + cαηdα(1 − u) + δα cα + ηdα(1 − u)( Θ2
,

Θ2 � RR(t)
 X0�X∗ �

a1

a2 + e a3μK/bα( ) bα− cαE( )
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

It is clear that from the existence and positivity of
equilibria for X(t), the fishing effort (E) should be less than
the Biotechnical Productivity (b/c)α. In other words, we
exclude the case of E> (b/c)α because this mean that a
problem of overfishing will take place, and also the expo-
nential function in Θ2 will tend to infinity, and then finally
this choice will contribute to the extinction of the fish
population.

We conclude the above results for the EPs as follows.

Theorem 3. 5e EP E0 of system (1) always exists without
any constraints, but the EP E∗ represented in (22) and (24)
exists if E< (b/c)α.

In general, the stability region of the system contains
FDs, which is greatest when compared with the stability
region of the system with integer-order derivatives (see, e.g.,
[56]). (erefore, we investigate analytically the stability of
the EPs E0 and E∗.

Complexity 5



Theorem 4. 5e EP E0 of the FOM (1) is locally unstable.

Proof. Determining the Jacobian matrix of system (1) at E0,
we have

JE0 �

− cα − ηdα(1 − u) βα 0

ηdα(1 − u) − cα − βα − δαΘ1
δαa3μΘ21

a1
I0

0 0 bα − cαE

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Obviously, one of the eigenvalues of JE0 is λ3 � bα −

cαE> 0 (from (eorem 3), then E0 will be linearly (locally)
unstable (see, e.g., [57]).

For the second EP E∗, we have the following
theorem. □

Theorem 5. 5e EP E∗ of system (1) is locally stable.

Proof. (e Jacobian matrix evaluated at E∗ gives

JE∗ �

− cα − ηdα(1 − u) βα 0

ηdα(1 − u) − cα − βα − δαΘ2
δαa3μΘ22ea3μX∗

a1
I
∗

0 0 − bα + cαE

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

(en, we obtain the characteristic polynomial of JE∗ , by
using this equation det(JE∗ − λI) � 0, where χj, j � 1, 2, 3,
are the eigenvalues of JE∗ . (erefore, one of the eigenvalues
is χ1 � − bα + cαE, which is negative according to(eorem 3,
and the last two eigenvalues are given by the quadratic
equation

χ2 + F1 χ + F2 � 0, (27)

where

F1 � 2c
α

+ ηd
α
(1 − u) + βα + δαΘ2,

F2 � c
2α

+ c
α ηd

α
(1 − u) + βα(  + δαΘ2 ηd

α
(1 − u) + c

α
( .

(28)

(us, the coefficients F1 and F2 of polynomial (27) are
positive (i.e., all coefficients of polynomial (27) have the
same signal); then, the roots (eigenvalues) have negative real
part (Routh’s criterion, see, e.g., [58]). We can conclude that
the steady state E∗ of system (1) is locally stable. □

5. Formulation of FOCP and Derivation of
Optimality Conditions

In order to get necessary optimality conditions with the aim
of reducing the rate of individuals at risk of CHD, we suggest
FOCP as the following form:

(P)Minimize W tf 

subject to C
0 D

α
t S(t)

C
0 D

α
t I(t) � − c

α
+ δαRR + βα( I(t) + ηd

α
(1 − u(t))S(t),

C
0 D

α
t X(t) � b

α 1 −
X(t)

K
 X(t) − c

α
EX(t),

C
0 D

α
t W(t) � I(t) + Bu

2
(t),

(29)

with convenient initial conditions

S t0(  � N1 > 0, I t0(  � N2 > 0, X t0(  � N3 > 0, W t0(  � 0,

(30)

where W(tf) is the objective function given by W(tf) �

0I
α
tf

(I(t) + Bu2(t)), 0I
α
tf
is the left RLFI, C

0 D
α
t is the left CFD

of order 0< α≤ 1, and B represents the proportional weight
constant related to control u(t).

We consider the set U is the set of admissible control
functions and it is Lebesgue measurable, which is defined as

U � u(t): 0≤ u≤ umax ≤ 1, t ∈ 0, tf  . (31)

Furthermore, we summarize the necessary optimality
condition of the FOCP (P) as follows.

