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We investigate quantum features of three coupled dissipative nano-optomechanical oscillators. 'e Hamiltonian of the system is
somewhat complicated due not only to the coupling of the optomechanical oscillators but to the dissipation in the system as well.
In order to simplify the problem, a spatial unitary transformation approach and a matrix-diagonalization method are used. From
such procedures, the Hamiltonian is eventually diagonalized. In other words, the complicated original Hamiltonian is trans-
formed to a simple one which is associated to three independent simple harmonic oscillators. By utilizing such a simplification of
the Hamiltonian, complete solutions (wave functions) of the Schrödinger equation for the optomechanical system are obtained.
We confirm that the probability density converges to the origin of the coordinate in a symmetric manner as the optomechanical
energy dissipates. 'e wave functions that we have derived can be used as a basic tool for evaluating diverse quantum con-
sequences of the system, such as quadrature fluctuations, entanglement entropy, energy evolution, transition probability, and the
Wigner function.

1. Introduction

Physical systems in nature do not behave independently in
most cases because they are not isolated in usual. 'e
coupling of a system to another one often results in various
mutual phenomena, such as energy exchange, dissipation,
entanglement, amplitude fluctuations, and decoherence
[1, 2]. 'e model of a chain of oscillatory motions can be
utilized in analyzing the dynamical characteristics of
coupled optomechanical [3–6], nanoelectromechanical
[7, 8], chemical [9, 10], and biological systems [11]. 'e
mechanical analyses of coupled oscillators have been
extensively explored so far through different approaches.
Such systems can be usually investigated using invariant
operator methods [12, 13], Bogoliubov transformation
methods [14, 15], Jaynes–Cummings approaches [16],
path integral methods [17], and adiabatic approaches [2].
Based on these approaches, we can elucidate diverse

mechanical properties of the coupled oscillatory systems
even when they are described by a time-dependent
Hamiltonian.

Coupled harmonic oscillators are important topics es-
pecially in optomechanical systems which utilize interaction
and entanglement between optical and mechanical modes.
Coupling of nano- and micromechanical oscillators with
photons [3] and/or other systems such as electrons [18] and
atoms [19] provides a substantial tool for realizing next-
generation quantum technologies. For instance, photonic
couplings provide a basic technology platform for manip-
ulation of phononic structures [20], slow/fast-light tech-
nology [21], zero-point cooling [22], and mechanical-
frequency shifting [23]. Besides such applicability, coupled
optomechanical oscillatory systems are required for highly
sensitive measuring quantum devices which are crucial in
quantum state tomographies and information processing
with quantum states. Moreover, abundant physical
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phenomena along this line can be utilized in nonclassical
state preparation in hybrid quantum-information systems
including quantum networks with appropriate quantum
protocols.

In order to know underlying quantum properties related
to entanglement [24, 25], quantum coherence and deco-
herence [26], nonclassical correlations [27], and concur-
rence [28], exact quantum theory which explains the
evolution of the coupled system is necessary. It is known that
such a system can be quantized with the assistance of a
dynamical invariant [29] or imposing an adiabatic condition
[2]. In this paper, we will show that we can also unfold the
quantum dynamics of optomechanical physical systems
described by a Hamiltonian of dissipative three coupled
oscillators through neither introducing a dynamical in-
variant nor imposing an adiabatic condition in the dissi-
pation. 'e complete wave functions of the system will be
derived by diagonalizing the Hamiltonian directly, instead of
the diagonalization of the dynamical invariant.

Before we carry out the main diagonalization, we first
transform the Hamiltonian by a unitary operator into an
appropriate form that can be diagonalizable without any
approximation and condition. Indeed, unitary transforma-
tion procedure is a useful tool that enables us to treat a
complicated Hamiltonian in a simplified transformed space.
'is greatly helps us to solve the analytical quantum solu-
tions of the mechanical systems.

'e present paper is organized as follows. Our problem
for dissipative nano-optomechanical three coupled oscil-
lators is formulated by basic equations of mechanics in
Section 2. In Section 3, we deal with the quantization of the
system and its physical states. At first, we simplify the
Hamiltonian of the system by using the unitary transfor-
mation method. Such a simplified Hamiltonian will be
represented as a rigorous matrix form for further inves-
tigation. 'e matrix Hamiltonian will be diagonalized so
that we can easily manage it. By taking advantage of such a
diagonalization, the quantum solutions of the system will
be investigated. 'e concluding remarks are given in the
last section.

