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1Department of Economics, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
2Department of Management, Technology, and Economics, ETH Zurich, Zurich 8092, Switzerland

Correspondence should be addressed to Jonathas N. Silva; jonathas.water@gmail.com

Received 8 April 2021; Accepted 6 July 2021; Published 19 July 2021

Academic Editor: Siew Ann Cheong

Copyright © 2021 Mario A. Bertella et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)is paper aims to investigate the influence of investors’ confidence in their portfolio holding relative to their social group and of
various social network topologies on the dynamics of an artificial stock exchange. An investor’s confidence depends on the growth
rate of his or her wealth relative to his or her social group’s average wealth. If the investor’s confidence is low, the agent will change
his or her asset allocation; otherwise, he or she will maintain it. We consider three types of social networks: Barabási, small-world,
and random.)e actual stock markets’ properties are recovered by this model: high excess kurtosis, skewness, volatility clustering,
random walk prices, and stationary return rates. )e networks’ topologies are found to impact both the structuration of investors
in the space of strategies and their performance. Among other characteristics, we find that (i) the small-world networks show the
highest degree of homophily; (ii) as investors can switch to more profitable strategies, the best approach to make profitable
investments is the chartist one in Barabási and small-world topologies; and (iii) an unequal distribution and more significant
relative wealth gains occur in the Barabási network.

1. Introduction

Agent-based models study phenomena that emerge through
individual interactions [1]. One branch of this computa-
tional economics refers to simulated economic systems on
which economic theory can be tested. Such economic
“laboratories” occupy a niche between analytical models,
theoretical models, and empirical research. Artificial eco-
nomic systems are typically more complex than analytical
theory but simpler than real systems. )us, they present the
opportunity to verify more realistic theories than analytical
models while maintaining the possibility of examining and
understanding the resulting behavior. Another branch of
agent-based computational economics aims at under-
standing the emergence of global behaviors based on local
interactions. While global behaviors may be observed in
empirical data, it is difficult to show why such behaviors
occur. If the same behaviors exist in simulated models, then
it can be stated that the inclusion of certain actors in the

simulation may be sufficient to induce certain observed
behaviors. )ese branches of agent-based computational
economics are not mutually exclusive.

In standard financial theory, agents are assumed to have
rational expectations, and changes in prices mean alterations
in fundamentals rather than changes in investor sentiment.
However, empirical researches show that psychological
factors contribute decisively to investor behavior. One of the
phenomena analyzed by the behavioral finance literature
refers to overconfidence, revealing that mainstream eco-
nomic theory’s basic assumptions are violated. )e agents
show much confidence. For instance, a medical study
showed that when the doctors were 90% confident in a
diagnosis, they were right on average only 50% of the time.
Similar results were found in other studies [2]. In short,
people often bias in several directions contrary to what the
traditional economic theory states.

Networks represent patterns of connections or inter-
actions between the components of a system. A network is a
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collection of points joined together in pairs by lines. )ese
points are called vertices or nodes, and the lines that connect
them are called edges. Examples of networks include the
Internet, computers connected by data connections, and
human societies, which are sets of people joined by social
interaction. It should be noted that network structure can
have a significant impact on system behaviors. Social net-
work connections affect how people learn, form opinions,
receive news, or how they invest. Unless we know about
these networks’ structure, we cannot fully understand such
systems.

Many agent-based models (ABMs) include some be-
havioral aspects. In the following lines, we will briefly
present a few of the most important ones.

)e work of Kim andMarkowitz [3] is considered one of
the first modern ABMs of the financial market. )e back-
drop of this model was the crash of the stock market in 1987.
)e main objective of this work was to explore the rela-
tionship between portfolio insurance strategies and market
volatility. )e main finding was that portfolio insurance
strategies could destabilize the market due to their pro-
cyclical effect when accounting for their market impact,
offering a possible explanation for the severity of the stock
market crash. Brock and Hommes [4] use bifurcation theory
and numerical methods to analyze market dynamics in a
discounted value asset pricing model with heterogeneous
beliefs. )is paper reveals that an increase in the propensity
to switch between predictors may lead to instability and
complex dynamics for stock prices and returns. Another
important work is the model presented by Levy, Levy, and
Solomon [5]. When homogenous investors (with identical
memory lengths) use past information, the stock market
shows cyclic bubbles and crashes. When the memory lengths
are heterogeneous across investors, the bubbles and crashes
are less predictable and more realistic. Hommes [6] offers an
early analysis of complex behavioral models using multiple
heuristics and bounded rationality. )e author stresses
comparatively simple models for which some tractability is
achieved by integrating analytical approaches with com-
putational techniques. Chiarella et al. [7] discuss another
area of research into boundedly rational heterogeneous fi-
nancial market agent models, with particular focus on the
role of the market-clearing process, investor utility function,
price and wealth dynamics relationship, portfolio effects,
and market dynamics influence of stochastic elements.

Although many behavioral features that include investor
biases have been analyzed in previous works, there are very
few papers of agent-based models that explicitly incorporate
emotional biases identified by the behavioral finance liter-
ature. Among them, one can find the works of Takahashi and
Terano [8], Lovric [9], and Bertella et al. [10–12]. In
Takahashi and Terano [8], two types of biases are studied:
overconfidence and loss aversion.When the same number of
agents (fundamentalists and chartists) populate the market,
the share price coincides with its fundamental value. When
the number of chartists is much more significant than the
fundamentalists, the price deviates enormously from the
fundamental value, and the fundamentalists are eventually
eliminated from the market. )ere are also fundamental

