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*e Caputo conformable derivative is a new Caputo-type fractional differential operator generated by conformable derivatives. In
this paper, using Banach fixed point theorem, we obtain the uniqueness of the solution of nonlinear and linear Cauchy problem
with the conformable derivatives in the Caputo setting, respectively. We also establish two comparison principles and prove the
extremal solutions for nonlinear fractional p-Laplacian differential system with Caputo conformable derivatives by utilizing the
monotone iterative technique. An example is given to verify the validity of the results.

1. Introduction

In recent years, fractional calculus has been widely devel-
oped in pure mathematics and applied mathematics [1–7].
*e characteristic of fractional calculus is that there are
many different fractional derivatives or integrals, like Rie-
mann–Liouville (RL), Caputo, Hadamard, Capu-
to–Hadamard types, and so on [1, 2, 8, 9]. So, the scholars
have the opportunity to choose the most appropriate op-
erators to describe complex problems in the real world. We
recall some definitions from the traditional fractional cal-
culus [1, 2].

*e left RL fractional integral of order β> 0 is given by

R
a I

β
f(t) �

1
Γ(β)

􏽚
b

a
(t − s)

β− 1
f(s)ds. (1)

*e left RL fractional derivative of order β> 0 is defined
as

aD
β
f(t) �

d
dt

􏼠 􏼡

n

aI
n− β

f(t) �
(d/dt)

n

Γ(n − β)
􏽚

t

a
(t − s)

n− β− 1
f(s)ds.

(2)

*e left Caputo fractional derivative of order β> 0 is
given by

C
a D

β
f(t) � aI

n− β
f

(n)
(t) �

1
Γ(n − β)

􏽚
t

a
(t − s)

n− β− 1
f

(n)
(s)ds.

(3)

However, some basic properties such as product rule and
chain rule are not valid for the RL and Caputo-type frac-
tional derivatives. In 2014, Khalil et al. [10] defined a new
fractional differential operator named the conformable
derivative which satisfies the product rule and some other
properties. In 2015, Abdeljawad [11] defined the left con-
formable integral aIα and derivative aTα as

aI
α
f(t) �

1
Γ(α)

􏽚
b

a
(s − a)

α− 1
f(s)ds,

aT
α
f(t) � lim

ε⟶0

f t + ε(t − a)
1− α

􏼐 􏼑 − f(t)

ε
,

(4)

where α ∈ (0, 1], t> 0, f: [a, +∞)⟶ R. If f is differen-
tiable, then aTαf(t) � (t − a)1− αf′(t).
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In 2017, Jarad et al. [12] established the conformable calculus
in bothRL andCaputo setting based on thework ofAbdeljawad.

*e left RL conformable integral of order
β ∈ C,Re(β)> 0, is given by

β
aI

α
f(t) �

1
Γ(β)

􏽚
t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

β− 1

f(s)
ds

(s − a)
1− α.

(5)

*e fractional integral (5) coincides with the traditional
RL fractional integral (1) if α � 1.

Let Iα([a, b]) � f: [a, b]⟶ R; f(t) �􏼈 aIαψ(t)+ f(a)

for someψ ∈ Lα(a)}, where Lα(a) � ψ: [a, b]⟶ R;􏼈

aIαψ(t) exists for any t ∈ [a, b]}. If n ∈ N+, f ∈ Cn
α,a

[a, b] � f: [a, b]⟶ R; n− 1
a T

α
f ∈ Iα([a, b])􏼈 􏼉, the left

conformable derivative of order β ∈ C,Re(β)> 0, in the
Caputo setting is defined by

Cβ
a D

α
f(t) �

n− β
a I

α n
aT

α
f(t)( 􏼁

�
1
Γ(n − β)

􏽚
t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

n− β− 1

n
aT

α
f(s)

(s − a)
1− α ds,

(6)

where n � [β] + 1, n
aTα � aT

α
aT

α
. . . aT

α
􏽼√√√√√√􏽻􏽺√√√√√√􏽽

n times

and

aTαf(t) � (t − a)1− αf′(t). *e fractional derivative (6)
coincides with the traditional Caputo fractional derivative
(3) if α � 1. Readers can see [13, 14] for more details.

It is well known that the monotone iterative technique
coupled with the method of upper and lower solutions is an
effective mechanism to obtain extremal solutions for nonlinear
problems [15]. By using this method, scholars have studied the
periodic boundary value problems (BVPs) [16–24], anti-peri-
odic BVPs [25–27], and integral BVPs [28, 29] of integer-order
differential equations. Later, this method was widely used to
study the initial value problems, periodic BVPs or integral BVPs
of RL and Caputo fractional differential equations [30–35].

Mathematical modeling of the real world in physics and
mechanical and dynamical systems often involves the
p-Laplacian operator. In order to study the turbulent flow in
a porous medium, Lejbenson [36] introduced the model of
differential equation with the p-Laplacian operator. Many
results about the fractional differential equations with the
p-Laplacian operator were also studied [37–39]. However,
the Caputo conformable fractional differential equations
with the p-Laplacian operator have not been considered.

In [37], Liu et al. studied the following problem:

D
β
0+ ϕp

C
D

α
0+ x(t)􏼐 􏼑􏼐 􏼑 � h t, x(t),

C
D

α
0+ x(t)􏼐 􏼑, t ∈ (0, 1),

C
D

α
0+ x(0) � x′(0) � 0,

x(1) � r1x(η),
C

D
α
0+ x(1) � r2

C
D

α
0+ x(ξ),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where 1<α,β≤2, r1, r2≥0, h ∈C([0,1] × t[0,+∞)n × q (− ∞,

0]h,[ 0,+∞)), and ϕp(s) is the p-Laplacian operator. *e
extremal solutions were obtained under the assumption that

h t, w1, z1( 􏼁≤ h t, w2, z2( 􏼁, for 0≤w1 <w2, z1 > z2 ≥ 0. (8)

Inspired by the above work, we study the nonlinear
fractional p-Laplacian differential system involving the
Caputo conformable derivatives as follows:

Cβ
a D

α
ϕp

Cc
a D

α
x(t)􏼐 􏼑􏼐 􏼑 � h t, x(t),

Cc
a D

α
x(t)􏼐 􏼑, t ∈ [a, b],

k
aT

α
ϕp

Cc
a D

α
x(a)􏼐 􏼑 � bk, x(a) � 􏽚

b

a
w(s, x(s))ds + ρ,

⎧⎪⎪⎨

⎪⎪⎩

(9)

where n − 1< β≤ n, n � [β] + 1, 0< c, α≤ 1, ρ≥ 0,
h ∈ C([a, b] × R2,R), w ∈ C([a, b] × R,R), bk(k � 0, 1,

. . . , n − 1) are real numbers, ϕp(s) � |s|p− 2s(p> 1) is the
p-Laplacian operator, (ϕp)− 1 � ϕq, (1/p) + (1/q) � 1, and
Cδ
a D

α is Caputo conformable derivative with order δ(� β, c).
To obtain the extremal solutions of problem (9), we need

consider the nonlinear Cauchy problem
Cβ
a D

α
z(t) � g(t, z(t)),

k
aT

α
z(a) � bk, t ∈ (a, b],

(10)

and the linear Cauchy problem
Cβ
a D

α
z(t) � σ(t) − λz(t),

k
aT

α
z(a) � bk, t ∈ [a, b].

