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In recent years, theMuth distribution has been used for the construction of accurate statistical models, with applications in various
applied fields. In this paper, we use a truncated-composed scheme to create a new unit Muth distribution, fromwhich we motivate
a more general family of continuous distributions called the truncated Muth generated family. )e key benefits of this family are
its analytical simplicity, connections with the exponential generated family, and flexibility conferred on any parental distribution.
In particular, it improves the capability of the functions of the parental distribution, enhancing their peak, asymmetry, tail, and
flatness levels, among others.)e characteristics of quantile andmoment measures and functions of the truncatedMuth generated
family are described in detail. As a concrete example, a particular distribution that extends theWeibull distribution is highlighted.
In an applied part, the parameters are calculated using the maximum likelihood procedure. We use a comprehensive simulation
analysis to demonstrate the accuracy of the derived estimates. )e revised Weibull model is then used to fit two real-world
datasets. )e new model is shown to be more suited to these datasets than other competing models.

1. Introduction

)e Muth (M) distribution, in its most basic form, is a
lifetime distribution introduced by [1]. It is mathematically
defined by the following one-parameter cumulative distri-
bution function (cdf):

FM(x) � 1 − exp αx −
1
α

e
αx

− 1(  , x≥ 0, (1)

with α ∈ (0, 1], and FM(x) � 0 for x< 0. )e following
properties are satisfied. As α approaches 0, the M distri-
bution transforms into a classical exponential distribution
with the parameter equal to one. Its right tail is less
weighted than that of some other lifetime distributions, and
it has enough versatility to suit a large panel of lifetime data
sets properly, especially those resulting from reliability

experiments. Many of these properties are developed in
[1–3]. )e M distribution was later generalized by Jodra
et al. [4] using the power transform. It is also possible to
refer to the exponentiated Tessier distribution by Sharma
et al. [5], where it provides an in-depth analytical con-
nection with the exponentiated version of the M
distribution.

Also, an innovative approach has sought to develop
generic families of continuous distributions that generalize
or expand a parental distribution using specific mathe-
matical schemes. By combining the type II of the T-X
scheme by Alzaatreh et al. [6] and theM distribution, in [7],
the authors proposed the M generated (M-G) class of dis-
tributions with the perspective of creating attractive dis-
tributions for statisticians. Concretely, the M-G class is
defined by the following cdf:
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FM− G(x) � G(x)
− α exp −

1
α

G(x)
− α

− 1  , x ∈ R, (2)

where G(x) refers to the cdf of a continuous distribution,
that we call the parental distribution. )en, to demonstrate
the importance of theM-G class, in [7], the authors looked at
the M uniform, M Rayleigh, M Lomax, M exponential, and
M Weibull distributions. )e graphs show that the main
functions, and the probability density functions (pdfs) and
hazard rate functions (hrfs) in particular, have a variety of
curvatures, demonstrating their ability to model heteroge-
neous phenomena. )is is shown in [7] using theMWeibull
distribution as a parangon of theM-G class and some data by
Abouelmagd et al. [8] on aircraft windshield failure times. In
fact, it is shown that theMWeibull model adjusts these data
better than other extensions of the Weibull models. An
extension of theM-G family was proposed by [9] through the
transmuted scheme. As an important remark made in [9],
one can take α such that α ∈ (∞, 1]/ 0{ }, a condition that
significantly improves the modeling ability of the M-G
family, among others. )is condition on α will be used
throughout the rest of the study. To conclude this paragraph,
we mention that another type of M-G family has been
established in [10], also based on the T-X transformation.