price deviations when investors are overconfident and when
chartist agents act asymmetrically concerning losses and
gains. On the other hand, Lovric [9] incorporates over-
confidence in agents. )is is formalized as an under-
estimated risk of expected returns. As a result, overconfident
investors generate infrequent bubbles and crashes. In an-
other work, Lovric [9] develops a stock exchange model in
which agents or part of them are overconfident and maybe
optimistic or pessimistic. While optimism or pessimism
influences agents’ expectations of expected returns, over-
confidence relates to those expectations’ accuracy. As a
result, the author finds that bullish agents generate quite
pronounced booms and crashes, while pessimism tends to
keep the market close to the stock’s fundamental value. On
the other hand, overconfidence causes investor sentiment to
exacerbate. Bertella et al. [10] built an artificial stock market
consisting of fundamentalists and chartists. Agents differ in
their strategies for valuing stock prices and exhibit different
memory lengths and confidence levels. When the hetero-
geneity of strategies used by agents is increased, excess
volatility and kurtosis are observed. Confidence is also in-
corporated into the chartist agents, observing a positive
correlation between the average confidence and return rate.
)e introduction of confidence brings even greater volatility
to the market, reflecting the negative effect of greater irra-
tionality on market behavior. In Bertella et al. [11], the
objective is to verify, through an agent-based model, the
stock price dynamics and its return rate in an artificial fi-
nancial market composed of fundamentalists and chartists
with and without confidence. When it is incorporated in the
chartist agents, there is a higher price and rate of return
volatility to the case without confidence. Besides, kurtosis
and skewness are lower than in the case of simulation with
no confidence. )en, it is observed that the share price and
the confidence index, both generated by the model, coin-
tegrate, and there exists a causal relationship of the share
price to the confidence index, which does not exist in re-
verse. )e model is then verified with the S&P 500 and
Nikkei indices and their respective confidence indices for the
stock exchange. For this, cointegration and Granger tests are
performed, concluding that both stock exchanges’ indices
cause confidence, corroborating the model’s results. Bertella
et al. [12] study the effects of overconfidence and loss
aversion in an artificial stock exchange. )ey find that the
inclusion of confidence in 5% of chartists raises the trading
volume as empirical evidence corroborates and price vola-
tility increases considerably. On the other hand, loss aver-
sion in 5% of chartists substantially decreases the trading
volume. However, chartist traders now have a higher per-
centage of stocks in their portfolios, and a buy and hold
strategy is adopted to mitigate losses.

If there are few studies relating explicitly to behavioral
biases on artificial stock exchanges, there are even fewer
studies that explicitly include the structure of behaviorally
biased networks on an artificial stock exchange. Although
there is a multitude of agent-based models that study the
influence of the characteristics of social networks in a stock
exchange, as far as we know, there are only the articles by
Hoffmann et al. [13] and Hashanah and Alsulaiman [14] that
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include agents explicitly with emotional biases in a social
network environment. In the first study, different social
network topologies (Barabási and Albert network or torus
network) and interactions within these networks are used to
develop the model. )e price series and return rates show
some qualitative and quantitative similarities with the Dutch
stock exchange’s empirical evidence. )e second work
combines psychological biases in a specific type of social
network (Barabási network). Investors have several invest-
ment strategies: zero intelligence, fundamentalists, chartists,
and agents with adaptive strategies. One of its conclusions
refers to the efficient market hypothesis found at the macro
level but not at the micro level. Another result refers to
volatility and market capitalization. Volatility is more sen-
sitive to model parameters than market capitalization, and
the level of volatility does not affect market capitalization.

Our goal is to contribute to this research line by adding
confidence, a behavioral variable, into investors within
several social networks (Barabási, small-world, and random)
to understand how network properties affect the dynamics
of both stock prices and return rates. Besides this macro side,
our work also intends to explain a few micro issues, such as:
what kind of stock exchange emerges—in terms of the
degree of homophily, prevailing investment strategy, in-
vestment strategy propagation rate, wealth distribution,
among others—when distinct social networks are analyzed.
In our model, investors’ confidence plays a key role since it
considers how much their wealth varied in the period and
how much their social group’s wealth (to which they are
linked) changed in the same period. When investors’ con-
fidence is low—because their social group made more
money than them—they will change their investment
strategy to provide more wealth to their social group;
otherwise, they will keep it.

Our work is structured as follows. In Section 2, we present
the model, the formalization of confidence, and a brief dis-
cussion about networks. Section 3 presents the results from
the econometric point of view and fromwhere investor profile
emerges when various types of networks are incorporated.
)e final section ends with concluding remarks.

2. Model

Our model initially follows the equations of Bertella et al.
[10]. At a certain point, our work will differ from Bertella
et al. [10] with random agents’ inclusion of different ex-
pectations for chartists and network topology. )e present
model also has strong similarities with the agent-based
model with fundamentalists and noise traders developed by
Kaizoji et al. [15] and Westphal and Sornette [16] We
consider three classes of investors, referred to broadly as
fundamentalists, chartists, and random. Price and dividend
expectations are formed depending on whether investors are
fundamentalists, chartists, or random.

2.1. Strategy of Fundamental Investors. A total of N funda-
mental investors decide between two investment options
(not mutually exclusive over time): stocks, which pay a

stochastic dividend dt, and risk-free bonds that pay a
constant interest rate r with an infinitely elastic offer. )e
dividend dt paid over each time is generated by an exoge-
nous stochastic process, i.e., a first-order regressive process,
AR(1),

dt � d + ρ dt−1 − d􏼐 􏼑 + ϵt, (1)

where d is the base dividend (a constant), ϵt has a normal
distribution with zero mean and finite variance σ2 and
−1< ρ< 1. Fundamentalists predict prices and dividends of
the stock based on the stock’s dividends, i.e., based on their
fundamental values. As they do not have perfect rationality,
they estimate the future value of the dividend by applying a
simple heuristic as

E dt+1( 􏼁 � dt(1 + g), (2)

where g is the dividend growth rate given exogenously.
)e expected value of the stock price is, according to

Gordon’s model:

E pt+1( 􏼁 �
dt(1 + g)

k − g
, (3)

where k is the future dividend flow discount rate, which is an
exogenous constant. )ese two equations define
Ei,t(pt+1 + dt+1), which is a critical value of formula (6).