Theorem 6. If (S∗, I∗, X∗, W∗, u∗) be OC process which
minimizes the objective function in the problem (P), then
there exist adjoint variables pi, i � 1, 2, 3, 4, satisfying

tD
α
tf

p1 � p2 − p1( ηd
α 1 − u

∗
(  − p1c

α
,

tD
α
tf

p2 � p1β
α

− p2 c
α

+ δR
∗
R + βα(  + p4,

tD
α
tf

p3 � p3 b
α

−
2bX∗

K
− c

α
E  + p2

δαa2 μ ea3μX∗

a2 + ea3μX∗
R
∗
RI
∗

 ,

tD
α
tf

p4 � 0,

(32)

with transversality conditions

pj tf  � 0, j � 1, 2, 3,

p4 tf  � 1,
(33)

where the operator tD
α
tf
is right RLFD.

Moreover, we obtain the OC u∗ which minimizes the
problem (P) over the region U as follows:

u
∗

� min max(0, u), 1{ }, (34)

where
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u �
p2 − p1( ηdαS∗

2Bp4
. (35)

Proof. According to the Pontryagin maximum principle
[18] and results announced in [30], we define the Hamil-
tonian H of our FOCP as the following:

H( P
→

, G
→

, u, t) � P
→T

(t).G
→

( ς→, u, t), (36)

with

P
→

�

p1

p2

p3

p4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ς→ � S(t), I(t), X(t), W(t)( ,

G
→

( ς→, u, t) �

g1( ς→, u, t)

g2( ς→, u, t)

g3( ς→, u, t)

g4( ς→, u, t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(37)

where

g1( ς→, u, t) � Λα − c
α

+ ηd
α
(1 − u)( S(t) + βαI(t),

g2( ς→, u, t) � − c
α

+ δαRR + βα( I(t) + ηd
α
(1 − u)S(t), a

g3( ς→, u, t) � b
α 1 −

X(t)

K
 X(t) − c

α
EX(t),

g4( ς→, u, t) � I(t) + Bu
2
.

(38)

Let

G
∗�→

ς∗
→

, u
∗
, t  �

g1 ς∗
→

, u∗, t 

g2 ς∗
→

, u∗, t 

g3 ς∗
→

, u∗, t 

g4 ς∗
→

, u∗, t 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ς∗
→

� S∗(t), I∗(t), X∗(t), W∗(t)( .

(39)

If u∗ ∈ U is optimal for problem (P) with nonnegative
initial conditions (30), then there exists a nontrivial abso-
lutely continuous mapping p: [0, tf]⟶ R4, p(t) � (p1
(t), p2(t), p3(t), p4(t)), called the adjoint vector, such that

tD
α
tf

p1 �
zH P

→
, G
∗�→
, u∗, t 

zS∗
� − p1 c

α
+ ηd

α 1 − u
∗

( ( 

+ p2 ηd
α 1 − u

∗
( ( ,

tD
α
tf

p2 �
zH P

→
, G
∗�→
, u∗, t 

zI∗
� p1β

α
− p2 c

α
+ δR
∗
R + βα(  + p4,

tD
α
tf

p3 �
zH P

→
, G
∗�→
, u∗, t 

zX∗
� p3 b

α
−
2bX∗

K
− c

α
E 

+ p2
δαa1a2 μ ea3μX∗

a2 + ea3μX∗( 
2 I
∗⎛⎝ ⎞⎠,

tD
α
tf

p4 �
zH P

→
, G
∗�→
, u∗, t 

zW∗
� 0,

(40)

where H is the Hamiltonian defined in equation (36). Since
the state variables S(tf), I(tf), andX(tf) are free at the
terminal time tf, while the W(tf) appear in the objective
function, then the transversality conditions are given by

pj tf  � 0, j � 1, 2, 3,

p4 tf  � 1.
(41)

For optimality conditions, we differentiate the Hamil-
tonian with respect to the control variables (u∗) in the
interior of the set U. (en, we have

zH P
→

, G
∗�→

, u∗, t 

zu∗
� p1 − p2( ηd

α
S
∗

+ 2p4Bu
∗

� 0.
(42)

(erefore,

u
∗

�
p2 − p1( ηdαS∗

2p4B
, (43)

and impose the bounds 0≤ u∗ ≤ u∗max ≤ 1 on the control to
yield equation (34) as required.

