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Person reidentification (re-id) aims to recognize a specific pedestrian from uncrossed surveillance camera views. Most re-id
methods perform the retrieval task by comparing the similarity of pedestrian features extracted from deep learning models.
*erefore, learning a discriminative feature is critical for person reidentification. Many works supervise the model learning with
one or more loss functions to obtain the discriminability of features. Softmax loss is one of the widely used loss functions in re-id.
However, traditional softmax loss inherently focuses on the feature separability and fails to consider the compactness of within-
class features. To further improve the accuracy of re-id, many efforts are conducted to shrink within-class discrepancy as well as
between-class similarity. In this paper, we propose a circle-based ratio loss for person re-identification. Concretely, we normalize
the learned features and classification weights to map these vectors in the hypersphere. *en we take the ratio of the maximal
intraclass distance and the minimal interclass distance as an objective loss, so the between-class separability and within-class
compactness can be optimized simultaneously during the training stage. Finally, with the joint training of an improved softmax
loss and the ratio loss, the deep model could mine discriminative pedestrian information and learn robust features for the re-id
task. Comprehensive experiments on three re-id benchmark datasets are carried out to illustrate the effectiveness of the proposed
method. Specially, 83.12% mAP on Market-1501, 71.66% mAP on DukeMTMC-reID, and 66.26%/63.24% mAP on CUHK03
labeled/detected are achieved, respectively.

1. Introduction

Person reidentification aims to retrieve the person-of-in-
terest among nonoverlapping camera views according to the
given person image. Re-id is an important terminal appli-
cation technology in the modern intelligent monitoring
system, and it becomes gradually significant in the field of
public security. However, due to the limitation of work
environments and camera devices, the captured images
usually have vast differences in illuminations, occlusions,
person postures, camera views, etc. *ese differences would
bring about huge variances for different images of a certain
pedestrian and degrade the overall re-id performance.

Traditional re-id approaches tackle the aforementioned
problems mainly with manual feature representation [1, 2]
and metric learning [3, 4] methods. With the rapid devel-
opment of neural networks and the popularization of large-
scale re-id datasets in recent years, the deep learning based

methods have been widely applied in person reidentification
and obtained remarkable performance. Moreover, the deep
learning based approaches can integrate the feature learning
and metric learning in an end-to-end framework. Due to
various advantages, the deep learning approaches have
dominated the research trends of person reidentification.

Person reidentification methods based on deep learning
commonly contain two essential parts: network architecture
and loss function. Network architecture is generally con-
structed from convolutional neural networks (CNNs) which
are concatenated organically by various network layers, e.g.,
convolutional layer, pooling layer, and fully connected layer.
*e designed network architecture can automatically extract
pedestrian features from input images. Loss function is used
to supervise model training with a predefined constraint
objective. According to different constraint objectives, loss
functions can be usually divided into two categories: clas-
sification loss [5–7] and metric loss [8–10]. In the training
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stage, classification loss encourages the model to learn the
features with label information so the obtained features have
well characteristics in the between-class separability. Instead
of focusing on the label information exclusively, metric loss
takes the feature similarity of different pedestrian images as
the constraint objective to guide the model training. In this
way, the learned features have distinguishable distribution in
the feature space.

Admittedly, the deep model based on convolutional
neural networks (CNNs) is able to extract highly abstract
pedestrian features, and the large-scale re-id datasets make it
possible to tackle re-id tasks with the deep learning methods.
Nevertheless, the large-scale datasets with significant
changes in illuminations, resolutions, background occlu-
sions, and camera views would bring some great difficulties
in the model training, e.g., a huge intraclass gap. Besides, the
deep model guided by the traditional classification loss such
as softmax loss is hard to fully mine the discriminative
pedestrian information. It will make the learned model
become susceptible to those adverse variations and cause a
lack of generalization ability.

*us, it becomes critical for re-id task to learn dis-
criminative features which are robust to those adverse
variations. To this end, both the within-class similarity and
between-class discrepancy of learned features should be as
large as possible. One practicable solution is improving or
designing loss functions to make it effectively encourage
intraclass compactness and interclass separability.