)e fundamental investors have identical constant ab-
solute risk aversion (CARA), and the utility function of
wealth is given by

U Wt( 􏼁 � −e
−λWi,t , (4)

where Wi,t is the wealth of agent i at time t and λ is the risk
aversion level. Each individual has the same initial wealth
value W0. For the following period t + 1, the total value of
the wealth of agent i is given by the expression as follows:

Wi,t+1 � xi,t pt+1 + dt+1( 􏼁 +(1 + r) Wi,t − ptxi,t􏼐 􏼑. (5)

In this model, each agent optimizes its allocation be-
tween stocks and fixed income bonds subject to the wealth
constraint given by expression (5). Solving the maximization
problem, we have the following result:

xi,t �
Ei,t pt+1 + dt+1( 􏼁 − pt(1 + r)

λσ2i,t,p+d

, (6)

where xi,t is the number of stocks demanded by agent i in t.
)e perceived variance of the returns, σ2i,t,p+d, corre-

sponds to the following expression:

σ2i,t,p+d � (1 − θ)σ2i,t−1,p+d + θ pt + dt − Ei,t− 1 pt + dt( 􏼁􏽨 􏽩
2
,

(7)

where parameter θ determines the weight on recent square
errors relative to past square errors.

2.2. Strategy of Chartists. Chartists have price and dividend
expectations based on past effective prices and dividends.
Our work includes three types of chartists, wherein the
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difference between them is due to the different memories of
each type of chartist. )us, we have chartists with memory
m � 1, m � 5, and m � 10, where the m values are time units.
)e expression of the expected price for the chartist follows
the formula of Barberis et al. [17]:

Et Pt−1 − Pt( 􏼁 � 􏽘

m

l�1
(1 − η) Pt−l − Pt−l−1( 􏼁ηl− 1

, (8)

where 0< η< 1 is the weight attributed to the various price
differences (dividends) between t − l and t − l − 1. For the
dividend, the expression is the same, simply replacing the
price with the corresponding dividend.

2.3. Random Agents. Random agents also populate the in-
vestor universe. )eir price estimate follows a normal distri-
bution with average Pt−1 and variance σ2r,p, while the expected
dividend also follows a normal distribution with average dt−1
and variance σ2r,d. )e expected price and dividend variances
are given exogenously.

2.4. Price Dynamic Equation. )e market price is obtained
by considering the total demanded (Bt) and offered
quantities of the stock (Ot) by all agent types. )ese are
calculated as follows:

bi,t � xi,t − xi,t−1 ≥ 0􏽮 , otherwise bi,t � 0,

oi,t � xi,t − xi,t−1 < 0􏽮 , otherwise oi,t � 0,
(9)

where bi,t and oi,t are, respectively, the demanded and offered
quantity of agent i in t. )us,

Bt � 􏽘
N

i�1
bi,t,

Ot � 􏽘
N

i�1
oi,t.

(10)

)e share market price in t will be defined as a function
of excess demand or supply in a given period, according to
the following expression:

pt � pt−1e
Bt− Ot( )/β( ), (11)

where β is a parameter to minimize market price
fluctuations.

Table 1 shows the values of the parameters used in all
simulations.

2.5. Confidence. In this model, each agent checks whether
his or her proportional wealth change variation increases or
decreases relative to his or her social group. If this rate
increases (decreases), his or her confidence also rises (falls).
Although the formula below is similar to that in Bertella et al.
[12], confidence (C) here is a function of the relative pro-
portional variation rate of wealth (W), as shown in the
following:

C(W) � c1W
3

+ c2W
2

+ c3W + c4, (12)

where the coefficients c1, c2, c3, and c4 change for all types of
investors according to the expressions in the following:

c1 �
Cmax − Cn

3W
2
m + a

3
− 3Wma

2
− W

3
m

,

c2 �
3Wm Cmax − Cn( 􏼁

3W
2
m + a

3
− 3Wma

2
− W

3
m

,

c3 �
3W

2
m Cmax − Cn( 􏼁

3W
2
m + a

3
− 3Wma

2
− W

3
m

,

c4 �
3CnW

2
ma + Cna

3
− 3Cna

2
Wm − W

3
mCmax

3W
2
m + a

3
− 3Wma

2
− W

3
m

,

(13)

and Cmax � 1, maximum confidence value; Cn � 0.5, neutral
confidence value; and Wm � W, value with neutral confi-
dence. In this case, Wm � 0.5; a � Wmax; Wmax �maximum
value that W can assume, that is, Wmax � 1.

Although confidence rises (falls) as the relative pro-
portional rate of variation of wealth increases (decreases),
Figure 1 shows that confidence does not increase at the same
rate of relative proportional change of wealth. )ere is a
range where confidence remains relatively constant.

2.6. Description of Investors’ Strategy Modulated by
Confidence. After the market price is established, equation
(11), each investor checks the rate of proportional change of
wealth and calculates his or her confidence index for every
period. As there are three kinds of investment strategies
(fundamentalist, chartist, and random), the investor may
switch his or her strategy among them as follows. After 12
units of time, the investor calculates the confidence index’s
average and compares them with Cn (the neutral confidence
index). If the confidence index’s average is more significant
than Cn, her or she maintains his or her investment strategy;
otherwise, he or she alters his or her strategy to that which
provided the highest rate of wealth growth within the social
group. In his or her new strategy (if he or she has changed),
he or she makes his or her investments accordingly and
calculates his or her confidence index for each period. After
12 units of time, he or she recalculates his or her average
confidence index. If it is greater than Cn, he or she maintains
his or her strategy. Otherwise, he or she will change it to the
one that has generated, on average, the highest relative
percentage change rate of wealth, which might be his or her
previous investment strategy or that of investors close to him
or her.

2.7. Network Topologies. )e networks in this work (random,
small-world, and scale-free or Barabási—both these terms are
used interchangeably) are populated by investors (nodes). )e
links correspond to the interactions between them, and the
wealth of each investor is proportional to the connections he or
she has.)e properties of the networks are described in Table 2.
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As explained in Section 2.6, agents will compare it with the
neutral confidence index and change or not change their be-
haviors after calculating their average confidence index. If af-
firmative, they will change it according to the fundamental,
chartist, or random agents’ expected price and dividend
equations, as addressed in Sections 2.1–2.3.