In this paper, we contribute to the capability of the M
distribution to generate flexible distributions by considering
the truncated-composed scheme. A list of recent families of
distributions based on this scheme is the following: trun-
cated Fréchet generated (TFG) family by Abid and
Abdulrazak [11], truncated Weibull generated (TWG)
family by Najarzadegan et al. [12], truncated inverted
Kumaraswamy generated (TIKG) family by Bantan et al.
[13], type II truncated Fréchet generated (TIITFG) family by
Aldahlan [14], truncated Cauchy power generated (TCPG)
family by Aldahlan et al. [15], exponentiated truncated in-
verse Weibull generated (ETIWG) family by Almarashi et al.
[16], truncated Burr generated (TBG) family by Jamal et al.
[17], truncated generalized Fréchet generated (TGFG)
family by ZeinEldin et al. [18], truncated inverse Lomax
generated (TILG) family by Algarni et al. [19], and truncated
Burr X generated (TBX) family by Bantan et al. [20]. Despite
this extensive literature, there is no work on what can be
called the new truncated M generated (NTM-G) distribu-
tion. )e main interest of this family is to provide a sim-
plified alternative to the M-G family, while using the
functionalities of the M distribution to extend the modeling
features of any parental distribution.

)e following plan is used to illustrate this claim. Section
2 is devoted to a special truncated M distribution belonging
to the family of unit distributions. It is new and also is the
key ingredient in defining our main general family. We will
look at some of its most interesting properties, with a focus
on quantitative analysis and moment analysis. )e con-
sidered TM-G family is defined in Section 3. After the in-
vestigation of its related functions, we perform a quantile
analysis, followed by a moment analysis. In addition, a
numerical work is given on some moment measures. Section
4 is the applied part; we show concretely how the TM-G
family can be used to estimate a distribution from data. )e

maximum likelihood (ML) procedure is employed, and
reinforced by a simulation study to guarantee the effec-
tiveness of the method. Real data are then analysed through
comparable models, showing that our model is competitive
and more accurate than some models derived from theM-G
family. A conclusion is given in Section 5.

2. The Unit Truncated M Distribution

2.1.Motivation. )e creation of unit interval distributions is
growing rapidly in the literature. As the main explanation,
these distributions are useful for modeling proportions,
percentages, and rates that are defined at a unit interval.
Modern applications are numerous in the fields of psy-
chology, economics, biology, and engineering. For more
information on this topic, see [21–24] as well as the refer-
ences therein. )is section is dedicated to the unit truncated
M distribution, which will be the main ingredient to the
NTM-G family. It is worth noting that this unit distribution
is not documented in the literature to our knowledge.

2.2. Presentation. Based on the cdf of the M distribution as
described in equation (1), we propose a new unit distri-
bution, called the new truncatedM (NTM) distribution. It is
defined by the following cdf:

FNTM(x) �
FM(x)

FM(1)
, x ∈ (0, 1), (3)

and the following adjustments at the boundaries:
FNTM(x) � 0 for x< 0 and FNTM(x) � 1 for x> 1, that is,
for x ∈ (0, 1), we have

FNTM(x) � Cα 1 − exp αx −
1
α

e
αx

− 1(   , (4)

with Cα � 1 − exp[α − (eα − 1)/α] 
− 1. We recall that

α ∈ (− ∞, 1]/ 0{ }. To our knowledge, there is no reference to
the NTMdistribution in the literature.)eNTMdistribution,
like the other unit distributions in the abovementioned ref-
erences, can be used to interpret any proportional-like data.
As a result, it offers an alternative to some useful one-pa-
rameter unit distributions, such as the power, beta, and the
Topp–Leone distributions by Topp and Leone [25].

As a basic property, when α decreases to 0, the NTM
distribution has a unit truncated exponential distribution as
the limit distribution.