By using equation (7), the system of adjoint variables
(32) is equivalent to the following right CFD:

C
t D

α
tf

p1 � p2 − p1( ηd
α 1 − u

∗
(  − p1c

α
,

C
t D

α
tf

p2 � p1β
α

− p2 c
α

+ δR
∗
R + βα(  + p4,

C
t D

α
tf

p3 � p3 b
α

−
2bX∗

K
− c

α
E  + p2

δαa2 μ ea3μX∗

a2 + ea3μX∗
R
∗
RI
∗

 ,

C
t D

α
tf

p4 � −
tf − t 

− α

Γ(1 − α)
,

(44)

with the same transversality conditions (33).
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To rewrite the adjoint variables (44) as a system of
equations with left CFD we use the following Lemma. □

Lemma 1. For 0< α≤ 1, we have
C
t D

α
tf

p(t) �
C
0 D

α
t p tf − t . (45)

Proof. From Definition 3, we have

C
t D

α
tf

p(t) �
− 1
Γ(1 − α)


tf

t
(τ − t)

− α
p′(τ)dτ, (46)

by replacing t to (tf − t), we have

C
tf − tD

α

tf

p tf − t  �
− 1
Γ(1 − α)


tf

tf − t
τ − tf − t  

− α
p′(τ)dτ.

(47)

Let ξ � (tf − τ), then

C
tf− tD

α

tf

p tf − t  �
− 1
Γ(1 − α)


0

t
(t − ξ)

− α
p′ tf − ξ (− dξ)

�
1
Γ(1 − α)


0

t
(t − ξ)

− α
p tf − ξ  ′dξ

�
C
0 D

α
t p tf − t ,

(48)

by replacing (tf − t) to t in the left-hand side, the lemma will
be proved.

(erefore, we can rewrite the adjoint variables (44) as a
system of equations with the left CFD as follows:
C
0 D

α
t p1 tf − t  � p2 tf − t  − p1 tf − t  ηd

α 1 − u
∗

tf − t  

− p1 tf − t c
α
,

C
0 D

α
t p2 tf − t  � p1 tf − t βα − p2 tf − t  c

α
+ δR
∗
R(

· tf − t  + βα + p4 tf − t ,

C
0 D

α
t p3 tf − t  � p3 tf − t  b

α
−
2bX∗ tf − t 

K
− c

α
E⎛⎝ ⎞⎠

+ p2 tf − t 
δαa2 μ ea3μX∗ tf− t( 

a2 + ea3μX∗ tf− t( 
R
∗
R tf − t ⎛⎝

· I
∗

tf − t ⎞⎠,

C
0 D

α
t p4 tf − t  � −

(t)− α

Γ(1 − α)
.

(49)

(en, the state and costate (adjoint variables) equa-
tions, which are presented in equations (29) and (49), are
given in terms of the left CFD.(is approach simplifies the
use of fractional numerical methods to solve the state and

costate equations. (erefore, to solve a FOCP, we can
apply only one fractional numerical method in Forward-
Backward algorithms. □

6. Description of the Numerical Methods

(is section deals with the numerical methods used in this
paper without restrictions of the time interval. In the be-
ginning, we intend to solve model (1) in the absence of
control u by the following discrete method, which offers
accurate solutions during a long time interval.

6.1. 5e Implementation of PCM. (e implicit fractional
Adams method of order 2 is a generalization of the classical
trapezoidal rule (for more details, see [59–61]). For instance,
consider the initial value problem:

C
0 D

α
t y(t) � f(t, y(t)), y t0(  � y0, 0< α≤ 1, t0 < t≤T.

(50)

In a discrete numerical method, the time interval [t0, T]

is replaced by a discrete set of points tj � t0 + jh, h � T −

t0/N, and j � 0, 1, . . . , N so that the solution is approxi-
mated by a sequence yj 

j�0,1,...,N
such that yj ≈ y(tj). (us,

the general formula for the predictor-corrector imple-
mentation with use of corrector iterations is described as
follows:

y
(i)
k+1 � y0 +

hα

Γ(α + 2)


k

j�0
aj,k+1f tj, yj  + f tk+1, y

(i− 1)
k+1 ⎛⎝ ⎞⎠,

(51)

y
(0)
k+1 ≔ y

pre
k+1 � y0 +

hα

Γ(α + 1)


k

j�0
bj,k+1f tj, yj , (i � 1, . . . , q),

(52)

where

aj,k+1 �

kα+1 − (k − α)(k + 1)α, if j � 0,

(k − j + 2)α+1 +(k − j)α+1

− 2(k − j + 1)α+1, if 1≤ j≤ k,

1, if j � k + 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(53)

bj,k+1 � (k + 1 − j)
α

− (k − j)
α
, (54)

where y
(i)
k+1 denotes the approximation after i corrector steps,

y
(0)
k+1 � y

pre
k+1 is the predictor, and y

(q)

k+1 is the final approxi-
mation after q corrector steps that we actually use. As a
consequence of the assumptions of (eorem 4.2.6 in [62],
the error can be estimated as follows.