(11)

*e main contributions of this paper are as follows:

(i) We obtain the unique solution to problem (10) and
construct the approximate solutions to problem (11)
in terms of Mittag-Leffler function. *e corre-
sponding results of problem (10) and problem (11)
can be seen as a generalization of *eorem 3.25 and
*eorem 4.3 in [1], respectively.

(ii) Based on two comparison principles, we obtain the
extremal solutions to problem (9) by using the
monotone iterative technique. Different from [37],
the restrictive condition of function h is no longer
needed in this paper.

*e remainder of this paper is organized as follows. In
Section 2, we give some preliminaries and define some
special spaces. In Section 3, we show the uniqueness of the
solution for linear and nonlinear Cauchy problems. In
Section 4, two comparison principles are established. In
Section 5, the extremal solutions for problem (9) are
obtained. In Section 6, a numerical example is given.

2. Preliminaries

In this section, we introduce some definitions and lemmas to
be used in the sequel.

Let Cn(J,R) be a Banach space of all n-order continu-
ously differentiable functions on J � [a, b]. For
n − 1< β≤ n, 0< c, α≤ 1, and 0≤ τ < 1 such that τ ≤ β − k, we
define the spaces Cc(J), Cα,τ(J), Cn

T(J), Cn
T,τ(J), and C

β,n

T,τ(J)

as follows:
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Cc(J) � f : f(t) ∈ C(J),
Cc
a D

α
f(J) ∈ C(J)􏽮 􏽯, (12)

under the norm ‖f‖c � ‖f‖C + ‖
Cc
a D

α
f‖C, where

‖f‖C � maxt∈J|f(t)| and ‖
Cγ
a D

α
f‖C � maxt∈J|

Cc
a D

α
f(t)|.

Cα,τ(J) � f(t) ∈ C(a, b]:
(t − a)α

α
􏼠 􏼡

τ

f(t) ∈ C(J)􏼨 􏼩,

Cα,0(J) � C(J),

(13)

under the norm

‖f‖Cα,τ
�

(t − a)α

α
􏼠 􏼡

τ

f

��������

��������
C

� maxt∈J
(t − a)α

α
􏼠 􏼡

τ

f(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

C
n
T(J) � f(t) ∈ C(J) :

n
aT

α
f(t) ∈ C(J)􏼈 􏼉,

(14)

under the norm

‖f‖Cn
T

� 􏽘
n

k�0

n
aT

α
f

����
����C

� 􏽘
n

k�0
max

t∈J
n
aT

α
f(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

C
n
T,τ(J) � f(t) ∈ C(J) :

n− 1
a T

α
f(t) ∈ C(J),

n
aT

α
f(t) ∈ Cα,τ(J)􏽮 􏽯,

C
β,n

T,τ(J) � f(t) ∈ C
n− 1
T (J) :

Cβ
a D

α
f(t) ∈ Cα,τ(J)􏽮 􏽯.

(15)

For convenience, we present the following assumptions:

(H1) For t ∈ (a, b], z1, z2 ∈ Cn− 1
T (J), assume that

function g satisfies

g t, z1(t)( 􏼁 − g t, z2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M z1(t) − z2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, M≥ 0.

(16)

(H2) Assume that x0(t)≤y0(t), t ∈ J, where
x0(t), y0(t) ∈ Cc(J) are lower and upper solutions of
(9), respectively.
(H3) Assume that a constant λ≤ 0 such that

h t, y(t),
Cc
a D

α
y(t)􏼐 􏼑 − h t, x(t),

Cc
a D

α
x(t)􏼐 􏼑

≥ − λ ϕp
Cc
a D

α
y(t)􏼐 􏼑 − ϕp

Cc
a D

α
x(t)􏼐 􏼑􏼐 􏼑,

(17)

where x0(t)≤x(t)≤y(t)≤y0(t), t ∈ J.
(H4) Assume that a constant 0≤ η< (1/(b − a)) such that

w(t, y(t)) − w(t, x(t))≥ η(y(t) − x(t)), (18)

where x0(t)≤ x(t)≤y(t)≤y0(t), t ∈ J.

Definition 1. *e function x0(t) ∈ Cc(J) satisfying ϕp

(
Cc
a D

α
x0 (t)) ∈ Cn

T(J) is a lower solution of problem (9) if it
satisfies

Cβ
a D

α
ϕp

Cc
a D

α
x0(t)􏼐 􏼑􏼐 􏼑≤ h t, x0(t),

Cc
a D

α
x0(t)􏼐 􏼑, t ∈ J,

k
aT

α
ϕp

Cc
a D

α
x0(a)􏼐 􏼑≤ bk,

x(a)≤ 􏽚
b

a
w s, x0(s)( 􏼁ds + ρ.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

*e function y0(t) ∈ Cc(J) satisfying ϕp(
Cc
a D

α
y0(t)) ∈

Cn
T(J) is an upper solution of problem (9) if the above

inequalities are reversed.

Lemma 1 (see [12]). For α> 0, the space Cn
α,a(J) consists of

those and only those functions which are represented in the
form

f(t) �
1

(n − 1)!
􏽚

t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

n− 1 ψ(s)ds

(s − a)
1− α

+ 􏽘
n− 1

k�0

k
aT

α
f(a)

k!

(x − a)
αk

αk
,

(20)

where ψ(t) � n
aTαf(t) and ψ(t) ∈ Lα(a).

Lemma 2 (see [12]). Let f ∈ Cn
α,a(J), β ∈ C. 5en,

β
aI

α Cβ
a D

α
f(t)􏼐 􏼑 � f(t) − 􏽘

n− 1

k�0

k
aT

α
f(a)(t − a)

αk

αk
k!

. (21)
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Remark 1. Lemma 1 still holds if we replace the space
Cn
α,a(J) with Cn

T,τ(J). In such case, ψ(t) � n
aTαf(t) and

ψ(t) ∈ Cα,τ(J). In particular, ψ(t) ∈ C(J) when τ � 0.
Lemma 2 is also valid for f ∈ Cn

T(J).