In complement to the cdf, note that the pdf of the NTM
distribution is specified by

fNTM(x) � Cα e
αx

− α( exp αx −
1
α

e
αx

− 1(  , x ∈ (0, 1),

(5)

with fNTM(x) � 0 for x< 0 and fNTM(x) � 1 for x> 1, and
the hrf is obtained as

hNTM(x) �
Cα e

αx
− α( exp αx − e

αx
− 1( /α 

1 − Cα 1 − exp αx − e
αx

− 1( /α  
, x ∈ (0, 1),

(6)
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with hNTM(x) � 0 for x< 0 and hNTM(x) � 1 for x> 1. )e
shape behavior of these two functions reveals a flexible
model that may be useful for a variety of statistical appli-
cations. We, however, omit the details of this aspect and
prefer to focus on the quantile analysis and moment analysis
of the NTM distribution, which will have important uses for
the coming NMTG family.

2.3. Quantile Analysis. )e quantile function (qf) of the
NTM distribution is described in the following result. As for
the classical M distribution, the Lambert function plays a
central role.

Proposition 1. !e qf of the NTM distribution is

QNTM(u) �
1
α
log − αW

udα − 1
αe

1/α  , u ∈ (0, 1), (7)

where dα � C− 1
α � 1 − exp[α − (eα − 1)/α] and W(x) is the

Lambert function.

Proof. )e following equation, FNTM(x) � u with respect
to x, is used to determine the qf. )is equation is equivalent
to

exp αx −
1
α

e
αx

− 1(   � 1 − udα, (8)

and by applying (Corollary 2 in [2]) with “udα” instead of
“u,” we get the stated result. □

)e concept of qf has been used in a variety of publi-
cations, both theoretical and practical. Essentially, we can
use it to define the three main quartiles of a distribution; for
the NTM distribution, they are given by Q1 � QNTM(1/4),
Q2 � QNTM(1/2), and Q3 � QNTM(3/4). )e median of the
NTM distribution is simply Q2, that is,

Q2 �
1
α
log − αW

dα − 2
2αe

1/α  . (9)

)e qf is also the basis of some distributional measures,
such as the skewness measure of Bowley expressed as

B �
Q3 − 2Q2 + Q1

Q3 − Q1
, (10)

and the kurtosis measure of Moors is defined by

K �
O7 − O5 + O3 − O1

Q3 − Q1
, (11)

where Oi denotes the ith octile of the NTM distribution, i.e.,
Oi � QNTM(i/8), i � 1, 3, 5 and 7. As a last remark, we can
generate values from the NTM distribution by exploiting the
fact that, for any random variable U with the unit uniform
distribution, QNTM(U) has the NTM distribution. In other
words, using the quantile transformation, values generated by
the unit uniform distribution are converted to values created
by the NTM distribution. More information on the topic of
quantitative analysis can be found in the book of [26].

2.4.MomentAnalysis. In this section, we perform a moment
analysis. With this aim, we introduce the following special
integral function:

I(a, b, c, d, ± ) � 
b

a
(±y)

c
(log(±y))

d
e

− ydy, (12)

for a, b, c, and d in such a way that this special integral exists.
Connections with well-established integral functions, in-
cluding gamma and general exponential integral functions,
exist. We can also view this integral as a truncated version of
the exponential transform of the power-log function u(x) �

(±x)c (log(±x))d.
)e moment generating function (mgf) of the NTM

distribution is described in the following result.

Proposition 2. Let X be a random variable with the NTM
distribution. !e mgf of X is defined by M(t) � E(etX) with
t ∈ R; it always exists and can be expressed as

M(t) � Cαe
1/α

×

(− α)
t/α+1

I
1
α

,
e
α

α
,
t

α
, 0, −  + I

1
α

,
e
α

α
,
t

α
+ 1, 0, −  , for α< 0,

αt/α+1
I

1
α

,
e
α

α
,
t

α
+ 1, 0, +  − I

1
α

,
e
α

α
,
t

α
, 0, +  , for α ∈ (0, 1],

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

where I(a, b, c, d, ± ) is the integral function defined in
equation (12).

Proof. By changing the variable y � eαx/α, we have

M(t) � 
+∞

− ∞
e

tx
fNTM(x)dx � 

1

0
e

tx
e
αx

− α( exp αx −
1
α

e
αx

− 1(  dx

� Cααe
1/α


eα/α

1/α
(αy)

t/α
(y − 1)e

− ydy.