Theorem 7 [63]. 5e approximation computed by schemes
(51) and (52) described above satisfies

max
0≤j≤N

y tj  − yj



 � O h
M

 , (55)

where M � min 2, 1 + qα .

8 Complexity



We now present some numerical experiments for model
(1) (in the absence of u), using different values for a, by
applying formulas (51) and (52) with this value of initial
conditions
Pt � 98.5 × 106, S(0) � 0.72 × Pt, I(0) � 0.28 × Pt, andX

(0) � 0.36 × 106 and the values of parameters in Table 1.
In Figure 2, we consider different scenarios depending

on the parameter a in order to achieve one of the trends to
reduce the rate of individuals at risk of CHD.

6.2. FBSM Based on PCM. FBSM is an effective iterative
approach to solve the optimality systems, and it has been
developed using the RK4 scheme to solve the classic OC
problems. Based on the predictor-corrector implementation
described by (51) and (52), we improve FBSM to solve our
FOCP which is illustrated in the following algorithm.

Step 0: putting the initial conditions and the value of
parameters.
Step 1: divide the time interval into N subintervals of
equal length and set h � tf − t0/N, tj � t0 + jh, and j �

0, 1, . . . , N. (is means that we begin the main for loop
in the algorithm.
Step 2: compute u(j) according to the following formula:

u(j) � min max 0,
p2(j) − p1(j)( ηdαS(j)

2Bp4(j)
 , 1 ,

j � 0, 1, . . . , N,

(56)

where the initial value of the control u is determined when
j � 0 with the above initial conditions (30) and transversality
conditions (33). (e remaining values of u (i.e., for
j � 1, 2, . . . , N − 1) can be obtained from the looping to
solve the state and costate equations with the initial and
transversality conditions as in the next steps.

Step 3: solving state equation (29) by applying formulas
(51) and (52) with the initial value of u and the same
starting point (S(0), I(0), X(0), W(0)) to obtain the
new starting point (S(j), I(j), X(j), W(j)).
Step 4: solve costate equation (49) by formulas (51) and
(52) subject to the terminal conditions, values of u, and
vector filed ς as follows:

P
(i)
N− k− 1 � ΨN− k− 1 +

hα

Γ(α + 2)

zH tN− k− 1, ςN− k− 1, uN− k− 1, P
(i− 1)
N− k− 1 

zς
,

ΨN− k− 1 �
hα

Γ(α + 2)

j�0

k

aj,k+1
zH tN− j, ςN− j, uN− j, PN− j 

zς
,

P
(0)
N− k− 1 ≔ P

pre
N− k− 1 �

hα

Γ(α + 1)


k

j�0
bj,k+1

zH tN− j, ςN− j, uN− j, PN− j 

zς
,

(i � 1, . . . , q),

(57)

where the coefficients of aj,k+1 and bj,k+1 are given by
equations (53) and (54), respectively.

Step 5: updating the value of the control u for j �

1, 2, . . . , N by entering the new ς and P values into
Step 2.
Step 6: the stopping criterion is a convergence, that is, it
means if the values of the variables in a current iteration
and the last iteration (i � 1, 2, . . . , q) are negligibly
close, this implies that the outputs of the algorithm are
our solutions. If the values are not close, return to
Step 3.

7. Simulation of the Fractional Optimal
Control Model

(e main purpose of this section is to discuss the numerical
solutions of the FOCP (P) and the effect a proportion of the
fish consumed from the total harvested on this problem in the
classical (α�1) and fractional (different values of α ) cases.(e
numerical results are achieved using MATLAB with initial
conditions, realistic hypothetical parameter values in Table 1,
and the weight constant value B � 3, 500, 000.

In the sentences below, we constructed some strategies
depending on the proportion of fish consumed from the
total harvested (i.e., parameter a) to decrease the number of
total mortality due to CHD and compared it in two cases, the
presence and absence of the control operator.