In this paper, we propose a new loss function named as
circle-based ratio loss to improve the discriminative ability
of learned features. Motivated by Linear Discriminant
Analysis (LDA) which seeks for a new subspace where
samples have the largest interclass distance and the smallest
intraclass distance by optimizing the ratio of these two
distances, we take the ratio of the maximal intraclass dis-
tance and the minimal interclass distance as a constraint
objective in the re-id task. In specific, we first normalize the
learned features and classification weights to project these
vectors into the hypersphere. After that, we take the distance
between a feature and its corresponding classification weight
as the intraclass distance and the distance between different
classification weights as the interclass distance. Finally, the
largest intraclass distance and the smallest interclass distance
are selected to formulate the circle-based ratio loss. By
minimizing the ratio loss, the between-class similarity and
within-class discrepancy could be shrunk simultaneously,
and finally the discriminability of learned features would be
improved. *e diagrammatic explanation of the proposed
ratio loss is shown in Figure 1. We use the dots and solid
lines in different colors to represent the features and its
classification weights of different classes, respectively. Under
the supervision of the proposed ratio loss, the variance
within a class will decrease and the discrepancy between
classes will expand; hence the learned features will be
discriminative.

*e rest of this paper is organized as follows: Section 2
introduces the works related to our approach. Section 3 gives
an elaborate description of our proposed ratio loss. Section 4
provides comprehensive re-id experiments to demonstrate

the effectiveness of our method. Section 5 further discusses
the effects of the parameters in ratio loss and the relationship
between our method and some similar works. *e con-
clusion is drawn in Section 6.

2. Related Work

*e approaches of addressing person reidentification
problems have been widely researched for traditional ma-
chine learning methods [1–4, 11], and lots of deep learning
frameworks [6–8, 12–15] have been increasingly studied in
recent years. Traditional machine learning methods tackle
re-id problems mainly from two aspects: manual feature
representation and metric learning. *e methods of manual
feature representation describe the individual image with a
feature vector returned from elaborate descriptors. *e
descriptors will generate specific person features by con-
sidering different intrinsic information, e.g., color distri-
bution [1] and texture description [11], and some works
would combine multiple features, like LBP and HOG [2] and
HSV and SILTP [4].*emetric learning methods seek a well
separable metric space for pedestrian features. *e most
widely used metric learning methods for person reidenti-
fication contain KISSME [3], XQDA [4], and so on.

Benefited from the development of the neural network,
the deep learning based re-id methods have been widely
researched in recent years. *ey can integrate feature
learning and metric learning in an end-to-end framework
and achieve remarkable re-id performance. *ese deep
methods commonly contain two essential components:
network architecture and loss function. *e network ar-
chitecture of re-id usually comprises a CNN backbone
network such as ResNet [16] or GoogleNet [17] and some
customized network layers like the pooling layer, batch
normalization layer, and L2 normalization layer. *e
backbone is usually trimmed to extract highly abstract
features and some customized network layers are added to
meet the requirements of re-id tasks. Besides, various loss
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Figure 1: *e diagrammatic explanation of the circle-based ratio
loss. For simplicity, the feature dimension is set as 2 so the
hypersphere can be represented as a circle on the 2D plane. *e
features and corresponding classification weights of three classes
are denoted with the dots and solid lines in three different colors,
respectively. d and D represent the maximal intraclass distance and
the minimal interclass distance, respectively. By minimizing the
ratio of d and D, not only the intraclass distance of the blue class is
contracted but also the interclass distance of the blue class and
green class is enlarged. *e ratio loss can improve the distribution
of feature space effectively and help the model learn discriminative
features.
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functions are used to supervise the model learning during
the training process. In certain conditions, loss function has
a critical effect on re-id performance. In most existing works
of re-id, it can be divided into metric loss [8–10, 13, 15, 18]
and classification loss [5–7, 12, 14, 19–21].