Lemma 3 (see [12]). Let Re(β)> 0, Re(c)> 0, 0<m<Re(β),

m ∈ N. 5en,

(a) β
aI

α
(

c
aI

α
)f(t) �

β+c
a I

α
f(t).

(b) β
aI

α
(t − a)α(c− 1) � (1/αβ) (Γ(c)/Γ(β + c))

(t − a)α(β+c− 1).
(c) m

a Tα(
β
aI

α
f(t)) �

β− m
a I

α
f(t).

Lemma 4 (see [1]) (Banach fixed point theorem). Let (U, d)

be a nonempty complete metric space, let 0≤ ρ< 1, and let
A: U⟶ U be the map such that, for every x, y ∈ U, the
relation

d(Ax, Ay)≤ ρd(x, y), (22)

holds. 5en, the operator A has a unique fixed point x∗ ∈ U.
Moreover, if Ak(k ∈ N) is the sequence of operators defined by

A
1

� A,

A
k

� AA
k− 1

(k ∈ N\ 1{ }),
(23)

then for any x0 ∈ U, the sequence Akx0􏼈 􏼉
∞
k�1 converges to the

above fixed point x∗.

3. The Unique Solution to the Nonlinear and
Linear Cauchy Problems

In this section, we first consider the unique solution of
nonlinear Cauchy problem (10) and linear Cauchy problem
(11), where the function g: (a, b] × R⟶ R such that
g ∈ Cα,τ(J).

Let z(t) ∈ Cn− 1
T (J), and by Lemma 2 and the initial value

condition k
aT

α
z(t) � bk, problem (10) can be reduced to the

Volterra-type integral equation

z(t) � 􏽘
n− 1

j�0

bj(t − a)
αj

αj
j!

+
1
Γ(β)

􏽚
t

a
K

β− 1
(t, s)g(s, z(s))

ds

(s − a)
1− α,

(24)

where K(t, s) � (((t − a)α − (s − a)α)/α), a≤ s≤ t≤ b.
Denoting z0 � 􏽐

n− 1
j�0(bj(t − a)αj/αjj!), equation (24) can be

rewritten as z(t) � (Az)(t), where

(Az)(t) � z0(t) +
1
Γ(β)

􏽚
t

a
K

β− 1
(t, s)g(s, z(s))

ds

(s − a)
1− α.

(25)

Theorem 1. If (H1) holds, there exists a unique solution
z(t) ∈ C

β,n− 1
T,τ (J) for problem (10).

Proof. First, we choose t1(a< t1 < b) such that

􏽘

n− 1

k�0

M

Γ(β − k + 1)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k

< 1, (26)

and prove that (10) has a unique solution z(t) ∈ Cn− 1
T [a, t1].

Applying the operator k
aT

α to both sides of (25), by
Lemma 3 (c), we can get

k
aT

α
(Az(t)) �

k
aT

α
z0(t) +

1
Γ(β − k)

􏽚
t

a
K

β− k− 1

(t, s)
g(s, z(s))ds

(s − a)
1− α ,

(27)

where k
aT

α
z0(t) � 􏽐

n− 1
j�k(bj(t − a)(j− k)/αj− k(j − k)!). It is

obvious that k
aT

α
z0(t) is continuous on [a, t1]. Furthermore,

for 0≤ τ < β − k and g ∈ Cα,τ(J), we get by (14) that

β− k
a I

α
g

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
1
Γ(β − k)

􏽚
t

a
K

β− k− 1
(t, s)g(s, z(s))

ds

(s − a)
1− α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1
Γ(β − k)

􏽚
t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

β− k− 1

|g(s, z(s))|
ds

(s − a)
1− α

≤
‖g‖Cα,τ a,t1[ ]

Γ(β − k)
􏽚

t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

β− k− 1
(s − a)α

α
􏼠 􏼡

− τ ds

(s − a)
1− α

≤
Γ(1 − τ)‖g‖Cα,τ a,t1[ ]

Γ(β − k + 1 − τ)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k− τ

,

(28)
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that is,

β− k
a I

α
g

�����

�����C a,t1[ ]
≤
Γ(1 − τ)‖g‖Cα,τ a,t1[ ]

Γ(β − k + 1 − τ)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k− τ

.

(29)

Inequality (29) implies that the operator β− k
a I

α
is

bounded from Cα,τ[a, t1] to C[a, t1]. In particular, if τ � 0,

then g ∈ C(J) and β− k
a I

α
is bounded from C[a, t1] to C[a, t1]

such that

β− k
a I

α
g

�����

�����C a,t1[ ]
≤

‖g‖C a,t1[ ]

Γ(β − k + 1)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k

. (30)

It follows from (29) and (30) that k
aT

α
(Az(t)) is con-

tinuous on [a, t1], that is, (Az)(t) ∈ Cn− 1
T [a, t1]. By (14), (15),

and (H1), we have

􏽘

n− 1

k�0

k
aT

α
Az1(t)( 􏼁 −

k
aT

α
Az2(t)( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘
n− 1

k�0

1
Γ(β − k)

􏽚
t

a
K

β− k− 1
(t, s) g s, z1(s)( 􏼁 − g s, z2(s)( 􏼁􏼂 􏼃

ds

(s − a)
1− α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n− 1

k�0

1
Γ(β − k)

􏽚
t

a
K

β− k− 1
(t, s) g s, z1(s)( 􏼁 − g s, z2(s)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

ds

(s − a)
1− α

≤ 􏽘
n− 1

k�0

M

Γ(β − k)
􏽚

t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

β− k− 1

z1(s) − z2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ds

(s − a)
1− α

≤ 􏽘
n− 1

k�0

M z1 − z2
����

����C a,t1[ ]

Γ(β − k + 1)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k

≤ 􏽘

n− 1

k�0

M z1 − z2
����

����Cn− 1
T

a,t1[ ]

Γ(β − k + 1)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k

,

(31)

that is,

Az1 − Az2
����

����Cn− 1
T

a,t1[ ] � 􏽘
n− 1

k�0

k
aT

α
Az1(t)( 􏼁 −

k
aT

α
Az2(t)( 􏼁

�����

�����C a,t1[ ]

≤ 􏽘
n− 1

k�0

M z1 − z2
����

����Cn− 1
T

a,t1[ ]

Γ(β − k + 1)

t1 − a( 􏼁
α

α
􏼠 􏼡

β− k

.