2. Preliminaries

Before the actual investigation of optomechanical oscillatory
systems, let us briefly show the method for describing
mechanical oscillators subjected to a dissipational non-
conservative force. In classical mechanics, the motion of a
damped mechanical system can be described by the New-
tonian equation

€x + δ _x � −
∇
→

V(x)

m
. (1)

'e second term on the left-hand side is a dissipative
frictional force proportional to velocity, where δ is the
damping coefficient. From the theoretical point of view,
there is no limitation on themagnitude of δ; i.e., it can be any
real number. For a mechanical oscillatory system that we are
interested, the term in the right-hand side is of the form

∇
→

V(x) � kx. (2)

Whereas the system is underdamped provided that δ <ω/2
where ω � (k/m)1/2, it is well known that the system be-
comes an overdamped oscillator when δ >ω/2. For the case
of the overdamped oscillator, its mathematical treatment is
somewhat difficult from quantum mechanical point of view.
'eHamiltonian that gives the equation of motion, equation
(1) with equation (2), is given by

H(t) �
1
2

P
2

e
δt

m
+ e

δt
kx

2
 . (3)

'e role of this Hamiltonian is limited to a generator of the
classical equation of motion. Regarding this, it is well known
that the energy of the system in this case is another problem
and it is given by [30–32]

En(t) �
1
2
〈P2〉
e
2δt

m
+ k〈x2〉 , (4)

where 〈· · ·〉 is an expectation value in the Fock state. While
equation (4) is represented in terms of the canonical mo-
mentum, we can also represent it in terms of the physical
momentum Pk using the relation that Pk � m _x � Pe−δt:

En(t) �
1
2
〈P2

k〉
m

+ k〈x2〉 . (5)

'is implies that the quantum energy of the system dis-
sipates according to the decrease of both 〈P2

k〉 and 〈x2〉

over time. 'is basic description of 1D system can be
easily extended to coupled oscillatory systems.

In this work, we treat an optomechanical system shown
in Figure 1 as a generalization of 1D system described by
equation (3). As can be seen from Figure 1, optical fields are
coupled with a mechanical mode through a nonlinear
interaction caused by radiation pressure.'e system can be
linearized to some extent [3] and the resultant Hamiltonian
can be parameterized by the optical quadratures (x1, x2)

and a position of the mechanical membrane (x3)

[29, 33–35]:

H(t) �
1
2



3

i�1

P
2
i

e
δt

mi

+ e
δt

kix
2
i

⎡⎣ ⎤⎦

+
1
2

e
δt

k12 x1 − x2( 
2

+ k13 x1 − x3( 
2

+ k23 x2 − x3( 
2

 ,

(6)

where m1 and m2 are the effective electric permittivities in
the cavity 1 and cavity 2, respectively, in Figure 1 (although
an electric permittivity is written as ε in many cases, we
denote it as m for the convenience of mathematical ex-
pressions), m3 is the effective mass of the nanomembrane,
ki(i � 1, 2, 3) are the stiffness constants, and k12, k13, and k23
are the coupling constants; the convention of the subscript i

(including j) which is given here will also be used subse-
quently. We manage only the case of underdamped oscil-
lation of the system for simplicity. For a simple case where
the system is a coupling of two oscillators (instead of three)
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with the condition δ⟶ 0, the system corresponds to that
of [3] and the relevant Hamiltonian, equation (6), reduces to
equation (1) in the same reference.

In phase space, the coordinates and the conjugate mo-
menta satisfy the commutation relations

xi, Pj  � iZδij,

xi, xj  � Pi, Pj  � 0.
(7)

We are interested in quantum mechanical treatment of the
optomechanical system. To study the quantum behavior of
our system, we consider the Schrödinger equation of the
form

iZzt|Ψ(t)〉 � H(t)|Ψ(t)〉. (8)

'e evolution of the state vector associated with this
equation and its physical interpretation is usually made
within the framework of the Copenhagen interpretation of
quantum mechanics. However, because the Hamiltonian in
equation (6) is a somewhat complicated form, it may be not
an easy task to solve the solutions of equation (8). In order to
overcome such a difficulty, we will manage the system based
on the unitary transformation method and a diagonalization
procedure in the next section.

3. Results and Discussion

3.1. Unitary Transformations. Unitary transformation
methods have often been used to solve the time-dependent
Schrödinger equation (TDSE) [36–42] for a complicated
dynamical system. If we use this method, it is possible to
reduce the complicated form of the Schrödinger equation to
a simpler one.'is may facilitate the derivation of associated
quantum solutions.