*e metric loss optimizes the model by considering the
similarity of different features. To help the model learn a
discriminative feature, the metric loss enlarges the separa-
bility of between-class features and promotes the com-
pactness of within-class features. An intuitive metric loss is
contrastive loss [9]. Given a pair of images, contrastive loss
optimizes the model by reducing the intraclass distance and
enlarging the interclass distance which is bigger than a
predefinedmargin. For example, Varior et al. [10] performed
a re-id task using contrastive loss in a gated Siamese CNN.
Instead of introducing a direct distance constraint between a
pair of images, triplet loss [15] constrains a relative rela-
tionship between a negative pair and a positive pair. In each
iteration, triplet loss makes the distance difference between
the negative pair and the positive pair larger than a margin.
It is experimentally proved that triplet loss is feasible and
effective for re-id tasks. For example, Cheng et al. [18]
trained a multichannel parts-based CNN model combined
with triplet loss for re-id. Hermans et al. [13] proposed an
improved triplet loss by introducing hard sample mining,
since they found that those hard triplets contribute more
discriminative information in the model optimization.
Moreover, Chen et al. [8] proposed the quadruplet loss to
enhance the model generalization ability. Admittedly, the
metric loss methods obtain outstanding performance in re-
id. However, it pays too much attention to the distance
information; thus the inherent label information is inevi-
tably less concerned.

Instead of considering the feature similarity of different
images, classification loss (ID loss) guides the model to
distinguish different individuals according to the label in-
formation. A typical ID loss of person reidentification is
softmax loss which includes a softmax activation and a
cross-entropy loss function. *e softmax activation converts
an extracted feature into a vector whose elements indicate
the possibility that the current sample belongs to a certain
class. To learn a correct classification, the cross-entropy loss
is used to measure the difference between the estimated
probability and the truth label information. So by mini-
mizing softmax loss, the model can progressively learn a
correct classification. Zheng et al. [7] applied classification
loss to train a network based on ResNet-50 for re-id. Besides,
to fully exploit label information, Sun et al. [6] and Wang
et al. [20] proposed the PCB and the MGN, respectively, to
mine partial information of the pedestrians using classifi-
cation loss. For better classification effects, many improved
versions of softmax loss [5, 14, 19, 21] are proposed. Fan et al.
[12] used a modified softmax function and proposed the
SphereReID model for person reidentification. Witnessing
the excellent performance that metric loss and classification
loss have obtained in re-id tasks, some works of literatures
[22–25] proposed to train the model by combining metric
loss and classification loss and also achieved preferable
performance in person reidentification tasks.

By considering that our proposedmethod in this paper is
closely related to loss function, we only give a rough in-
troduction of person reidentification methods based on loss
function. It is worth noting that many other inspiring
methods have been proposed to address the person rei-
dentification tasks, e.g., pose-guided methods [26], cross-
modality based methods [27], and unsupervised learning
based methods [28]. One can learn about more detailed
information in [29].

3. Methods

In this section, we first review softmax loss which is widely
employed in deep learning frameworks of re-id and then
introduce its improved version used in our approach. After
that, we detail the proposed circle-based ratio loss. Finally,
we demonstrate the effectiveness of our method via a toy
experiment based on MNIST dataset.

3.1. Normalized Softmax Loss. Softmax loss consists of a
softmax activation function and a cross-entropy loss func-
tion. *e softmax activation function interprets the classi-
fication output of the linear layer as the relevant class
probability, while the cross-entropy loss function quantifies
the distance between calculated classification probability and
ground truth label. A typical formulation of the softmax loss
function can be expressed as
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where fi is the feature extracted from the i-th selected
person image in a minibatch of the training set. wj is the j-th
column weight vector of the final linear layer, also called
classification weight. bj is a bias term. yi is the ground truth
label of i-th selected person image. C and n represent the
class number of the training set and the sample number in
each iteration, respectively. With the optimization under
softmax loss, the learned features are equipped with sepa-
rable characteristics. However, the original softmax loss
focuses on the between-class comparison; thus the within-
class compactness of learned features is less noticed.

To tackle the mentioned defect, sorts of improvements
[5, 14, 19, 21] are conducted on softmax loss. One simple but
effective improvement is normalizing both classification
weights and features to map these vectors into the hyper-
sphere. In this way, the learned features are more angularly
separable in the feature space. Softmax loss with the nor-
malization is benefit to the feature learning [21], and it can
be expressed as follows:
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where s denotes a scaling factor. It is noteworthy that a
margin term is often added to obtain a more powerful
constraint on the interclass and intraclass distance in many
research works. In this paper, we use the improved softmax
loss expressed in (2) as the classification loss and name it as
normalized softmax loss [21, 30] to distinguish from the
original softmax loss function.