(32)

From Lemma 4 and (26), we get that there exists a unique
solution z∗1 ∈ Cn− 1

T [a, t1] to problem (10). Moreover, z∗1(t)

satisfies

lim
i⟶∞

A
i
zg − z

∗
1

�����

�����Cn− 1
T

a,t1[ ]
� 0, (33)

where zg(t) is any function in Cn− 1
T [a, t1] and

Aizg(t) � AAi− 1zg(t). Let zi(t) � Aizg(t); then,

lim
i⟶∞

zi(t) − z
∗
1

����
����Cn− 1

T
a,t1[ ] � 0. (34)

Next, choose t2, t3, . . . , tR such that a � t0 < t1 < t2 <
· · · < tR � b. Using the same arguments as above, we get that
problem (10) has a unique solution z∗r ∈ Cn− 1

T [tr− 1, tr]

(r � 1, 2, . . . , R). *erefore, (10) has a unique solution
z∗ � z∗r ∈ Cn− 1

T (J).
Finally, we show that the unique solution z∗(t) belongs

to C
β,n− 1
T,τ (J). By (15) and (H1), we have

Cβ
a D

α
zi −

Cβ
a D

α
z
∗

�����

�����Cα,τ(J)
� g t, zi(t)( 􏼁 − g t, z

∗
(t)( 􏼁

����
����Cα,τ(J)

≤M
t1 − a( 􏼁

α

α
􏼠 􏼡

τ

zi − z
∗����
����C(J)

≤M
t1 − a( 􏼁

α

α
􏼠 􏼡

τ

zi − z
∗����
����Cn− 1

T
(J)

.

(35)
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Taking the limit as i⟶∞, we obtain

lim
i⟶∞

Cβ
a D

α
zi −

Cβ
a D

α
z
∗

�����

�����Cα,τ(J)
� 0, (36)

which implies that z∗(t) ∈ C
β,n− 1
T,τ (J). *is ends the

proof. □

Remark 2. When α � 1, the RL conformable integral and
Caputo conformable derivative coincide with the traditional
RL fractional integral and Caputo derivative, respectively.
Hence, the results of *eorem 3.25 in [1] can be seen as the
special case of *eorem 1.

Corollary 1. If (H1) holds and the function g: J × R⟶ R

satisfies g ∈ C(J), then Cauchy problem (10) has a unique
solution z(t) belonging to Cn− 1

T (J).

Proof. Corollary 1 can be proven by replacing τ with 0 and
using the same argument in *eorem 1. □

Theorem 2. If σ(t) ∈ C(J) and λ is a constant, then problem
(11) has a unique solution z(t) ∈ Cn− 1

T (J) which is given by

z(t) � 􏽘
n− 1

j�0

bj(t − a)
jα

αj
Eβ,j+1

− λ(t − a)
αβ

αβ
􏼢 􏼣

+ 􏽚
t

a
K

β− 1
(t, s)Eβ,β − λK

β
(t, s)􏼐 􏼑

σ(s)ds

(s − a)
1− α,

(37)

where Ep,q(ρ) � 􏽐
∞
k�0(ρ

k/Γ(pk + q)) is the Mittag-Leffler
function.

Proof. Clearly g(t, z(t)) � σ(t) − λz(t) satisfies (H1). By
Corollary 1, there exists a unique solution z(t) ∈ Cn− 1

T (J) to
problem (11).

Next, we prove that this unique solution is given by (18).
By Lemma 2 and the initial value condition k

aT
α
z(t) � bk,

problem (11) can be reduced to the equation

z(t) � 􏽘
n− 1

j�0

bj(t − a)
αj

αj
j!

+(− λ)
β
aI

α
z(t) +

β
aI

α
σ(t). (38)

We apply the successive approximations method to solve
equation (38) by taking z0(t) � 􏽐

n− 1
j�0bj(t − a)αj/αjj! and

zm(t) � z0(t) +(− λ)
β
aI

α
zm− 1(t) +

β
aI

α
σ(t), m � 1, 2, . . . .

(39)

By Lemma 3 (b), for m � 1, we have

z1(t) � z0(t) +(− λ)
β
aI

α
z0(t) +

β
aI

α
σ(t)

� z0(t) + 􏽘
n− 1

j�0

(− λ)bj

αj
j!

β
aI

α
(t − a)

αj
+

β
aI

α
σ(t)

� z0(t) + 􏽘
n− 1

j�0

(− λ)bj(t − a)
α(β+j)

αβ+jΓ(β + j + 1)
+

β
aI

α
σ(t).

(40)

By (a) and (b) of Lemma 3, for m � 2,

z2(t) � z0(t) +(− λ)
β
aI

α
z1(t) +

β
aI

α
σ(t)

� z0(t) +(− λ)
β
aI

α
z0(t) +(− λ)

β
aI

α
z0(t) +

β
aI

α
σ(t)􏼔 􏼕 +

β
aI

α
σ(t)

� z0(t) +(− λ)
β
aI

α
z0(t) +(− λ)

22β
a I

α
z0(t) +(− λ)

2β
a I

α
σ(t) +

β
aI

α
σ(t)

� z0(t) + 􏽘
n− 1

j�0

(− λ)bj(t − a)
α(β+j)

αβ+jΓ(β + j + 1)
+ 􏽘

n− 1

j�0

(− λ)
2
bj(t − a)

α(2β+j)

α2β+jΓ(2β + j + 1)

+(− λ)
2β
a I

α
σ(t) +

β
aI

α
σ(t).

(41)

Continuing this process, we have

zm(t) � 􏽘

n− 1

j�0

bj(t − a)
jα

αj
􏽘

m

r�0

(− λ)
r
(t − a)

rαβ

αrβΓ(rβ + j + 1)
+ 􏽘

m

r�1
(− λ)

r− 1rβ
a I

α
σ(t)

� 􏽘

n− 1

j�0

bj(t − a)
jα

αj
􏽘

m

r�0

(− λ)
r
(t − a)

rαβ

αrβΓ(rβ + j + 1)

+ 􏽚
t

a
K

β− 1
(t, s)􏽘

m

r�0

(− λ)
r
K

rβ
(t, s)

Γ((r + 1)β)

σ(s)ds

(s − a)
1− α.

(42)

Taking the limit as m⟶∞ and according to the
definition of Mittag-Leffler function, we get formula (37).
*is ends the proof. □

Remark 3. If α � 1, we can get the results of *eorem 4.3 in
[1].

4. Comparison Principles

In this section, two comparison principles which will be used
in the next section are established.