In order to achieve an appropriate transformation, a
suitable choice of a unitary operator depending on the
Hamiltonian is necessary. In our case, we choose the unitary
operator as [29, 36, 40, 41]

U(t) � 
3

i�1
exp

i

2Z
Pixi + xiPi(  ln

���
mi

√
+
δ
2

t  
⎧⎨

⎩

⎫⎬

⎭

× exp −
iδ
4Z



3

i�1
x
2
i

⎛⎝ ⎞⎠.

(9)

'is is a product of two unitary operators. 'e first operator
is represented by considering the symmetry between xi and
Pi. Later on, we will see that the choice of this operator
simplifies the Hamiltonian through a transformation. In
terms of U(t), the transformation of the wave function can
be carried out in a way that

ψ(t) � U
−1

(t)Ψ(t), (10)

where ψ(t) is the transformed wave function.
Under this unitary transformation, the Schrödinger

equation of the original Hamiltonian system, equation (8), is
mapped into

iZztψ(t) � Hψ(t), (11)

where the new Hamiltonian H has the form

H � U
−1

(t)H(t)U(t) − iZU
−1

(t)ztU(t). (12)

'e transformation of canonical variables using equation (9)
results in

U
−1

(t)xiU(t) �
e

−δt/2

���
mi

√ xi,

U
−1

(t)PiU(t) �
���
mi

√
e
δt/2

Pi −
δ
2
xi .

(13)

From the use of equation (6) with the above relations, we see
that equation (12) becomes

Cavity 1 Cavity 2
ω3

ω1 ω2

Figure 1: Schematic of three coupled nano-optomechanical oscillators that we consider. ω1 and ω2 are the optical modes, whereas ω3 is a
mechanical mode. It represents the interaction of the cavity fields with a flexible nanomembrane via radiation-pressure forces.
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H �
1
2



3

i�1
P
2
i +Ω2i x

2
i  +

1
2

J12x1x2 + J13x1x3 + J23x2x3( ,

(14)

where

Ω1 �
k1 + k12 + k13

m1
−
δ
4

2

 

1/2

,

Ω2 �
k2 + k12 + k23

m2
−
δ
4

2

 

1/2

,

Ω3 �
k3 + k13 + k23

m3
−
δ
4

2

 

1/2

,

J12 �
−2k12
�����
m1m2

√ ,

J13 �
−2k13
�����
m1m3

√ ,

J23 �
−2k23
�����
m2m3

√ .

(15)

We see from equation (14) that we have taken the Hamil-
tonian which is simplified to some extent, thanks to the
transformation with the use of U(t) given in equation (9).
However, the coupling terms xixj still remained in the
Hamiltonian. We will further simplify the Hamiltonian in
the subsequent subsection by removing the terms xixj using
a diagonalization method.

3.2.Diagonalizationof theHamiltonian. Let us now consider
diagonalization of the Hamiltonian. To this end, we rep-
resent the Hamiltonian H in a matrix form such that

H �
1
2



3

i,j�1
PiδijPj +

1
2



3

i,j�1
xiΓijxj, (16)

where Γij are elements of the matrix

Γ �

Ω21
1
2
J12

1
2
J13

1
2
J12 Ω

2
2

1
2
J23

1
2
J13

1
2
J23 Ω

2
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

which corresponds to ith row and jth column for each.
If we think that the dimension of the matrix Γ is (3 × 3),
Γ is a diagonalizable square matrix [43, 44]. 'e diago-
nalizability of a matrix is in principle equivalent to the
existence of a basis of eigenvectors, which makes it possible
to define a diagonalizable endomorphism of a vector space.
To diagonalize the Hamiltonian matrix, equation (16), it is
necessary to seek its eigenvalues ϖ2i and the corresponding
eigenvectors V

→
i . In our case, by solving the secular equation

for Γ given in equation (17), the eigenvalues of the matrix Γ
are given as follows:

ϖ21 � Ω21 +
J12 + J13

2
,

ϖ22 � Ω22 −
1
2
J23 + ω2

,

ϖ23 � Ω23 −
1
2
J23 − ω2

,

(18)

where

ω2
�
1
2

J
2
12 + J

2
13 + J

2
23 − J12J13 + J12J23 + J13J23(  

1/2
.