3.2. Circle-Based Ratio Loss. As classification weights and
features are both normalized, the magnitude variations are
eliminated and the learned features are angularly dependent
in the hypersphere. *us the similarity between features can
be directly measured with their cosine distances. In the task
of person reidentification, the extracted features should have
enough discrimination. It means that the between-class
discrepancy should be as large as possible while the within-
class compactness should be as tight as possible. Inspired by
LDA, we formulate our loss function with a ratio of the
maximal intraclass distance and the minimal interclass
distance. Since the features and classification weights have
been normalized, the learned features and classification
weights spread out on a circle. *erefore, we name the
proposed loss as circle-based ratio loss, and its mathematical
expression is

LRatio �
1
C
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where ε is a moderating factor. Considering that the most
classification weights cannot obtain a satisfactory distribu-
tion at the initial training stage, which may cause a dis-
turbance for the ratio loss, we introduce ε factor to help the
model learn smoothly.

We design the ratio loss for two main reasons. One is
that the distance between feature vectors and classification
weight vectors can be effectively measured in the hyper-
sphere. *e other one is that the maximal intraclass distance
will gradually decrease and the minimal interclass distance
will progressively enlarge by minimizing the ratio loss.
Under the supervision of the ratio loss, the learned features
have a well distribution in the embedding space, which can
help improve the re-id accuracy.

3.3. Joint Training. *e normalized softmax can learn an-
gularly separable features in the hypersphere. However, the
within-class restraint will gradually become slack along with
the increase of interclass distance. Hence, the learned features
are not sufficiently discriminative. *us we propose a joint
training of the normalized softmax loss and the ratio loss for
the re-id task to maintain continual constraining force on the
between-class discrepancy and within-class compactness.
*erefore, the final loss function is formulated as follows:
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where λ is a balance parameter to adjust the weight of the
ratio loss. As normalized softmax loss restricts the features
and classification weights to the hypersphere, the ratio loss
can effectively optimize the between-class and within-class
characteristics of features. *e final loss can be easily op-
timized by SGD or Adam in the Pytorch framework [31].

3.4. AToy Example Based onMNIST. To verify the feasibility
and effectiveness of our proposed method, we conduct a toy
experiment based on MNIST dataset [32] with a designed 8
layers CNN network by adopting the same experimental
setting as [30]. We set the feature dimension as 2 so the
learned features can be visualized on the 2-D plane, and 2000
training samples of each class are used to train the model.
*e visualizations of the original softmax, normalized
softmax [30] are used to compare the effects of our proposed
method (normalized softmax with ratio loss) in Figure 2.

From the experimental results, we could roughly make
some conclusions as follows. (1) *e original softmax fo-
cuses on separating the samples of different classes instead
of learning discriminative features directly. So the learned
features are able to reach preferable separability in the
feature space but cause large within-class sparsity. (2) *e
normalized softmax removes variations in radial directions
to optimize the model by normalizing the classification
weights and features simultaneously. As a result, the
learned features are angularly separable on a sphere and
exhibit tighter within-class compactness. (3) On the basis
of the normalized softmax, the proposed ratio loss could
further improve the discriminability of the features by
constraining the relation of intraclass and interclass dis-
tances. It can achieve a tighter within-class compactness as
well as more obvious separability than the other two loss
functions. *ese observations verify the effectiveness of our
method and provide an experimental support for its ap-
plication on person reidentification tasks.

4. Experiments

In this section, we give the experimental details of the
proposed ratio loss for person reidentification and compare
the experimental results on re-id datasets, e.g., Market-1501
[33], DukeMTMC-reID [34], and CUHK03 [35] with some
state-of-the-art works. All involved experiments are con-
ducted in the Pytorch framework.

4.1. Dataset Descriptions. Market-1501 is a large-scale per-
son reidentification dataset which is collected in Tsinghua
University. In the Market-1501 dataset, 1501 pedestrians
are captured by six cameras (five 1280 ×1080 HD, one
720 × 576 SD), and 32668 bounding boxes of these 1501
pedestrians are detected by Deformable Part Model
(DPM). Market-1501 is composed of a training set and a
testing set. *e training set contains 751 identities with
12936 training pedestrian images. *e testing set includes
750 identities with 19732 gallery pedestrian images and
3368 query pedestrian images.
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DukeMTMC-reID is a subset of the multitarget multi-
camera tracking dataset [36] which is collected outdoors in
Duke University campus using 8 synchronized cameras. By
selecting and cropping pedestrian regions from the videos of the
tracking dataset, DukeMTMC-reID has 36411 pedestrian im-
ages of 1404 identities. *e organization format of
DukeMTMC-reID is the same as that of Market-1501. Con-
cretely, 702 pedestrians constitute the training set with 16522
training images, and the remaining 702 pedestrians constitute
the testing set with 2228 query images and 17661 gallery images.