6 Complexity



Lemma 5. Let η≠ (1/b − a) and y(t) ∈ C(J). 5en, the
following problem:

Cγ
a D

α
x(t) � y(t), t ∈ J,

x(a) � η􏽚
b

a
x(s)ds + ρ,

⎧⎪⎪⎨

⎪⎪⎩
(43)

is equivalent to

x(t) � 􏽚
b

a
G(t, s)y(s)

ds

(s − a)
1− α +

ρ
1 − η(b − a)

, (44)

where

G(t, s) �
1
ξ

[1 − η(b − a)]c(b − a)
α− 1

K
c− 1

(t, s) + ηK
c
(b, s)

1 − η(b − a)
, a≤ s≤ t≤ b,

ηK
c
(b, s)

1 − η(b − a)
, a≤ t≤ s≤ b,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ � (b − a)
α− 1Γ(c + 1).

(45)

Proof. For 0< c≤ 1, by Lemma 2, equation Cγ
a D

α
x(t) � y(t)

can be reduced to

x(t) �
c
aI

α
y(t)c0, (46)

where c0 is a constant. By the boundary condition, we easily
get c0 � η􏽒

b

a
x(s)ds + ρ. Hence,

x(t) �
c
aI

α
y(t) + η􏽚

b

a
x(s)ds + ρ. (47)

Let Δ � 􏽒
b

a
x(t)dt, and we can deduce from (47) that

Δ � 􏽚
b

a

1
Γ(c)

􏽚
t

a

(t − a)α − (s − a)α

α
􏼠 􏼡

c− 1

y(s)
ds

(s − a)
1− α dt + 􏽚

b

a
(ηΔ + ρ)dt

� 􏽚
b

a

1
Γ(c + 1)(b − a)

α− 1
(b − a)α − (s − a)α

α
􏼠 􏼡

c
y(s)ds

(s − a)
1− α +(ηΔ + ρ)(b − a)

� 􏽚
b

a

K
c
(b, s)y(s)

Γ(c + 1)(b − a)
α− 1

ds

(s − a)
1− α +(ηΔ + ρ)(b − a).

(48)

*erefore,

Δ � 􏽚
b

a

K
c
(b, s)y(s)

[1 − η(b − a)]Γ(c + 1)(b − a)
α− 1

ds

(s − a)
1− α +

ρ(b − a)

1 − η(b − a)
. (49)
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Substituting (49) into (47), we have

x(t) �
1
Γ(c)

􏽚
t

a
K

c− 1
(t, s)y(s)

ds

(s − a)
1− α +

ηρ(b − a)

1 − η(b − a)
+ ρ

+ 􏽚
b

a

ηK
c
(b, s)y(s)

[1 − η(b − a)]Γ(c + 1)(b − a)
α− 1

ds

(s − a)
1− α

�
1
ξ

􏽚
t

a

[1 − η(b − a)]c(b − a)
α− 1

K
c− 1

(t, s) + ηK
c
(b, s)

1 − η(b − a)
y(s)

ds

(s − a)
1− α

+
1
ξ

􏽚
b

t

ηK
c
(b, s)

1 − η(b − a)
y(s)

ds

(s − a)
1− α +

ρ
1 − η(b − a)

� 􏽚
b

a
G(t, s)y(s)

ds

(s − a)
1− α +

ρ
1 − η(b − a)

.

(50)

*is ends the proof. □

Remark 4. For a≤ t, s≤ b, 0≤ η< (1/(b − a)), the function
G(t, s) is continuous and nonnegative.

Lemma 6. For x(t) ∈ Cc(J), the following linear problem:
Cβ
a D

α
ϕp

Cc
a D

α
(t)􏼐 􏼑􏼐 􏼑 � σ(t) − λϕp

Cc
a D

α
x(t)􏼐 􏼑, t ∈ J,

k
aT

α
ϕp

Cc
a D

α
x(a)􏼐 􏼑 � bk,

x(a) � η􏽚
b

a
x(s)ds + ρ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(51)

has a unique solution.

Proof. Let z(t) � ϕp(
Cc
a D

α
x(t)). By *eorem 2, the

problem
Cβ
a D

α
z(t) � σ(t) − λz(t),

k
aT

α
z(t) � bk, t ∈ J

(52)

has a unique solution z(t) ∈ Cn− 1
T (J), that is,

Cγ
a D

α
x(t) � ϕq(z(t)) ∈ Cn− 1

T (J). Hence, Cγ
a D

α
x(t) ∈ C(J).

By Lemma 5, the following problem
Cγ
a D

α
x(t) � ϕq(z(t)),

x(a) � η􏽚
b

a
x(s)ds + ρ, t ∈ J,

(53)

is equivalent to

x(t) � 􏽚
b

a
G(t, s)ϕq(z(s))

ds

(s − a)
1− α +

ρ
1 − η(b − a)

.

(54)

Considering (52) and (53), we obtain the conclusion that
problem (51) has a unique solution which is given by
(54). □

Based on the above work, we can get the following
comparison principles.

Lemma 7. If λ≤ 0 and z(t) ∈ Cn− 1
T (J) satisfy the following

relation:
Cβ
a D

α
z(t)≥ − λz(t),

k
aT

α
z(a)≥ 0,􏽮 (55)

then for t ∈ J, z(t)≥ 0.

Proof. Let Cβ
a D

α
z(t) � p(t) − λz(t), k

aT
α
z(a) � ak; then,

p(t)≥ 0, ak ≥ 0. From (37), we can see that z(t)≥ 0.*is ends
the proof. □

Lemma 8. If 0≤ η< (1/(b − a)) and x(t) ∈ Cc(J) satisfy the
following relation:

Cγ
a D

α
x(t)≥ 0, x(a)≥ η􏽚

b

a
x(s)ds,􏼨 (56)

then for t ∈ J, x(t)≥ 0.

Proof. Let Cγ
a D

α
x(t) � q(t), x(a) � 􏽒

b

a
ηx(s)ds + d; then,

q(t)≥ 0, d≥ 0. From (53) and (54), we have that

x(t) � 􏽚
b

a
G(t, s)q(s)

ds

(s − a)
1− α +

d

1 − η(b − a)
, (57)

which implies that x(t)≥ 0 due to G(t, s)≥ 0. *is ends the
proof. □

5. Extremal Solutions for Nonlinear System

*e extremal solutions of problem (9) are obtained in this
section.

Theorem 3. If (H2)–(H4) hold, then problem (9) has
extremal solutions x∗(t), y∗(t) in the sector
[x0, y0] � x(t) ∈ Cc(J): x0(t)≤x(t)≤y0(t), t ∈ J􏽮 􏽯.
Moreover,
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x0(t)≤x
∗
(t)≤y

∗
(t)≤y0(t),

Cc
a D

α
x0(t)≤ Cc

a D
α
x
∗
(t)≤ Cc

a D
α
y
∗
(t)≤ Cc

a D
α
y0(t).