We are interested in the structure of a network largely
determined by how the relationship between nodes or vertices is
formed. In what follows, we briefly describe the three main
models of complex networks (random, small-world, and scale-
free) used in this work:

(a) Random networks [18–20]: in this model, undirected
links or edges are randomly included between a fixed

N number of nodes. Each edge is represented based
on some probability p. )e number of edges that
connects each node of the network (vertex degree)
follows a Poisson distribution with a maximum limit
N.)e expected degree of any given node is given by
equation (14), where k is the total number of edges
incident on a given node:

〈k〉 � (N − 1)p. (14)

)is model produces random networks with N
vertices and k edges, called random network ER. An
example of a random network is shown in
Figure 2(a).

(b) Small-world networks: many networks are inter-
connected, forming a small number of connections
on each node [21]. In this model, the average dis-
tance between two nodes of a network does not
exceed a small number of vertices. Hence, the ex-
pression is small-world. Such an effect is obtained in
networks where most nodes are interconnected
through a minimal path, also known as geodesic
distance. An example of this type of network may be
friends, with some having distant relatives in other
parts of the world. Using these local and distant
connections within the group, research shows that it
is possible to connect any two people on average in
just six steps and is called a small-world. Figure 2(b)
is an example of a small-world network.

(c) Scale-free networks: many networks have some very
peculiar characteristics. One of the main features,
called the preferred connection, is the tendency for a
new node to connect to a network vertex with a high
degree of connections. )is characteristic means
networks with few highly connected vertices, known
as hubs, and many nodes with few connections [22].
Networks with these qualities are called scale-free
due to the network representation. In other words,
this means that scale-free networks are those whose
degree distribution follows a power law. Such net-
works exist in various systems, such as the Internet,
the Web, and scientific papers’ citation networks.
Figure 2(c) represents an example of a scale-free
network.

In what follows below, we will distinguish two cases:

(a) No network effect: where the expected value of the
price and dividend of each agent is fixed throughout
the entire simulation (according to the equations
determined for each type of agent—fundamentalist,
random, and chartist)

(b) Network effects: in contrast, the other simulations
investigate “network effects,” in the sense that each
agent can change his or her way of calculating the
expected value of price and dividend according to
the specified rules, based on the type of the network
and the links each agent has in the same network

Table 1: Values of the parameters.

Parameters Values
Number of investors 100
d 4
dt−1 4
ρ 0.95
mean εt 0
var εt 0.0742
pt−1 20
r 0.10
β 2000
λ 0.5
Wi,t−1 100
Ei,t−1(pt+1 + dt+1) 22
σ2i,t−1,p+d 4
xi,t−1 1
g 0.015
k 0.25
θ 0.01
η 0.25

C

Cmax

Cmin

Wmin Wm Wmax

W

Cn

Figure 1: Confidence as a function of the relative rate of wealth
growth.

Table 2: Properties of the networks used in the simulation.

Random Small-world Scale-free
Average degree 10.56 10 10.26
Diameter 4 5 3
Average path length 2.182 2.843 2.161
Density 0.107 0.101 0.104
Modularity 0.246 0.534 0.234
Number of communities 7 3 6
Average clustering coefficient 0.106 0.54 0.204
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3. Results and Discussion

3.1. Econometric Analysis. Figure 3 shows the returns of “no
network effect” and “network effects” (small-world, scale-
free, or random network included in the agent-based
model), considering 60% of fundamentalist agents, 20%
chartists, and 20% random. It is noteworthy that the be-
havior of simulated data using networks presents episodes of
increased volatility concentrated in specific periods (vola-
tility clustering), alternating moments of relative stability.
)is behavior is one of the stylized facts related to the
empirical analysis of returns in the time series literature
[23, 24].

Table 3 shows the descriptive statistics of rates of return
for simulated and actual data (Dow Jones between 3/31/2009
and 12/16/2020).

)e standard deviations of simulated returns with net-
works indicate greater dispersion than the calculated dis-
persion for actual data (except for small caps data).
Interestingly, the small-world network model showed the
three network models’ highest standard deviation, although
the difference between them is very small. Excess kurtosis of
simulated returns with networks indicates heavier tails,
consistent with actual data. )e observed exception refers to
simulated data with no network effects whose kurtosis is very
close to 3 (normal distribution value). )e Jarque–Bera test
rejected the hypothesis of normality for all simulated returns
with networks and also for the actual data. )e normality
hypothesis could not be rejected for simulated returns with
no network effect, in line with the kurtosis result presented
above. All results point to negative skewness.)e magnitude
of simulated data with networks is compatible with the
actual data. In summary, with any type of network, the
kurtosis and skewness (in absolute value) of the return rate
are much higher than the model with no network effect and
are in line with real stock market data.

Table 4 shows the ADF test results for unit root detection
according to the specifications with constant and constant
and trend terms. In the case of prices, the results indicate
that the unit root hypothesis cannot be rejected at the 5%
level of statistical significance, except for the simulated price
in the model with no network effects and for small caps in
the specification with constant and trend (the KPSS with a
trend term test rejects the unit root hypothesis for small
caps). In the case of returns, the unit root hypothesis is
rejected at the level of 1% of statistical significance for all
variables. )ese results are in line with the stylized facts
about stock prices and returns: prices generally behave like a
nonstationary series (random walk), whereas returns behave
like stationary series. )e KPSS and Phillips–Perron tests
were also performed, and the conclusions remain.

Conditional volatility models (GARCH and its variants)
were developed throughout the 1980s (see Engle [25] and
Bollerslev [26]. )ese models aim to adequately explain a
stylized fact related to macroeconomic and financial series,
specifically the phenomenon known as volatility clustering,
where variations of great magnitude tend to focus on specific
periods. Technically, in GARCHmodels, the goal is to model
the second moment of the series under analysis explicitly.

Let εt be the disturbance of a time series. If this follows an
ARCH (q) process, it may be represented by

εt � σtut, (15)

where

ut ∼ i.i.d. (0, 1),

σ2t � ω + 􏽘

q

i�1
αiε

2
t−i.

(16)

One of the ARCH model (q) problems is the relatively
large number of parameters required for proper adjustment.