(19)

From a standard procedure associated with the eigenvalue
problem of amatrix, we can easily see that the corresponding
normalized eigenvectors are given by

V
→

1 �
1
�
3

√

1

1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V
→
± � λ±

1
2
J12 −

1
2
J23 ∓ω

2

1
2
J23 −

1
2
J12 ± ω

2

1
2
J23 −

1
2
J13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

where

λ± �
1

J23 − J13

2
3
±

J12 − J13 + J23( /2
3ω2 

1/2

. (21)

Note that the vectors V
→

i(i � 1; ±) are orthonormal to each
other because Γ is symmetric. 'us, Γ can be diagonalized by
Γ � RDR−1, where
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R �

1
�
3

√ λ+

1
2
J12 −

1
2
J23 − ω2

  λ−

1
2
J12 −

1
2
J23 + ω2

 

1
�
3

√ λ+ −
1
2
J12 +

1
2
J23 + ω2

  λ− −
1
2
J12 +

1
2
J23 − ω2

 

1
�
3

√ λ+ −
1
2
J13 +

1
2
J23  λ− −

1
2
J13 +

1
2
J23 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)

D � R
−1ΓR

� diag ϖ21,ϖ
2
2,ϖ

2
3 .

(23)

Now, we introduce new coordinates qi and pi as

q1

q2

q3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � R

x1

x2

x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

p1

p2

p3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � R

P1

P2

P3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(24)

By using equation (22), we can easily obtain the full ex-
pressions of qi and pi; we have represented them in Ap-
pendix for completeness. Now, from a straightforward
algebraic procedure using those expressions (Equation
(A.1)–(A.6)), we see that H takes the form

H �
1
2



3

i�1
p
2
i + ϖ2i q

2
i . (25)

'us, the transformed system is eventually decoupled
(diagonalized); i.e., it is reduced to a collection of three
decoupled harmonic oscillators. During the diagonal-
ization procedure, we have imposed no conditions or
restrictions. Hence, the consequence (equation (25))
justifies the appropriateness of the chosen unitary op-
erator together with the subsequently performed diago-
nalization. Based on this, the solutions of our problem
can be easily obtained. Indeed, from a mathematical point
of view, the diagonalization method plays a major role in
the simplification of the problem without modification of
the behavior of the physical system.

We note that the coupled optomechanical oscillatory
systems can also be diagonalized by using the Bogoliubov
transformation or its advanced technics, provided that δ � 0.
However, the resulting expression of the Hamiltonian which
is diagonalized based on such a method is somewhat dif-
ferent from that obtained using the method used here (see,
for example, equations (54–57) in Ref. [15]).

3.3. Quantum Solutions. We now inspect solutions of the
TDSE for the Hamiltonian given in equation (25) at first.
'en, based on the inverse unitary transformation of such
solutions, we find the solutions of the original opto-
mechanical physical system of which Hamiltonian is
equation (6). As we have indicated previously, we can
easily derive the solutions of energy spectrum of the new
Hamiltonian H which is the sum of three individual
simple-harmonic-oscillator Hamiltonians with frequen-
cies ϖ1, ϖ2, and ϖ3. Consequently, the solutions
ψ(q1, q2, q3, t) of the Schrödinger equation, equation (11),
for the transformed Hamiltonian are given by

ψ q1, q2, q3, t(  � ψ q1, t( ψ q2, t( ψ q3, t(  �

�������
ϖ1ϖ2ϖ3

√

(πZ)3/2n1!n2!n3!2n1+n2+n3
 

1/2

exp iαn1 ,n2 ,n3
(t) 

× Hn1

���
ϖ1
Z



q1 Hn2

���
ϖ2
Z



q2 Hn3

���
ϖ3
Z



q3 

× exp
−1
2Z
ϖ1q

2
1 + ϖ2q

2
2 + ϖ3q

2
3  ,

(26)
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where Hni
are nith-order Hermite polynomials, and the

phases take the form

αn1 ,n2,n3
(t) � − 

3

i�1
ϖi ni +

1
2

 t. (27)

Based on this, it is possible to determine the solutions as-
sociated with the original optomechanical system by using
equations (10), (26), and (27).'ence, we finally have the full
wave functions in the form

Ψn1 ,n2 ,n3
x1, x2, x3, t(  � NHn1

(ξ)1Hn2
ξ2( Hn3

ξ3(  × exp −i 
3

i�1
ϖi ni +

1
2

 t⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

× exp μ1 −
iδ
4Z

m1e
δt

 x
2
1 + μ2 −

iδ
4Z

m2e
δt

 x
2
2

+ μ3 −
iδ
4Z

m3e
δt

 x
2
3 + μ12x1x2 + μ13x1x3 + μ23x2x3,

(28)

where N is the normalization factor:

N �

��������������
ϖ1ϖ2ϖ3m1m2m3

√
e(3/2)δt

(πZ)3/2n1!n2!n3!2n1+n2+n3
 

1/2

. (29)

Also, ξ1, ξ2, and ξ3 are given as

ξ1 �
ϖ1
Z

e
δt

 
1/2 1

�
3

√
���
m1

√
x1 + λ+

1
2
J12 −

1
2
J23 − ω2

 
���
m2

√
x2

+ λ−

1
2
J12 −

1
2
J23 + ω2

 
���
m3

√
x3,

ξ2 �
ϖ2
Z

e
δt

 
1/2 1

�
3

√
���
m1

√
x1 + λ+ −

1
2
J12 +

1
2
J23 + ω2

 
���
m2

√
x2

+ λ− −
1
2
J12 +

1
2
J23 − ω2

 
���
m3

√
x3,

ξ3 �
ϖ3
Z

e
δt

 
1/2 1

�
3

√
���
m1

√
x1 + λ+ −

1
2
J13 +

1
2
J23 

���
m2

√
x2

+ λ− −
1
2
J13 +

1
2
J23 

���
m3

√
x3,

(30)

while the time-dependent coefficients μ1, μ2, μ3, μ12, μ13, and
μ23 are expressed to be

μ1 � −
m1e

δt

6Z
ϖ1 + ϖ2 + ϖ3( , (31)

μ2 � −
m2e

δt

2Z
λ2+ ϖ1

1
2
J12 −

1
2
J23 − ω2

 
2

+ ϖ2 −
1
2
J12 +

1
2
J23 + ω2

 
2



+ϖ3 −
1
2
J13 +

1
2
J23 

2
,

(32)
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μ3 � −
m3e

δt

2Z
λ2− ϖ1

1
2
J12 −

1
2
J23 + ω2

 
2

+ ϖ2 −
1
2
J12 +

1
2
J23 − ω2

 
2



+ϖ3 −
1
2
J13 +

1
2
J23 

2
,

(33)

μ12 � −

�����
m1m2

√
e
δt

�
3

√
Z

λ+ ϖ1
1
2
J12 −

1
2
J23 − ω2

  + ϖ2 −
1
2
J12 +

1
2
J23 + ω2

 

+ϖ3 −
1
2
J13 +

1
2
J23 ,

(34)

μ13 � −

�����
m1m3

√
e
δt

�
3

√
Z

λ− ϖ1
1
2
J12 −

1
2
J23 + ω2

  + ϖ2 −
1
2
J12 +

1
2
J23 − ω2

 

+ϖ3 −
1
2
J13 +

1
2
J23 ,

(35)
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Figure 2: Contour plot of the time evolution of the probability density |Ψn1 ,n2 ,n3
(x1, x2, x3, t)|2 as a function of x1 (a, b) and x2 (c), where

x2 � x3 � 0 for (a) and (b), while x1 � x3 � 0 for (c). 'e chosen quantum numbers (n1, n2, n3) are (3, 3, 3) (a), (10, 10, 10) (b), and (20, 20,
20) (c), whereas the damping factor δ is 0.10 (a), 0.20 (b), and 0.30 (c). We used Z � 1, m1 � m2 � m3 � 1, k1 � k2 � k3 � 1, k12 � 0.1,
k13 � 0.2, and k23 � 0.3.
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μ23 � −

�����
m2m3

√
e
δtλ+λ−�

3
√

Z
ϖ1

1
2
J12 −

1
2
J23 

2
− ω4

 

+ϖ2 −
1
2
J12 +

1
2
J23 

2
− ω4

  + ϖ3 −
1
2
J13 +

1
2
J23 

2
.

(36)

Notice that we have used no approximation and pertur-
bation methods during the derivation of equation (28) with
equations (29)–(36). Hence, the wave functions in equation
(28) are exact even if they are somewhat complicated. 'e
normalization factor, equation (29), is chosen in a way that


∞

−∞

∞

−∞

∞

−∞
Ψ∗n1 ,n2 ,n3
Ψn1 ,n2 ,n3

dx1dx2dx3 � 1. (37)

Equation (29) involves e3δt/4, and this reduces to eδt/4 for a
1D case, which is a previously known consequence [30].
'e obtained wave functions can be used as a basic tool
for further investigation of the quantum dynamics of the
nano-optomechanical system. As mentioned earlier, we
considered only the case of underdamped oscillation. For
the cases of critically and overdamped systems, the
quantum mechanism of the oscillation is somewhat
different. 'en, the wave functions are not described by
quantum number ni but are similar to those of an un-
bound system [30].