(14)
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If α< 0, we can write

M(t) � Cα(− α)
t/α+1

e
1/α


eα/α

1/α
(− y)

t/α
(1 − y)e

− ydy

� Cα(− α)
t/α+1

e
1/α


eα/α

1/α
(− y)

t/α
e

− ydy + 
eα/α

1/α
(− y)

t/α+1
e

− ydy 

� Cα(− α)
t/α+1

e
1/α

I
1
α

,
e
α

α
,
t

α
, 0, −  + I

1
α

,
e
α

α
,
t

α
+ 1, 0, −  .

(15)

On the contrary, if α ∈ (0, 1], we can write

M(t) � Cαα
t/α+1

e
1/α


eα/α

1/α
y

t/α
(y − 1)e

− ydy

� Cαα
t/α+1

e
1/α


eα/α

1/α
y

t/α+1
e

− ydy − 
eα/α

1/α
y

t/α
e

− ydy 

� Cαα
t/α+1

e
1/α

I
1
α

,
e
α

α
,
t

α
+ 1, 0, +  − I

1
α

,
e
α

α
,
t

α
, 0, +  .

(16)

)is ends the proof of the proposition. □

Remark 1. For the case α ∈ (0, 1], by considering the in-
complete upper gamma function specified by
Γ(a, b) � 

+∞
b

ya− 1e− ydy for a> 0 and b≥ 0 and the fol-
lowing recurrence relationship Γ(x + 1, b) � xΓ
(x, b) + bxe− b, we have

M(t) � Cαα
1+t/α

e
1/α Γ

t

α
+ 2,

1
α

  − Γ
t

α
+ 1,

1
α

  − Γ
t

α
+ 2,

e
α

α
  + Γ

t

α
+ 1,

e
α

α
  

� Cαα
t/α

e
1/α

t Γ
t

α
+ 1,

1
α

  − Γ
t

α
+ 1,

e
α

α
   + Cα 1 − exp t + α − e

α
− 1( /α  .

(17)

Proposition 3. Let s be a positive integer and X be a random
variable with the NTM distribution. !en, the sth ordinary

moment of X defined by m(s) � E(Xs) always exists and can
be expressed as

m(s) � Cαα
1− s

e
1/α

×

− 
s

k�0

s

k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠(log(− α))

n− k
I

1
α

,
e
α

α
, 0, k, −  + I

1
α

,
e
α

α
, 1, k, −  , for α< 0,



s

k�0

s

k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠(log(α))

n− k
I

1
α

,
e
α

α
, 1, k, +  − I

1
α

,
e
α

α
, 0, k, +  , for α ∈ (0, 1].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Proof. We proceed in the same way as the proof of
Proposition 2. By making the change of variable y � eαx/α,
we have

m(s) � 
+∞

− ∞
x

s
fNTM(x)dx

� Cα 
1

0
x

s
e
αx

− α( exp αx −
1
α

e
αx

− 1(  dx

� Cαα
1− s

e
1/α


eα/α

1/α
[log(αy)]

s
(y − 1)e

− ydy.

(19)

If α< 0, as a result of the binomial formula, we have

m(s) � Cαα
1− s

e
1/α


eα/α

1/α
(log(α) + log(− y))

s
(y − 1)e

− ydy

� − Cαα
1− s

e
1/α



s

k�0

s

k

⎛⎜⎜⎝ ⎞⎟⎟⎠(log(− α))
n− k


eα/α

1/α
(log(− y))

k
(1 − y)e

− ydy
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� − Cαα
1− s

e
1/α



s

k�0

s

k
 (log(− α))

n− k

I
1
α

,
e
α

α
, 0, k, −  + I

1
α

,
e
α

α
, 1, k, −  . (20)