(58)
Proof. For t ∈ J, n � 1, 2, ​ . . ., define

Cβ
a D

α
ϕp

Cc
a D

α
xn(t)􏼐 􏼑􏼐 􏼑 � h t, xn− 1(t),

Cc
a D

α
xn− 1(t)􏼐 􏼑 − λ ϕp

Cc
a D

α
xn(t)􏼐 􏼑 − ϕp

Cc
a D

α
xn− 1(t)􏼐 􏼑􏽨 􏽩,

k
aT

α
ϕp

Cc
a D

α
xn(a)􏼐 􏼑 � bk,

xn(a) � 􏽚
b

a
w s, xn− 1(s)( 􏼁 + η xn(s) − xn− 1(s)( 􏼁􏼂 􏼃ds + ρ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(59)

Cβ
a D

α
ϕp

Cc
a D

α
yn(t)􏼐 􏼑􏼐 􏼑 � h t, yn− 1(t),

Cc
a D

α
yn− 1(t)􏼐 􏼑 − λ ϕp

Cc
a D

α
yn(t)􏼐 􏼑 − ϕp

Cc
a D

α
yn− 1(t)􏼐 􏼑􏽨 􏽩,

k
aT

α
ϕp

Cc
a D

α
yn(a)􏼐 􏼑 � bk,

yn(a) � 􏽚
b

a
w s, yn− 1(s)( 􏼁 + η yn(s) − yn− 1(s)( 􏼁􏼂 􏼃ds + ρ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(60)

By Lemma 6, xn, yn are well defined. *e proof includes
three steps. □

Step 1. We prove the monotone property of xn􏼈 􏼉 and yn􏼈 􏼉.
Let r(t) � ϕp(

Cc
a D

α
x1(t)) − ϕp(

Cc
a D

α
x0(t)), and by (H2)

and (59), we get
Cβ
a D

α
r(t)≥ − λr(t), t ∈ J,

k
aT

α
r(a)≥ 0.􏽮 (61)

From Lemma 7, we have r(t)≥ 0, i.e.,
ϕp(

Cc
a D

α
x1(t))≥ϕp(

Cc
a D

α
x0(t)). Moreover,

Cγ
a D

α
x1(t)≥ Cc

a D
α
x0(t) (62)

holds because of the monotone increasing property of ϕp(s).
Let 􏽥r(t) � x1(t) − x0(t). From (H2), (H4), (59), and

(62), we have
Cγ
a D

α
􏽥r(t) �

Cc
a D

α
x1(t) −

Cc
a D

α
x0(t)≥ 0,

􏽥r(a)≥ 􏽚
b

a
η􏽥r(s)ds.

⎧⎪⎪⎨

⎪⎪⎩
(63)

From Lemma 8, we have 􏽥r(t)≥ 0, i.e., x1(t)≥x0(t). *e
same argument holds that Cγ

a D
α
y0(t)≥ Cc

a D
α
y1(t),

y0(t)≥y1(t). Let m(t) � ϕp(
Cc
a D

α
y1(t)) − ϕp(

Cc
a D

α
x1(t)),

and from (H3), (59), and (60), we get
Cβ
a D

α
m(t) � h t, y0(t)

Cc
a D

α
y0(t)􏼐 􏼑 − h t, x0(t),

Cc
a D

α
x0(t)􏼐 􏼑

− λ ϕp
Cc
a D

α
y1(t)􏼐 􏼑 − ϕp

Cc
a D

α
y0(t)􏼐 􏼑􏽨 􏽩

+ λ ϕp
Cc
a D

α
x1(t)􏼐 􏼑 − ϕp

Cc
a D

α
x0(t)􏼐 􏼑􏽨 􏽩

≥ − λm(t),

k
aT

α
m(a) � 0.

(64)

From Lemma 7, we have m(t)≥ 0, i.e.,
ϕp(

Cc
a D

α
y1(t))≥ϕp(

Cc
a D

α
x1(t)). Hence,

Cγ
a D

α
y1(t)≥ Cc

a D
α
x1(t). (65)

Let 􏽥m(t) � y1 − x1. We get from (65) and (H4) that

Cγ
a D

α
􏽥m(t) �

Cc
a D

α
y1(t) −

Cc
a D

α
x1(t)≥ 0,

􏽥m(a) � 􏽚
b

a
w s, y0(s)( 􏼁 + η y1(s) − y0(s)( 􏼁 − w s, x0(s)( 􏼁 − η x1(s) − x0(s)( 􏼁􏼂 􏼃ds≥ 􏽚

b

a
η 􏽥m(s)ds.

⎧⎪⎪⎨

⎪⎪⎩
(66)

From Lemma 8, we have 􏽥m(t)≥ 0, i.e. y1 ≥x1. *erefore,
x0 ≤x1 ≤y1 ≤y0 and Cγ

a D
α
x0 ≤

Cc
a D

α
x1 ≤

Cc
a D

α
y1 ≤

Cc
a D

α
y0.

Next we prove x1(t), y1(t) are lower and upper solutions
of (9), respectively. From (H3), (H4), and (59), we have
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Cβ
a D

α
ϕp

Cc
a D

α
x1(t)􏼐 􏼑􏼐 􏼑 � h t, x0(t),

Cc
a D

α
x0(t)􏼐 􏼑 − h t, x1(t),

Cc
a D

α
x1(t)􏼐 􏼑

+ h t, x1(t),
Cc
a D

α
x1(t)􏼐 􏼑 − λ ϕp

Cc
a D

α
x1(t)􏼐 􏼑 − ϕp

Cc
a D

α
x0(t)􏼐 􏼑􏽨 􏽩

≤ − λ ϕp
Cc
a D

α
x0(t)􏼐 􏼑 − ϕp

Cc
a D

α
x1(t)􏼐 􏼑􏽨 􏽩 + h t, x1(t),

Cc
a D

α
x1(t)􏼐 􏼑

− λ ϕp
Cc
a D

α
x1(t)􏼐 􏼑 − ϕp

Cc
a D

α
x0(t)􏼐 􏼑􏽨 􏽩 � h t, x1(t),

Cc
a D

α
x1(t)􏼐 􏼑,

k
aT

α
ϕp

Cc
a D

α
x1(a)􏼐 􏼑 � bk,

x1(a) � 􏽚
b

a
w s, x0(s)( 􏼁 − w s, x1(s)( 􏼁 + w s, x1(s)( 􏼁 + η x1(s) − x0(s)( 􏼁􏼂 􏼃ds + ρ

≤ 􏽚
b

a
η x0(s) − x1(s)( 􏼁 + η x1(s) − x0(s)( 􏼁 + w s, x1(s)( 􏼁􏼂 􏼃ds + ρ

� 􏽚
b

a
w s, x1(s)( 􏼁ds + ρ.