We have plotted the time behavior of the probability
density |Ψn1 ,n2 ,n3

(x1, x2, x3, t)|2 for several different choices
of quantum numbers ni and the damping factor δ in
Figure 2. 'e numerical data associated to the graphics in
this figure were obtained from the use of Mathematica
program (Wolfram Research) with equations (28)–(36).
'e probability density converges to the origin of the
coordinate in a symmetric manner as time goes by
according to the dissipation of energy, regardless of the
chosen values of ni. 'e convergence is fast when δ is large
as expected.

4. Conclusions

We have investigated quantum mechanical features of
dissipative three coupled nano-optomechanical oscilla-
tors. Exact solutions of the TDSE of the system have been
derived using the unitary transformation method and a
diagonalization procedure. From the unitary transfor-
mation at first, the complicated time-dependent original
quantal Hamiltonian was transformed to a simple one
which has unit masses; however, the coupling terms xixj

in the Hamiltonian still remained even after this trans-
formation. In order to remove the coupling terms xixj, we
used a diagonalization method. 'rough these proce-
dures, the Hamiltonian eventually diagonalized. 'e

finally transformed Hamiltonian was given in the form
associated to three independent harmonic oscillators. As
a consequence, the transformed Hamiltonian was easily
treated and we have identified the corresponding
quantum solutions without difficulty. By inverse trans-
formation of the solutions of the TDSE for the trans-
formed Hamiltonian, we finally had the complete
quantum solutions of the original optomechanical sys-
tem. 'e probability density, which is the absolute square
of the wave function, converges to the origin of the co-
ordinate as the oscillatory energy dissipates. 'e wave
functions, which we obtained here, can be used to
evaluate not only the quantum mechanical expectation
values of various observables, such as physical momen-
tum and quantum energy, but also probability densities,
optomechanical dissipation, and fluctuations of the ca-
nonical variables.

One of the important research tasks for coupled opto-
mechanical systems is characterizing entanglement between
oscillators based on, for example, entropy. Usually, the
derivation of entanglement entropy for coupled nonsta-
tionary oscillators along this line was carried out up until
now with an implicit assumption that all masses (and electric
permittivities) of the system are unity or equal to each other
[45–50]. Notice that such a limited treatment was entirely
due to the difficulty in the associated diagonalization pro-
cedure of the Hamiltonian. 'e significance of this research
is that we neither adopted such an unnecessary assumption
nor used a mathematical approximation when we unfold our
theory starting from equation (6). Such clear treatment was
possible thanks to the managing of the system in a hybrid
way, i.e., by combining the unitary transformation approach
and the matrix-diagonalization method together.

An obvious trend in current electronic and optical science
is that the related devices become smaller and smaller towards
atomic scale as the technology advances. Notice that quantum
effects are prominent in devices miniaturized, especially
below the scale of the Fermi wavelength [51]. Consequently,
quantum treatment of devices including optomechanical ones
is important in such cases, while classical mechanics is in-
adequate in describing their characteristics. 'e quantum
results of this research may provide a theoretical foundation
which enables the investigation of the entanglement problem
for coupled optomechanical oscillators without a necessity of
certain assumptions.
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Appendix

The Full Expressions of qi and pi

'e formulae of qi and pi appeared in equation (25) are
given by

q1 �
1
�
3

√ x1 +
λ+

2
J12 − J23 − 2ω2

 x2 +
λ−

2
J12 − J23 + 2ω2

 x3,

(A.1)

q2 �
1
�
3

√ x1 +
λ+

2
J23 − J12 + 2ω2

 x2 +
λ−

2
J23 − J12 − 2ω2

 x3,

(A.2)

q3 �
1
�
3

√ x1 +
λ+

2
J23 − J13( x2 +

λ−

2
J23 − J13( x3, (A.3)

p1 �
1
�
3

√ P1 +
λ+

2
J12 − J23 − 2ω2

 P2 +
λ−

2
J12 − J23 + 2ω2

 P3,

(A.4)

p2 �
1
�
3

√ P1 +
λ+

2
J23 − J12 + 2ω2

 P2 +
λ−

2
J23 − J12 − 2ω2

 P3,

(A.5)

p3 �
1
�
3

√ P1 +
λ+

2
J23 − J13( P2 +

λ−

2
J23 − J13( P3. (A.6)
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