On the contrary, if α ∈ (0, 1], by invoking the same
arguments, we get

m(s) � Cαα
1− s

e
1/α


eα/α

1/α
(log(α) + log(y))

s
(y − 1)e

− ydy

� Cαα
1− s

e
1/α



s

k�0

s

k

⎛⎝ ⎞⎠(log(α))
n− k


eα/α

1/α
(log(y))

k
(1 − y)e

− ydy

� Cαα
1− s

e
1/α



s

k�0

s

k

⎛⎝ ⎞⎠(log(α))
n− k

I
1
α

,
e
α

α
, 1, k, +  − I

1
α

,
e
α

α
, 0, k, +  .

(21)

)e proof is now completed. □

Based on Proposition 3, the mean m(1) and standard
deviation σ of X can be derived. Also, by using standard
relations, we can determine the sth moment of X about the
mean given as m†(s) � E[(X − m(1))s]. )e moments
skewness and kurtosis coefficients of X are given by S �

m†(3)/σ3 and K � m†(4)/σ4.
While adjusting the settings of the parameter α, Table 1

displays some numerical values for the measures above.
We can note from Table 1 that, for the considered values

only, when α increases, m(1) and S are increased. But K

increases when α< 0 and decreases when α> 0. However, the
rigorous monotonicity of these measures needs further
investigation that we omit here.

3. NTM-G Family

)e NTM-G family is now the focus of attention.

3.1. Presentation. )e truncated-composition scheme is
applied to define the NTM-G family. By considering a
parental cdf denoted by G(x) and the NTM distribution, we
define the NTM generated (NTM-G) family by the cdf
obtained by the following composition:
FNTM− G(x) � FNTM(G(x)), x ∈ R, that is,

FNTM− G(x) � Cα 1 − exp αG(x) −
1
α

e
αG(x)

− 1   , x ∈ R.

(22)

)e main motivations for defining this family are (i) to
transpose the functionalities of the NTM distribution to
increase those of the parental distribution defined by G(x)

and (ii) offer a more simple alternative to the former M-G
family introduced in [7]. In some senses, it is more con-
nected with the true nature of the M distribution.

)e pdf is obtained as

fNTM− G(x) � Cαg(x) e
αG(x)

− α exp αG(x) −
1
α

e
αG(x)

− 1  , x ∈ R,

(23)

where g(x) refers to the pdf derived to G(x). )e hrf is given
as

hNTM− G(x) �
Cαg(x) e

αG(x)
− α exp αG(x) − e

αG(x)
− 1 /α 

1 − Cα 1 − exp αG(x) − e
αG(x)

− 1 /α  
, x ∈ R.

(24)

)ese functions are modulable with respect to α, and the
definition of the parental distribution is governed by G(x)

and g(x). We thus extend the scope of this parental dis-
tribution through the use of the NTM strategy.

3.2. An Extended Weibull Distribution. Here, we aim to
extend the Weibull distribution through the NTM scheme.
To begin, the Weibull distribution with parameters c> 0 and
k> 0 is specified by the following cdf and pdf:

GW(x) � 1 − e
− (x/c)k

, x> 0, (25)

with GW(x) � 0 for x≤ 0, and

gW(x) �
k

c

x

c
 

k− 1
e

− (x/c)k

, x> 0, (26)

with gW(x) � 0 for x≤ 0, respectively. By substituting these
functions for those defining the NTM-G family, we intro-
duce the NTMWdistribution with the following cdf and pdf:

FNTMW(x) � Cα 1 − exp α 1 − e
− (x/c)k

  −
1
α

e
α 1− e−(x/c)k( 

− 1   , x> 0, (27)

Table 1: Values of moment measures of the NTM distribution for
different values of α.