(a) (b) (c)

Figure 2: Complex networks. (a) Random, (b) small-world, and (c) scale-free. )e size of the node is proportional to the degree of
connectivity.
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A potentially more parsimonious representation is given by
the GARCH (p, q) model, defined by

σ2t � ω + 􏽘

q

i�1
αiε

2
t−i + 􏽘

p

j�1
βiσ

2
t−j. (17)

In general, qARCH> q+ pGARCH. For many economic
series, the GARCH (1, 1) model provides a good fit:

σ2t � ω + αε2t−1 + βσ2t−1. (18)

It can be demonstrated that the GARCH model has
kurtosis greater than 3 and that the volatility clustering
phenomenon is governed by parameter α.

An alternative specification represented by the expo-
nential GARCH (EGARCH) model allows for the incor-
poration and testing of asymmetric effects in the series, i.e.,
adverse shocks are followed by more intense volatility in-
creases compared to positive shocks. )e EGARCH model
(1, 1, 1) is given by

0
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23

167 499 665 831 997333

(a)

0
0.05

0.1

0.15

0.2

0.25

0.3

167 499 665 831 997333

(b)

0
0

0.05

0.1

0.15

0.2

0.25

0.3

167 499 665 831 997333

(c)

0
0.05

0.1

0.15

0.2

0.25

0.3

167 499 665 831 997333

(d)

Figure 3: Simulated model of return rate dynamics. (a) No network effect, (b) Barabási, (c) random, and (d) small-world.

Table 3: Statistical summary.

Returns (r) N Standard deviation Excess kurtosis Skewness Jarque–Bera normality test
No network effect 1000 0.012 0.005 −0.033 0.178 (ns)
Barabási 1000 0.024 3.624 −0.324 564.690∗∗∗
Random 1000 0.027 3.767 −0.624 656.368∗∗∗
Small-world 1000 0.028 2.670 −0.583 353.662∗∗∗

Real data
Dow Jones 3320 0.010 23.170 −0.934 74727.3∗∗∗
Small caps (Dow Jones 3409 0.013 13.802 −0.959 27572.3∗∗∗
Large caps (Dow Jones 3409 0.010 17.718 −0.899 45039.4∗∗∗
∗∗∗)e null hypothesis of normality is rejected at 1% level; ns represents that the null hypothesis is not rejected.

Complexity 7



ln σ2t􏼐 􏼑 � ω + α
εt−1

σt−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− E

εt−1

σt−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣􏼠 􏼡 + β ln σ2t−1􏼐 􏼑 + c

εt−1

σt−1
􏼠 􏼡.

(19)

It can be demonstrated that if α> 0, the model is
compatible with volatility clustering, and if c< 0, the model
has an asymmetric effect.

Following specifications (18) and (19), we achieved the
following results.

As seen in Tables 5 and 6, the simulated models’ mag-
nitude is mostly compatible with the actual data. On the
other hand, parameter c is not significant in the simulated
models (its signal is correct in three of the four simulations).

Finally, in Table 7, we show the price volatility of several
models and the actual data. We reveal that the small-world
model presents the highest volatility closely followed by the
random model among the models that include networks.
However, this volatility is much smaller than the actual data.
It is interesting to note that the introduction of networks
makes stock prices much more volatile.

3.2. Network Analysis. With the incorporation of networks
in the model, some profiles enabled only with the intro-
duction of networks were investigated. )e degree of

Table 4: ADF unit root test.

Variable Deterministic term Lagged
differences Test statistic

Prices: real data

Dow Jones Constant 27 −0.073
Constant and trend 27 −3.171

Small caps Constant 9 −0.689
Constant and trend 9 −4.060(∗∗∗)

Large caps Constant 27 0.805
Constant and trend 27 −2.081

Prices: simulated data
No network
effect

Constant 14 −3.120(∗∗)
Constant and trend 14 −2.845

Barabási Constant 26 −1.389
Constant and trend 26 −1.915

Random Constant 17 −1.766
Constant and trend 17 −3.049

Small-world Constant 17 −1.812
Constant and trend 17 −3.199

Returns: real data

Dow Jones Constant 12 −16.914(∗∗∗)
Constant and trend 12 −16.913(∗∗∗)

Small caps
(DJ)

Constant 12 −16.450(∗∗∗)
Constant and trend 12 −16.455(∗∗∗)

Large caps
(DJ)

Constant 12 −17.293(∗∗∗)
Constant and trend 12 −17.290(∗∗∗)

RETURNS: simulated data
No network
effect

Constant 5 −5.032(∗∗∗)
Constant and trend 5 −5.185(∗∗∗)

Barabási Constant 21 −4.477(∗∗∗)
Constant and trend 21 −4.831(∗∗∗)

Random Constant 19 −4.028(∗∗∗)
Constant and trend 19 −4.856(∗∗∗)

Small-world Constant 8 −3.446(∗∗∗)
Constant and trend 8 −4.593(∗∗∗)

Number of lagged differences determined by Akaike information criteria.
)e symbols ∗∗∗ and ∗∗ indicate statistical significance at 1% and 5% levels,
respectively.

Table 5: GARCH (1, 1) estimation results.

Variable No network
effect Variable Barabási

Parameter Estimate Sig. Parameter Estimate Sig.
Omega 1.267e− 05 ∗∗∗ Omega 4.451e− 06 ∗

Alpha 0.082 ∗∗∗ Alpha 0.111 ∗∗∗

Beta 0.829 ∗∗∗ Beta 0.884 ∗∗∗

Variable Random Variable Small-
world

Parameter Estimate Sig. Parameter Estimate Sig.
Omega 1.540e− 05 ∗∗∗ Omega 5.922e− 06 ∗∗∗
Alpha 0.169 ∗∗∗ Alpha 0.164 ∗∗∗

Beta 0.808 ∗∗∗ Beta 0.831 ∗∗∗

Variable Dow Jones Variable Small caps
Parameter Estimate Sig Parameter Estimate Sig.
Omega 2.414e− 06 ∗∗∗ Omega 3.054e− 06 ∗∗∗
Alpha 0.129 ∗∗∗ Alpha 0.095 ∗∗∗

Beta 0.846 ∗∗∗ Beta 0.885 ∗∗∗

Variable Large caps
Parameter Estimate Sig.
Omega 2.557e− 06 ∗∗∗

Alpha 0.122 ∗∗∗

Beta 0.853 ∗∗∗

)e symbols ∗∗∗, ∗∗, and ∗ indicate significance at 1%, 5%, and 10%,
respectively.