Strategy 1 (a � 0). In this strategy, we assume there is no fish
consumption at all and only consider the effect of the control
as in Figure 3. We observe that there is a significant decrease
in mortality due to CHD when we use the OC other than no
control. Moreover, we take different values of α to present the
effect of the FD on the number of total mortality due to CHD.
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×104

a = 0, α = 1
a = 0, α = 0.98
a = 0.3, α = 1

a = 1, α = 1
a = 1, α = 0.98

a = 0.3, α = 0.98

Figure 2: Mortality due to CHD, where a � 0, 0.3, 1 with different
values of α (in the absence of u).
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Strategy 2 (a � 0.3). In this strategy, we consider the fish
consumption around 30% of the total harvested fish, and this
strategy is illustrated in Figure 4. From this simulation, we
find that there is a significant difference in total mortality
due to CHD when compared with and without control.
Furthermore, the effects of fractional (different values of α)
have been studied in this case. Also, we find this strategy
decreases much when compared to Strategy 1.

Strategy 3 (a � 0.6). In this strategy, we consider the fish
consumption around 60% of the total harvested fish, and the
simulation results of this strategy are shown in Figure 5.(is
simulation shows that there is a big difference in total
mortality due to CHD when compared with and without
control. Also, the effects of fractional (different values of α)
have been investigated in this case. We observe that these
decrease much when compared to the other two cases.

Strategy 4 (a � 1). In this strategy, we consider the total
harvested fish completely consumed, and the effect of this
strategy can be seen in Figure 6. We note that there is a big
difference in total mortality due to CHDwhen compared with
and without control. Also, the effects of fractional (different
values of α ) have been studied in this case. We observe that
these decrease much when compared to the other three cases.

We conclude from these simulations that whenever the
consumption of fish from the total harvested fish increased
with avoiding the metabolic and behavioural risk factors of
CHD, then the CHD mortality rate is reduced, and this is
evident in Figure 7. For fractional cases, when α is reduced
from 1, the memory effect of the problem increases, and
therefore the behaviour of mortality due to CHD grows
slowly. Moreover, the impact of memory for FOM can be
seen in Figures 4–6, where increasing fish consumption
reduces the memory of CHD, and this implies that there is a
disparity in the curves for fractional-order cases.
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Figure 6: Mortality due to CHD, where a � 1 without control
(black lines) and with control (blue lines) for α � 1 (solid line),
α � 0.98 (dashed line), and α � 0.95 (dotted line).
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Figure 3: Mortality due to CHD, where a � 0 without control
(black lines) and with control (blue lines) for α � 1 (solid line),
α � 0.98 (dashed line), and α � 0.95 (dotted line).
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Figure 4: Mortality due to CHD, where a � 0.3 without control
(black lines) and with control (blue lines) for α � 1 (solid line),
α � 0.98 (dashed line), and α � 0.95 (dotted line).
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Figure 5: Mortality due to CHD, where a � 0.6 without control
(black lines) and with control (blue lines) for α � 1 (solid line),
α � 0.98 (dashed line), and α � 0.95 (dotted line).
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8. Conclusion

In our work, we discussed that a mathematical model
contains the time FD, which describes the relationship
between fish consumption and CHD mortality in Egypt.
Moreover, we introduced control function which rep-
resents the metabolic (obesity, diabetes, raised lipids, and
high blood pressure) and behavioural (unhealthy diet,
physical inactivity, tobacco use, and alcohol) risk factors
of CHD that help to reduce the number of mortality due
to CHD. We have investigated the equilibria and stability
analysis of our model, where we found that in the absence
of biomass of fish population (i.e., X � 0), the EP is
unstable. Otherwise, in the presence of the biomass of fish
population X∗ and under the condition that the fishing
effort E is less than the Biotechnical Productivity (b/c)α,
the EP is stable. We present a general formulation for
FOCP and the fractional-order necessary optimality
conditions are derived using Pontryagin maximum
principle. (e numerical method used for this purpose is
FBSM based on PCM where it is considered a simplified
method to solve FOCPs with left CFD. We proposed some
strategies with different values of the rate of fish con-
sumed from the total harvested with and without control
in order to obtain the best strategy to reduce CHD
mortality. It is found that, whenever the consumption of
fish from the total harvested fish increased with avoiding
the metabolic and behavioural risk factors of CHD, then
the CHD mortality rate is significantly reduced in a
specified period of time. (e effect of FD α (where α be
chosen close to 1) on the studied model is displayed in the
above figures to reduce the mortality due to CHD besides
fish consumption and suggested control.
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