CUHK03 re-id dataset is collected with 5 pairs of
cameras in CUHK campus and contains 14096 pedestrian
images of 1467 identities. *e dataset provides a detected
version in which the pedestrians are algorithmically detected
and a labeled version where the pedestrians are manually
labeled. It is worth noting that the original dataset is
designed for a single-shot situation. *erefore, Zhong et al.
[37] reorganized the CUHK03 dataset according to the
format of Market-1501. In the new training/testing protocol,
767 pedestrians are used for training and the remaining 700
pedestrians constitute the testing set. In our experiments, we
use the new training/testing protocol of CUHK03 to evaluate
our method comprehensively.

4.2. Implementation Details

4.2.1. Preprocessing. First, all input training images are
resized to 288 ×144 before they are randomly cropped to
256 ×128. *en, each input image would be flipped
horizontally with a probability of 0.5. *is operation is
beneficial to the generalization ability of the model.
Moreover, we use the random erasing trick [38] with a
probability of 0.5 for each input image. It means that a
small random rectangle region of a pedestrian image may
be erased with zero value in the training procedure. *is
operation can enhance the robustness of the model by
making a small area of input images invisible to the
network.

4.2.2. Network Architecture. We construct a network ar-
chitecture based on ResNet-50 in which the parameters have
been pretrained in the ImageNet dataset as [30]. We remove
the last fully connected layer of the original ResNet-50, and
the remainder makes up a backbone which can automati-
cally extract pedestrian features from input images. Besides,
we change the last stride of ResNet-50 from 2 to 1 to retain
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Figure 2: MNIST experiment results with the original softmax, normalized softmax, and normalized softmax with ratio loss, respectively.
For the intuitive demonstration, we use a subset of MNISTfor the experiments and 2000 training samples of each class are used to train the
model. By setting the output dimension of the last feature layer as 2, the learned features can be visualized in 2D space, where the x-axis and
y-axis correspond to the two dimensions of the learned features. In the figure, the first row gives the distributions of the original features in
2D space and the second row gives the corresponding normalized features. Best viewed in color. (a) Original softmax. (b) Normalized
softmax. (c) Normalized softmax with ratio loss.
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more fine-grained pedestrian information with tiny extra
computation cost.

To make the model more suitable for re-id tasks and
facilitate the optimization of our proposed loss, we add
several network layers behind the backbone. Concretely, we
use a global average pooling (GAP) layer to aggregate the
convolutional maps via an average operation. *en a batch
normalization (BN) layer is attached to the GAP to shrink
the internal covariate shift. Subsequently, a fully connected
(FC) layer followed by another BN layer is used to compress
the feature dimension into 1024. After that, the learned
features and classification weights are both normalized in an
L2 normalization layer. Finally, another fully connected
layer is used as the classification layer in which the nor-
malized softmax loss and proposed ratio loss can be cal-
culated. After the training phase, this FC layer will be
removed and the rest of the networks become a feature
extractor used in the evaluation phase. *e entire network
architecture used in our re-id experiments is shown in
Figure 3.We name the normalized softmax loss as ID loss for
the sake of brevity.

4.2.3. Experiment Settings. All experiments are imple-
mented in the Pytorch framework with an NVIDIA GTX
1080 Ti GPU. We use a balanced sampling strategy [12]
during the training process. *is strategy fixes the pe-
destrian number P and the image number K of per pe-
destrian in each sampling. By comparing with a random
sampling strategy, the balanced sampling strategy can
improve the re-id performance as well as accelerating the
training process. In our experiments, we set P and K as 16
and 4, respectively, so the size of a minibatch in each it-
eration is 64.