Table 6: EGARCH (1, 1) estimation results.

Variable No network
effect Variable Barabási

Parameter Estimate Sig. Parameter Estimate Sig.
Omega −0.911 ∗∗∗ Omega −0.240 ∗∗∗

Alpha 0.145 ∗∗∗ Alpha 0.218 ∗∗∗

Beta 0.910 ∗∗∗ Beta 0.992 ∗∗∗

Gamma −0.004 Gamma 0.010

Variable Random Variable Small-
world

Parameter Estimate Sig. Parameter Estimate Sig.
Omega −0.535 ∗∗∗ Omega −0.425 ∗∗∗

Alpha 0.324 ∗∗∗ Alpha 0.316 ∗∗∗

Beta 0.964 ∗∗∗ Beta 0.978 ∗∗∗

Gamma −0.008 Gamma −0.002
Variable Dow Jones Variable Small caps
Parameter Estimate Sig Parameter Estimate Sig.
Omega −0.482 ∗∗∗ Omega −0.318 ∗∗∗

Alpha 0.176 ∗∗∗ Alpha 0.143 ∗∗∗

Beta 0.963 ∗∗∗ Beta 0.977 ∗∗∗

Gamma −0.155 ∗∗∗ Gamma −0.118 ∗∗∗

Variable Large caps
Parameter Estimate Sig.
Omega −0.439 ∗∗∗

Alpha 0.162 ∗∗∗

Beta 0.966 ∗∗∗

Gamma −0.142 ∗∗∗

)e symbols ∗∗∗, ∗∗, and ∗ indicate significance at 1%, 5%, and 10%,
respectively.
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homophily (or network homogeneity) is one of these
characteristics.

Homophily (h) of a network tends to connect nodes with
the same characteristics. In our model, the characteristic
analyzed is the investment strategy: fundamentalist, chartist,
and random. Its quantification is made by comparing the
number of edges that connect nodes of similar character-
istics (Q) with the expected number of these connections if
they were perfectly grouped (Qmax), that is,

h �
Q

Qmax
, (20)

where

Q � 􏽘
i,j

Ai,j −
xixj

2m
􏼒 􏼓δi,j,

Qmax � 2m − 􏽘
i,j

xixj

2m
􏼒 􏼓δi,j,

(21)

and Ai,j are the elements of the adjacency matrix A that
defines a network, xi is the degree of node i,m is the number
of edges of the network, and δi,j is the Kronecker’s delta. )e
closer h is to the unit, the more homogenous the network
will be.

Figure 4 shows the degree of homophily in the Barabási
network, the random network, and the small-world network.

By making a weighted average of the degree of homo-
phily of the three networks, we have Table 8.

As observed, the small-world network has the highest
degree of homophily. )is result seems natural since the
small-world network has the highest clustering.

Given the possibility of investors switching investment
strategies between fundamentalists, chartists, or technical
and random, as explained in 1.6 above, we explore the in-
vestment strategy dynamics under the three network
topologies.

Figures 5(a)–5(c) show the changing strategies over time.
Each curve corresponds to the percentage fraction of the
total of agents that adopt a specific strategy. )e winning
strategy is considered one in which most agents choose to
adopt, that is, the highest percentage.

Table 9 summarizes the above results.
As seen above, in the Barabási network, investors have

mostly become chartists with memory 1, followed by fun-
damentalists. )e winning strategy was the fundamentalist

in the random network, while in the small-world network
the chartists with memory 10 prevailed.

Figure 6 shows the initial (the beginning of the simu-
lation) and final configurations (the end of the simulation) of
the distribution of agent types (represented by different
colors), where each node size is proportional to its initial
wealth (Figures 6(a), 6(c), and 6(e)) and proportional to its
average wealth (Figures 6(b), 6(d), and 6(f )) in all the three
networks.

We also investigated the cumulative distribution func-
tion of the absolute value of normalized returns. )e power-
law’s behavior with a network is close to 3, corresponding to
one of the stylized facts. )e closest value to 3 is obtained
with the small-world network. Table 10 summarizes the
results.

We also checked the contagion dynamics, i.e., in what
type of network the most significant percentage of in-
vestors follows the social group’s investment strategy
with the highest relative percentage gain. Figure 7 shows
the answer, and Table 11 summarizes the results. )e
dynamics are greater in the small-world network, as
shown in the figure.

)e spread rate λ is defined as the ratio of the number of
agents that have changed their initial strategy, Nc, to the
total number of agents, Nt, that is,

λ �
Nc

Nt

. (22)

Its value can vary from 0, the value in which all agents
maintain their initial strategies, to 100%, when all agents
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Figure 4: Degree of homophily according to the network topology.
)e small-world network presents greater values (its groups of
connected agents are more homogenous concerning the type of
strategy), followed by the Barabási network, and finally the random
network.

Table 7: Price volatility.

Prices (p) N Coefficient of variation
No network effect 1000 0.014
Barabási 1000 0.032
Random 1000 0.047
Small-world 1000 0.050
Real data
Dow Jones 3320 0.349
Small caps (Dow Jones) 3409 0.341
Large caps (Dow Jones) 3409 0.373

Table 8: Average degree of homophily according to network
topology.

Barabási Random Small-world
0.1939 0.1136 0.3872
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changed their initial strategies. When reaching the highest
value, or peak value, λ may decrease because several agents
resume their initial strategy.

As observed, the largest spread occurs in the small-world
network followed by the Barabási network, an expected result
since the small-world network has the highest clustering.

We also investigated in which network the highest
relative percentage gain in wealth occurred. )e highest
percentage gain is in relation to his or her original invest-
ment strategy. Figure 8 shows the percentage gain per agent
for each type of network.