(67)

Clearly, x1(t) is a lower solution of (9). Similarly, y1(t) is
an upper solution of (9). We obtain by applying mathe-
matical induction that

x0(t)≤ x1(t)≤ · · · ≤xn(t)≤ · · · ≤yn(t)≤ · · · ≤y1(t)≤y0(t),

Cc
a D

α
x0(t)

Cc
a D

α
x1(t)≤ · · · ≤ Cc

a D
α
xn(t)≤ · · ·

Cc
a D

α
yn(t)

≤ · · · ≤ Cc
a D

α
y1(t)≤ Cc

a D
α
y0(t).

(68)

Step 2. We conclude that the sequences xn􏼈 􏼉 and yn􏼈 􏼉 satisfy
the relations:

lim
n⟶∞

xn(t) � x
∗
(t),

lim
n⟶∞

Cc
a D

α
xn(t) �

Cc
a D

α
x
∗
(t),

(69)

lim
n⟶∞

yn(t) � y
∗
(t),

lim
n⟶∞

Cc
a D

α
yn(t) �

Cc
a D

α
y
∗
(t).

(70)

Let F(xn)(t) � h(t,xn(t),
Cc
a D

α
xn(t)) +λϕp(

Cc
a D

α
xn(t)).

We can see that the function F is continuous and nonde-
creasing from the assumption of h. By (37) and (54),
equation (59) can be reduced to the equation

xn(t)) 􏽚
b

a
G(t, s)ϕq 􏽘

n− 1

j�0

bj(s − a)
jα

αj
Eβ,j+1

− λ(s − a)
αβ

αβ
􏼠 􏼡⎡⎢⎢⎣

+ 􏽚
s

a
K

β− 1
(s, θ)Eβ,β − λK

β
(s, θ)􏼐 􏼑

F xn− 1(θ)( 􏼁dθ
(θ − a)

1− α 􏼣
ds

(s − a)
1− α

+
􏽒

b

a
w s, xn− 1(s)( 􏼁 − ηxn− 1(s)􏼂 􏼃ds + ρ

1 − η(b − a)
.

(71)

Clearly, xn􏼈 􏼉 is uniformly bounded in Cc(J). By the
continuity of F, G,ϕq, and K, we can easily get that xn􏼈 􏼉 is
equicontinuous. By the Arzelà–Ascoli theorem, we have that
xn􏼈 􏼉 satisfies (69). In the same way, we get that yn􏼈 􏼉 satisfies
(70). Moreover, x∗(t) and y∗(t) are solutions of (9).

Step 3. We prove that x∗ and y∗ are extremal solutions of
problem (9).

Assume that any solution x(t) of problem (9) satisfies
xn(t)≤ x(t)≤yn(t). Let u(t) � ϕp(

Cc
a D

α
x(t)) − ϕp

(
Cc
a D

α
xn+1 (t)), and by (H3), we have
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Cβ
a D

α
u(t) � h t, x(t),

Cc
a D

α
x(t)􏼐 􏼑 − h t, xn(t),

Cc
a D

α
xn(t)􏼐 􏼑

+ λ ϕp
Cc
a D

α
xn+1(t)􏼐 􏼑 − ϕp

Cc
a D

α
xn(t)􏼐 􏼑􏽨 􏽩

≥ − λu(t),

k
aT

α
u(a) � 0.

(72)

From Lemma 7, we have u(t)≥ 0, i.e.,
ϕp(

Cc
a D

α
x(t))≥ ϕp(

Cc
a D

α
xn+1(t)). Hence,

Cγ
a D

α
x(t)≥ Cc

a D
α
xn+1(t). (73)

Let 􏽥u(t) � x(t) − xn+1(t), and by (H4), (59), and (73), we
have

Cγ
a D

α
􏽥u(t)≥ 0,

􏽥u(a) � 􏽚
b

a
w(s, x(s)) − w s, xn(s)( 􏼁 − η xn+1(s) − xn(s)( 􏼁􏼂 􏼃ds≥ η􏽚

b

a
􏽥u(s)ds.

⎧⎪⎪⎨

⎪⎪⎩
(74)

We get 􏽥u(t)≥ 0 from Lemma 8, i.e., x(t)≥xm+1(t).
Similarly, Cγ

a D
α
yn+1(t)≥ Cc

a D
α
x(t), yn+1(t)≥ x(t). Hence,

xn+1(t)≤x(t)≤yn+1(t) holds. *erefore, x∗(t)≤x(t)≤
y∗(t) as n⟶∞, ∀t ∈ J. *is ends the proof.

Remark 5. In [37], the authors assume that
h ∈ C([0, 1] × t[0, +∞)n × q(− ∞, 0]h,[ 0, +∞)),

h(t, w1, z1)≤ h(t, w2, z2) for 0≤w1 <w2, z1 > z2 ≥ 0,

t ∈ [0, 1]. *e nonlinear term h in this paper satisfies the
weaker conditions.

6. Example

We present a numerical example as follows:

(1/2)
0 D

(1/2)
ϕ2

(1/2)
0 D

(1/2)
x(t)􏼒 􏼓 � t

(3/4)
+

x(t)

3 t
(1/4)

+ t
− (3/4)

􏼐 􏼑
+
1
4

(1/2)
0 D

(1/2)
x(t), t ∈ [0, 1],

ϕ2
(1/2)
0 D

(1/2)
x(0)􏼒 􏼓 � 0,

x(0) � 􏽚
1

0

1
7

(s + 1)x(s) + s􏼔 􏼕ds + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

where k � 0, b0 � 0, p � 2, a � 0, b � 1, ρ � 1, β � c � α �

(1/2) and

h t, x(t),
(1/2)
a D

(1/2)
x(t)􏼒 􏼓 � t

(3/4)
+

x(t)

3 t
(1/4)

+ t
− (3/4)

􏼐 􏼑
+
1
4

(1/2)
0 D

(1/2)
x(t),

w(t, x(t)) �
1
7

(t + 1)x(t) + t.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(76)
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Taking x0(t) � 0, y0(t) � 3t + 3, we can get

(1/2)
0 D

(1/2)
ϕ2

(1/2)
0 D

(1/2)
x0(t)􏼒 􏼓 � 0≤ t

(3/4)
+

x(t)

3 t
(1/4)