We choose Adam optimizer to upgrade the parameters
of the network. Besides, a warm-up strategy is adopted to
initialize the learning rate at the beginning of training. In
specific, the value of the learning rate will linearly increase
from 10−5 to 10−3 during the first 20 epochs. After the
warm-up stage, the learning rate remains unchanged until
the 90th epoch. *en we decay the learning rate by 0.1 at
90th and 130th, respectively, to fine-tune the parameters. It
has been experimentally proved that the warm-up strategy
can help the network achieve a better initial state for re-id
problems [12]. *e total number of training epochs is 150,
and the learning rate curve is plotted in Figure 4. Moreover,
we also use an online hard example mining (OHEM)
scheme in our proposed method. In specific, we sort the
training samples in descending order according to the value
of the normalized softmax loss during each iteration, and
the last 20% samples will be discarded. *e OHEM scheme
can effectively alleviate the model overfitting caused by
overwhelming easy samples. *us the robust and gener-
alization ability of the learned model can be enhanced. We
set the parameters λ and ε in ratio loss as 1 and 0.5, re-
spectively, in our experiments. *e scale coefficient s in the
normalized softmax is set as 14.

4.2.4. Evaluation Metrics. In the evaluation phase, we
remove the last FC layer from the training network to obtain
the feature extractor for the person reidentification task. *e
testing images are resized to 288×144 before they are fed to
the feature extractor. In specific, we extract the features of
both the original input image and its horizontal flipping
version, respectively. *en the final embedding is obtained
by averaging these two features. *e similarity between
pedestrian images can be easily measured via their cosine
distance of the features in the hypersphere.

We use two evaluation metrics including cumulative
match characteristic (CMC) and mean average precision
(mAP) to evaluate the performance of our proposedmethod.
*e re-id task is taken as a ranking problem in the CMC
evaluation metric and a retrieval problem in the mAP
evaluation metric. We report the cumulative match char-
acteristic at Rank-1 in our results. *e single-query/multi-
shot mode is used for all experiments.

4.3. ExperimentalResults. *e experimental results are given
in the following tables. To be fair, we only make a com-
parison with some state-of-the-art methods based on deep
learning, e.g., Deep-Person [39] and PCB [6]. Besides, the
model trained by the normalized softmax loss without
OHEM is regarded as the baseline of our method.

*e experimental results on Market-1501 and
DukeMTMC-reID are listed, respectively, in Table 1. We
can find that the mAP increases on Market-1501 and
DukeMTMC-reID respectively when the ratio loss or
OHEM scheme is applied to the baseline model. Based on
them, our proposed methods finally brings +1.47% and
+0.56% increments than the baseline method in mAP on
the two datasets respectively. Besides, our approach out-
performs the most compared state-of-the-art methods on
both mAP and Rank-1, like GSRW and PCB.

*e experimental results on CUHK03 dataset under the
new training/testing protocol are listed in Table 2. We
observe that the proposed ratio loss and the OHEM scheme
can improve the model performance dramatically. Finally,
compared with the baseline method, our proposed method
brings +6.38% improvements on mAP in the labeled version
and +4.22% on mAP in the detected version. Moreover, we
find that the performance of our method surpasses the listed
state-of-the-art works by a large margin.

By analyzing the experimental results, we observe that
the proposed ratio loss can further improve the re-id per-
formance, which demonstrates the effectiveness of the ratio
loss. Meanwhile, our method outperforms most listed state-
of-the-art works on three re-id datasets and shows prom-
ising competitiveness.

5. Discussion

In this section, we first discuss the influences of two
parameters λ and ε in the ratio loss by fixing one pa-
rameter and varying the other. *en we compare our
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method with two similar works including LMCL [21] and
ArcFace [5].

5.1. Parameter Analysis. *e parameter λ is used for
adjusting the weight of the ratio loss in the joint training. In
order to observe the influence of λ on the re-id performance,
we set ε as 0.5 and vary λ from {0.1, 0.2, 0.5, 1.0, 1.5, 2.0} on
Market-1501, DukeMTMC-reID, and CUHK03, respectively.
*e results are given in Figure 5. From the results on Market-
1501, we find that the mAP increases slightly as λ grows and
achieves a peak when λ is 1.0, and then it reduces gradually
with a larger λ.*e similar mAP tendency can be observed on
DukeMTMC-reID dataset. We also find that the mAP is

greatly influenced by λ in CUHK03 dataset. For example, the
mAP rises from 63.82% to 66.87% as λ increases from 0.1 to
1.5 in the labeled version.