As can be seen, the largest percentage gain occurred in
the Barabási network, where, for instance, the first agent
gained about 13% more than if he or she did nothing (and
kept his or her original investment strategy). In contrast, in
the small-world network, the largest gain was about 3.5%.
Some investors lost money in small-world and random
networks. Table 12 summarizes these results.

We also investigated the wealth distribution in all net-
works analyzed.)e Lorenz curves in Figure 9 reveal that the
greatest inequality is found in the Barabási network, fol-
lowed by the random network. )e small-world network
shows the lowest wealth inequality. We also calculated the
Gini coefficient for all networks, and the results shown in
Table 13 corroborate the Lorenz curves.

3.3. Sensitivity Analysis. Sensitivity analysis determines how
vulnerable the outputs of a model are to parameter specifica-
tions. In other words, it is a look at how changing model
parameters affect model findings. We analyze the impacts of
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Figure 5: Strategy Dynamics (fundamentalist–red, random–blue, and chartist–green) analyzed in the networks: (a) Barabási, (b) random,
and (c) small-world. )e dynamics are translated in terms of the fraction or percentage of agents that adopt one of the three strategies and
vary each from 0% (no agent adopts the strategy) to 100% (all agents adopt the same strategy).

Table 9: )e average percentage of agents who adopt a particular
strategy throughout the simulation.

Fundam. Random Chartist
1

Chartist
5

Chartist
10

Barabási 30.2 17.1 44.5 5.9 2.3
Random 66.4 4.8 13.2 0 15.6
Small-world 8.8 12 0 0 79.2
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different start conditions on the model outcomes to evaluate
how sensitive a model is.

In our model, given its stationarity, we picked the return
rate as an output variable to examine its robustness with respect
to changes of parameters. )e stock price would not be a
suitable choice since it is nonstationary. To test the sensitivity of
our results, we ran ten simulations for each parameter value,
totaling approximately 500 simulations of 1000 time steps. )e
parameters, the corresponding network, and the output results
are described in Table 14.

)e range of the first parameters (L, IN, RP, and LP) were
selected based on what could be defined using the Network
Workbench software for each type of network.

In the above simulations, we vary the parameters (L,
IN, RP, and LP) by approximately plus or minus 50%
around their central values used in most of the

simulations. For example, the value in the paper for
parameter L, the number of connections for new nodes in
the Barabási network, is 6, so we scan it in the range from
2 to 10. Because the value used in the paper for parameter
IN, the number of initial neighbors for the small-world
network, is 5, we scan it in the range from 3 to 7. Likewise
for the parameters RP, Rewiring Probability, and LP,
Linking Probability.

)e other parameters, r (Interest Rate), β (to lessen market
price fluctuations), and λ (risk aversion coefficient), were in-
vestigated because of their importance in stock exchange dy-
namics. For the three types of networks (Barabási, small-world,
and random), we evaluated different values for the three pa-
rameters (r, β, and λ).

As can be seen from the final three columns of Table 14,
the mean and standard deviation of the returns for the

(a) (b) (c)

(d) (e) (f )

Figure 6: Initial (a, c, e) and final (b, d, f ) configurations of agent distribution for random (a, b), small-world (c, d), and Barabási networks
(e, f ). )e term initial refers to the beginning of the simulation and the term final refers to the end of the simulation.)e size of each node is
proportional to the initial wealth (a, c, e) and to the average wealth of the entire simulation (b, d, f ). Graphical representation of the networks
used in the simulations. Each node corresponds to an agent (100 in all). Each color of the node corresponds to a type of agent, the
fundamentalists being pink; the random agents being green, orange, blue, and black; the chartists of memory 1, 5, and 10. A line represents
the link between two agents. In cases (a), (c), and (e), we see how the types of agents are distributed at the beginning of the simulation. In (b),
(d), and (f), we observe the configuration of the types of agents at the end of the simulation for each type of network.)e size of each node is
proportional to the respective wealth of the agent at the instant considered. (a, b) Random network. (c, d) Small-world network. (e, f )
Barabási network.

Table 10: Power law exponent value calculated from the cumulative distribution of the return rates.

No network effect Barabási Random Small-world
4.59 3.18 3.24 3.15
)e value of 3 is the reference pointed out as a stylized fact. )e addition of a network to the model makes its behavior approximate well with the observed
empirical data.
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Figure 7: Investment strategy spread rate (%) according to the network topology. For the Barabási network (in red), there is an increasing
propagation of strategy from the initial moment of the simulation; that is, the agents are leaving their initial strategies for others, reaching
rapidly maximum values from which they decrease until reaching low values (less than 10). )is indicates that a significant portion of the
agents, after switching to a given strategy, return to their initial strategies. In the small-world network (in green), themaximum values (of the
same order as the Barabási network) are reached over a longer time and decrease to values that are not too low, that is, the dynamics of
change is such that a larger portion of agents go back to their initial strategy and change again. As for the random network (blue), its
maximum value is well below that of the other networks.

Table 11: Average propagation rate (%) according to the network.

Barabási Random Small-world
13.7 9.1 15.5
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(%)

Random
S. world
Barabási

Figure 8: Average relative percentage gain of wealth of the 100 agents for each type of network. Values are ranked from 1 (highest gain) to
100 (greatest loss). )e way agents are connected in the Barabási network favors a dynamic of strategy change. On average, most agents are
richer than if they did not change their strategy, with a minimum number of agents with almost zero losses.)e random network has similar
behavior with slightly lower gain values than the Barabási network for most agents.)e small-world network has lower values of wealth gain
than the other two networks and higher values of wealth loss for about 30% of investors compared to the other networks.
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Table 12: Relative average wealth gain (%).

Barabási Random Small-world
2.9 2.3 0.8

L 
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Barabási
S. world
Random

Figure 9: Lorenz curves for all networks calculated from the average wealth of each agent throughout the simulations. In the horizontal axis,
we value the accumulated proportion of agents (p), and in the vertical axis, the corresponding value of the accumulated proportion of wealth,
L (p).