+ t
− (3/4)

􏼐 􏼑
+
1
4

(1/2)
0 D

(1/2)
x0(t), t ∈ [0, 1],

ϕ2
(1/2)
0 D

(1/2)
x0(0)􏼒 􏼓 � 0, x0(0)<

3
2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1/2)
0 D

(1/2)
ϕ2

(1/2)
0 D

(1/2)
y0(t)􏼒 􏼓 �

(1/2)
0 D

(1/2) 4
�
2

√

��
π

√ t
(3/4)

􏼠 􏼡 � 3t
(1/2) ≥ 2 +

�
2

√

��
π

√􏼠 􏼡t
(3/4)

, t ∈ [0, 1],

ϕ2
(1/2)
0 D

(1/2)
y0(0)􏼒 􏼓 � 0, y0(0) � 3>

5
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(77)

Hence, x0 and y0 are lower and upper solutions of (75),
respectively. *erefore, (H2) is satisfied. For x0(t)≤x≤
y≤y0(t),

h t, y(t),
(1/2)
0 D

(1/2)
y(t)􏼒 􏼓 − h t, x(t),

(1/2)
0 D

(1/2)
x(t)􏼒 􏼓

�
y(t) − x(t)

3 t
(1/4)

+ t
− (3/4)

􏼐 􏼑
+
1
4

(1/2)
0 D

(1/2)
(y(t) − x(t))

≥
1
4

(1/2)
0 D

(1/2)
(y(t) − x(t))

�
1
4

ϕ2
(1/2)
0 D

(1/2)
y(t)􏼒 􏼓 − ϕ2

(1/2)
0 D

(1/2)
x(t)􏼒 􏼓􏼔 􏼕,

w(t, y(t)) − w(t, x(t))≥
1
7

(y(t) − x(t)).

(78)

We can see that λ � − (1/4)< 0, η � (1/7). *erefore,
(H3) and (H4) hold. In light of *eorem 1, the extremal
solutions of (75) can be obtained in [x0, y0].

7. Conclusions

In this paper, we mainly use the montone iterative tech-
nique to study the Caputo conformable differential equa-
tions with p-Laplacian operator and integral boundary
condition. A minimal and a maximal solution between the
lower and the upper solutions are obtained. *is method
provides a constructive procedure for the solutions, and it
is also useful for the investigation of qualitative properties
of solutions. Since the Caputo conformable derivative can
be reduced to the traditional Caputo derivative, some re-
sults produced from the traditional Caputo differential
system can be seen as special cases of this paper. Moreover,
the Caputo conformable derivative depends on two pa-
rameters naturally and the one coming from conformable

operator can better describe long-memory processes. We
believe that the Caputo and RL conformable fractional
operators will play a key role in studying new types of
fractional variational problems, Sturm–Liouville problems,
optimal control problems, and modeling of complex
systems.
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problem for non-lipschitzian impulsive functional differential
equations,” Journal of Mathematical Analysis and Applica-
tions, vol. 318, no. 2, pp. 593–610, 2006.

[25] W. Ding, Y. Xing, andM. Han, “Anti-periodic boundary value
problems for first order impulsive functional differential
equations,” Applied Mathematics and Computation, vol. 186,
no. 1, pp. 45–53, 2007.

[26] M. Yao, A. Zhao, and J. Yan, “Anti-periodic boundary value
problems of second order impulsive differential equations,”
Computers & Mathematics with Applications, vol. 59, no. 12,
pp. 3617–3629, 2010.

[27] Z. Luo, J. Shen, and J. J. Nieto, “Antiperiodic boundary value
problem for first-order impulsive ordinary differential
equations,” Computers & Mathematics with Applications,
vol. 49, no. 2-3, pp. 253–261, 2005.

[28] T. Jankowski, “Positive solutions for second order impulsive
differential equations involving stieltjes integral conditions,”
Nonlinear Analysis: 5eory, Methods & Applications, vol. 74,
no. 11, pp. 3775–3785, 2011.

[29] G. Song, Y. Zhao, and X. Sun, “Integral boundary value
problems for first order impulsive integro-differential equa-
tions of mixed type,” Journal of Computational and Applied
Mathematics, vol. 235, no. 9, pp. 2928–2935, 2011.

[30] S. Zhang, “Monotone iterative method for initial value
problem involving Riemann-Liouville fractional derivatives,”
Nonlinear Analysis: 5eory, Methods & Applications, vol. 71,
no. 5-6, pp. 2087–2093, 2009.

[31] Z. Wei, W. Dong, and J. Che, “Periodic boundary value
problems for fractional differential equations involving a
Riemann-Liouville fractional derivative,” Nonlinear Analysis:
5eory, Methods & Applications, vol. 73, no. 10, pp. 3232–
3238, 2010.

[32] T. Jankowski, “Boundary problems for fractional differential
equations,” Applied Mathematics Letters, vol. 28, pp. 14–19,
2014.

Complexity 13



[33] L. Zhang, B. Ahmad, and G. Wang, “*e existence of an
extremal solution to a nonlinear system with the right-handed
Riemann-Liouville fractional derivative,” Applied Mathe-
matics Letters, vol. 31, pp. 1–6, 2014.

[34] G. Wang, “Monotone iterative technique for boundary value
problems of a nonlinear fractional differential equation with
deviating arguments,” Journal of Computational and Applied
Mathematics, vol. 236, no. 9, pp. 2425–2430, 2012.

[35] L. Zhang, B. Ahmad, and G. Wang, “Explicit iterations and
extremal solutions for fractional differential equations with
nonlinear integral boundary conditions,” Applied Mathe-
matics and Computation, vol. 268, pp. 388–392, 2015.

[36] L. S. Lejbenson, “General problem of the movement of a
compressible fluid in a porousmedium,” Izv Akad Nauk SSSR,
Ser Geogr Geofiz.vol. 9, pp. 7–10, 1983.

[37] X. Liu, M. Jia, and W. Ge, “*e method of lower and upper
solutions for mixed fractional four-point boundary value
problem with p-Laplacian operator,” Applied Mathematics
Letters, vol. 65, pp. 56–62, 2017.

[38] J. Qin, G. Wang, L. Zhang, and B. Ahmad, “Monotone it-
erative method for a p-Laplacian boundary value problem
with fractional conformable derivatives,” Boundary Value
Problems, vol. 2019, no. 1, p. 145, 2019.

[39] Y. Liu and X. Yang, “Resonant boundary value problems for
singular multi-term fractional differential equations,” Dif-
ferential Equations & Applications, vol. 5, no. 3, pp. 409–472,
2013.

14 Complexity