*e parameter ε could prevent the disturbance of ratio
loss in the initial training stage. Similarly, we fix λ to 1 and
change the value of ε from 0.0 to 0.5 with the step of 0.1. *e
results are shown in Figure 6. We find that ε has less in-
fluence on Market-1501 and DukeMTMC-reID. Specifically,
the fluctuation of mAP is limited in 0.7% (0.43% for Market-
1501 and 0.63% for DukeMTMC-reID). However, the
fluctuation of the mAP reaches 1.67% for the labeled version
and 1.29% for the detected version in CUHK03. We think
the main reason for this phenomenon is the number dif-
ference of samples in different datasets. In large-scale
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Figure 3: *e network architecture for our person reidentification experiments is comprised of the backbone, global average pooling layer,
batch normalization layer, fully connected layer, and L2 normalization layer. In the training procedure, the training images are organized as
P∗K format in which P and K denote the number of identities and the sample number for each identity, respectively.*en the model learns
the pedestrian features under the supervision of the ID loss and the ratio loss. In the testing phase, the last fully connected layer is removed
and the remaining networks make up the feature extractor. *e testing images are fed to the feature extractor to obtain pedestrian features,
and the re-id task is conducted by comparing the similarity between extracted features.
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Figure 4: *e learning rate curve with the warm-up strategy. During the first 20 epochs, the learning rate linearly increases from a small
value of 10−5 to 10−3, and it remains unchanged in the latter 70 epochs.*en the learning rate is decayed by 0.1 at 90th and 130th, respectively,
to fine-tune the network parameters.
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datasets such as Market-1501 and DukeMTMC-reID,
massive samples bring a relatively small disturbance in the
ratio loss, which is beneficial to the stabilized learning of the
model. On the contrary, the model training in CUHK03may
risk a fluctuation in the ratio loss so the value of mAP is
relatively insensitive to ε.

5.2. Comparison with Similar Works. In recent years, many
excellent works have been proposed to enhance the dis-
criminability of learned features, for example, LMCL [21]
and ArcFace [5] loss functions. Both of them learn dis-
criminative features by introducing a margin in the cosine
space and the angular space, respectively. However, the

value of the margin needs to be selected scrupulously
because an inappropriate value would cause optimization
difficulty. In our proposed ratio loss, the ratio formulation
can effectively encourage the between-class separability
and within-class compactness simultaneously without an
extra margin.

For detailed comparisons, we conduct reidentification
experiments on Market-1501, DukeMTMC-reID, and
CUHK03 datasets with our method and the two loss functions.
In the experiments, all the previous experimental settings are
kept unchanged except for the loss function. For LMCL and
ArcFace, we vary the margin parameter m from {0.01, 0.1, 0.3,
0.5, 1.0} to seek the best results as in [30], and the comparative
results are recorded in Table 3. From the results, we can find

Table 1: *e experiment results and comparisons with some state-of-the-art works for Market-1501 and DukeMTMC-reID datasets on
mAP and Rank-1.

Methods
Market-1501 DukeMTMC-reID

mAP Rank-1 mAP Rank-1
IDE [7] 46.00 72.54 — —
SVDNet [40] 62.1 82.3 56.8 76.7
AACN [41] 66.87 85.90 59.25 76.84
TriNet [13] 69.14 84.92 — —
DPFL [42] 72.6 88.6 60.6 79.2
GLAD [43] 73.9 89.9 — —
HA-CNN [44] 75.7 91.2 63.8 80.5
DuATM [45] 76.62 91.42 64.58 81.82
Deep-person [39] 79.58 92.31 64.80 80.90
PCB [6] 77.4 92.3 66.1 81.8
PCB+RPP [6] 81.6 93.8 69.2 83.3-
GSRW [46] 82.5 92.7 66.4 80.7
Baseline 81.65 92.31 71.10 83.44
Baseline + ratio loss 82.14 92.43 71.25 84.16
Baseline +OHEM 82.44 92.73 71.61 84.16
Baseline + ratio loss + OHEM (ours) 83.12 92.64 71.66 84.34

*e bold values indicate the best results of all the methods on each metric. *ey are beneficial to compare between our proposed method and the other
methods.