Table 13: Gini coefficient.

Network Gini coefficient
Barabási 0.288
Small-world 0.050
Random 0.148

Table 14: Sensitivity analysis.

Parameter
(1)

Parameter
ranges
(2)

Network
(3)

Parameter
value used in
this paper/

corresponding
average return
rate (A) and
std dev of the
return rate

(SD)
(4)

Average return rate between
the parameter ranges

(5)

Average std deviation of the return
rate between the parameter ranges

(6)

Link set by new
nodes (L) 2≤ L≤ 10 Barabási

6
0.1910≤A≤ 0.1968 0.0271≤ SD≤ 0.0431A SD

0.192 0.0399

Number of initial
neighbors (IN) 3≤ IN≤ 7 Small-

world

5
0.1933≤A≤ 0.1947 0.0343≤ SD≤ 0.0485A SD

0.1947 0.0417
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parameter values used in this study (column 4 of Table 14)
show that our model is extremely resilient, as they are very
close to the mean and standard deviation of the returns for
the other parameter values reported in this sensitivity
analysis (columns 5 and 6).

4. Conclusions

We have presented an agent-based model that includes a be-
havioral variable (confidence), which changes according to the
variation of the investor’s wealth compared to other investors’
wealth in his or her social network. We have investigated this
model’s properties on three types of social networks (small-
world, scale-free, and random). )e combination of a

psychological variable (confidence) with social networks pro-
duced results consistent with empirical facts. )e incorporation
of networks in conjunction with the behavioral variable sheds
light on several properties that are little explored in this liter-
ature, such as the degree of homophily and the level of wealth
inequality within social network topologies of a virtual stock
exchange.

It is noteworthy that the behavioral (confidence) variable
plays a crucial role within the model, as it determines that the
investor–whether fundamentalist, chartist, or random–decides
to change or not his or her investment strategy once confidence
changes according to his or her wealth growth rate in com-
parison with the investor’s average wealth growth rate in his or
her social network. )e confidence is not very volatile and is

Table 14: Continued.

Parameter
(1)

Parameter
ranges
(2)

Network
(3)

Parameter
value used in
this paper/

corresponding
average return
rate (A) and
std dev of the
return rate

(SD)
(4)

Average return rate between
the parameter ranges

(5)

Average std deviation of the return
rate between the parameter ranges

(6)

Rewiring
probability (RP) 0.05≤RP≤ 0.15 Small-

world

0.10
0.1934≤A≤ 0.1967 0.0369≤ SD≤ 0.0425A SD

0.1947 0.0417

Linking
probability (LP) 0.075≤ LP≤ 0.15 Random

0.10
0.1927≤A≤ 0.1950 0.0392≤ SD≤ 0.0453A SD

0.1945 0.0436

Interest rate (r) 0.075≤ r≤ 0.125 Barabási
0.10

0.1846≤A≤ 0.1920 0.0399≤ SD≤ 0.0427A SD
0.1920 0.0399

Beta (β) 1500≤ β≤ 2500 Barabási
2000

0.1908≤A≤ 0.1952 0.0334≤ SD≤ 0.0527A SD
0.1920 0.0399

Risk aversion (λ) 0.3≤ λ≤ 0.9 Barabási
0.5

0.1920≤A≤ 0.1952 0.0303≤ SD≤ 0.0619A SD
0.1920 0.0399

Interest rate (r) 0.075≤ r≤ 0.125 Small-
world

0.10
0.1854≤A≤ 0.1992 0.0417≤ SD≤ 0.0438A SD

0.1947 0.0420

Beta (β) 1500≤ β≤ 2500 Small-
world

2000
0.1926≤A≤ 0.1968 0.0285≤ SD≤ 0.0630A SD

0.1947 0.0420

Risk aversion (λ) 0.3≤ λ≤ 0.9 Small-
world

0.5
0.1939≤A≤ 0.1958 0.0252≤ SD≤ 0.0702A SD

0.1947 0.0420

Interest rate (r) 0.075≤ r≤ 0.125 Random
0.10

0.1867≤A≤ 0.1973 0.0420≤ SD≤ 0.0441A SD
0.1945 0.0436

Beta (β) 1500≤ β≤ 2500 Random
2000

0.1928≤A≤ 0.1957 0.0292≤ SD≤ 0.0517A SD
0.1945 0.0436

Risk aversion (λ) 0.3≤ λ≤ 0.9 Random
0.5

0.1945≤A≤ 0.1970 0.0287≤ SD≤ 0.0671A SD
0.1945 0.0436
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enjoying a large interval of stability. Also, the investor only
changes his or her strategy when his or her confidence value
reaches below Cn, a neutral confidence index. In other words,
the fundamentalist, chartist, or random investor will change his
or her strategy to a more profitable one whenever he or she has
little confidence in his or her current investment strategy.

)e actual stock exchange data’s statistical properties are
recovered in our model: high excess kurtosis, skewness,
volatility clustering, random walk prices, and stationary
return rates. We also investigated several types of networks.
For instance, the small-world network has the highest degree
of homophily. As the investors can switch to more profitable
strategies, we found that the fundamentalist strategy is
prevalent only in the random network. In the other networks
(Barabási and small-world), the best approach to make
profitable investments is the chartist one, which is a sur-
prising outcome since the network models are compatible
with the random walk hypothesis. We also investigated the
cumulative distribution function of the absolute value of
normalized returns. )e exponent of the power-law distri-
bution is found close to 3, in agreement with stylized em-
pirical facts. )e most extensive spread of social contagion
occurs in the small-world network, an expected result since
this network topology has the highest clustering. )e Bar-
abási network has uneven income distribution and a greater
relative gain, followed by the random network. With regard
to sensitivity analysis, we showed that the model outputs are
robust. In terms of the mean and standard deviation of the
stock return rate, changes in the values of various parameters
(unique to each social network and general to all networks)
yield fairly comparable outcomes. Finally, for future studies,
we suggest looking into the effects of social networks on the
creation of bubbles and collapses on the stock exchange and
determining what type of social network a stock exchange
may be characterized into.
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