Table 2: *e experiment results and comparisons with some state-of-the-art works for CUHK03 labeled version and detected version on
mAP and Rank-1.

Methods
Labeled Detected

mAP Rank-1 mAP Rank-1
IDE [7] 21.0 22.2 19.7 21.3
SVDNet [40] 37.83 40.93 37.3 41.5
DPFL [42] 40.5 43.0 37.0 40.7
HA-CNN [44] 41.0 44.4 38.6 41.7
PAN [47] 35.0 36.9 34.0 36.3
PAN+Re-rank [47] 45.8 43.9 43.8 41.9
MLFN [48] 49.2 54.7 47.8 52.8
PCB [6] — — 53.2 59.7
PCB+RPP [6] — — 56.7 62.8
Baseline 59.88 61.14 59.02 60.57
Baseline + ratio loss 63.47 64.21 61.30 62.86
Baseline +OHEM 63.34 64.43 60.36 61.43
Baseline + ratio loss + OHEM (ours) 66.26 68.57 63.24 65.07
*e bold values indicate the best results of all the methods on each metric. *ey can clearly demonstrate that our proposed method achieves the best
performance compared with the other methods.
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Figure 6:*e sensitivity of the mAP to εwhen λ is set to 1.*emAP of Market-1501 and DukeMTMC-reID is relatively stable to the change
of ε. *e mAP of CUHK03 fluctuates along with different ε.

Table 3: *e comparisons of our proposed method with LMCL and ArcFace on Market-1501, DukeMTMC-reID, and CUHK03 datasets.

Methods m
Market-1501 DukeMTMC-reID CUHK03 labeled CUHK03 detected

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

LMCL [21]

0.01 82.49 92.70 71.87 84.29 63.12 63.71 61.42 63.36
0.1 82.93 93.11 72.32 84.92 63.55 66.50 62.54 63.64
0.3 82.05 92.49 71.43 83.93 63.32 64.64 60.71 62.00
0.5 81.70 93.02 70.68 84.07 62.15 64.21 58.49 60.43
1.0 81.15 92.25 70.51 84.11 61.86 63.50 58.46 59.79

ArcFace [5]

0.01 82.31 92.99 71.19 84.02 63.02 64.21 60.92 63.00
0.1 82.70 92.96 71.28 83.93 64.33 66.50 62.54 64.93
0.3 82.52 92.99 71.09 84.78 65.20 67.57 62.65 63.43
0.5 81.28 92.34 70.54 83.89 64.62 65.86 61.83 63.07
1.0 80.86 91.42 69.60 83.08 62.76 64.14 60.72 61.50

Ours — 83.12 92.64 71.66 84.34 66.26 68.57 63.24 65.07
*e bold values indicate the best results of all the methods on each metric. *ey are beneficial to compare between our proposed method and the other
methods.
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Figure 5:*e sensitivity of themAP to λwhen ε is set as 0.5.*emAPofMarket-1501 andDukeMTMC-reID is less sensitive to λ. Yet themAPof
CUHK03 overall shows a rising trend with the increase of λ.
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that our method has a higher mAP value than LMCL and
ArcFace on Market-1501 and achieves comparable perfor-
mance with them on DukeMTMC-reID. Moreover, it out-
performs LMCL and ArcFace completely on CUHK03 dataset
even if they are with the best margin parameters.

6. Conclusions

In this paper, we proposed a circle-based ratio loss to learn
discriminative features for person reidentification. To enhance
feature discriminability, we first use the normalized softmax to
regulate the magnitudes of feature vectors and classification
weight vectors. In this way, the network will concentrate on the
angle relationship between features and classification weights,
and their distance can be effectively measured in the hyper-
sphere. *en we take the ratio of the maximal intraclass dis-
tance and the minimal interclass distance as the objective loss,
so that the intraclass compactness and interclass separability
can be optimized at the same time. With the joint training of
the normalized softmax and proposed ratio loss, the model
could learn discriminative pedestrian features for person rei-
dentification tasks. Extensive experiments on Market-1501,
DukeMTMC-reID, and CUHK03 are conducted to demon-
strate the effectiveness of our proposed re-id method.
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