α m(1) m(2) m(3) m(4) σ2 S K

− 0.9 0.849 1.404 4 16.438 0.682 2.928 15.827
− 0.7 1.003 1.948 6.778 34.889 0.942 3.211 18.512
− 0.5 1.194 2.755 12.131 83.006 1.328 3.703 24.107
− 0.3 1.402 3.685 20.563 201.797 1.719 4.691 40.04
− 0.1 1.537 3.474 14.129 106.981 1.112 4.581 42.553
0.05 1.605 3.064 8.404 29.536 0.487 5.65 12.752
0.1 1.629 2.983 7.594 24.109 0.33 8.777 9.171
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and FNTMW(x) � 0 for x< 0, and

fNTMW(x) � Cα
k

c

x

c
 

k− 1
e

− (x/c)k

e
α 1− e−(x/c)k( 

− α exp

α 1 − e
− (x/c)k

  −
1
α

e
α 1− e−(x/c)k( 

− 1  , x> 0,

(28)

and fNTMW(x) � 0 for x≤ 0, respectively.
Also, the hrf of the NTMW distribution is given by

hNTMW(x) �
Cα(k/c)(x/c)

k− 1
e

− (x/c)k

e
α 1− e−(x/c)k( 

− α exp α 1 − e
− (x/c)k

  − e
α 1− e−(x/c)k( 

− 1 /α 

1 − Cα 1 − exp α 1 − e
− (x/c)k

  − e
α 1− e−(x/c)k( 

− 1 /α  

, x> 0, (29)

and hNTMW(x) � 0 for x≤ 0. )us, the NTMW distribution
offers a new three-parameter distribution that modifies the
analytical structure of the Weibull distribution by adding
more tuning parameters. As a visual approach, Figure 1
depicts some plots showing different shapes of the pdf and
hrf of the NTMW distribution.

From Figure 1, we observe that the pdf of the NTMW
distribution has monotonic and nonmonotonic shapes,
including diverse decreasing and unimodal shapes, with left
and right skewed characteristics.)e shape panel of the hrf is
quite extensive; we see increasing (concave or convex),
decreasing, almost constant, and upside-down shapes. All of
these observations demonstrate the flexibility of the NTMW
model, which justifies its use in applied statistical scenarios.
)e pdf and hrf of the MW distribution display in [7] do not
have as many shapes.)e possible applications of this model
will be found in the concrete examples in the applied section
of the paper.

3.3. Quantile Analysis. )e quantile features of the NTM-G
family can be easily obtained using the quantile analysis of
the NTM distribution performed in Section 2.3.)e qf of the
NTM-G family is discussed in detail in the following
proposition.

Proposition 4. !e qf of the NTM-G family is

QNTM− G(u) � QG

1
α
log − αW

udα − 1
αe

1/α   , u ∈ (0, 1),

(30)

where QG(x) denotes the qf associated to G(x).

Proof. )e proof is a consequence of the facts that
FNTM− G(x) � FNTM(G(x)), x ∈ R, and the application of
Proposition 1. □

Based on this qf, the comments formulated on the qf for
the NTM distribution in Section 2.3 can be transposed.

For the Weibull distribution, we have
QW(x) � c[− log(1 − x)]1/k, implying that the qf of the
NTMW distribution is

QNTMW(u) � c − log 1 −
1
α
log − αW

udα − 1
αe1/α

    

1/k

, u ∈ (0, 1).

(31)

)is qf can be used for further quantile analysis of the
NTMW distribution, beyond the scope of this paper.

3.4. Moment Analysis. )e moment analysis of the NTM-G
family is now being considered. Two approaches are pro-
posed: an integral approach and a series decomposition
approach.

3.4.1. Integral Approach. )e following result expresses an
integral representation of the ordinary moments of the
NTM-G family.

Proposition 5. Let s be a positive integer and X be a random
variable with the pdf of the NTM-G family. !en, the sth
ordinary moment of X can be expressed as

mG(s) � Cααe
1/α


eα/α

1/α
QG

1
α
log(αz)  

s

(z − 1)e
− zdz,

(32)

provided that it exists.

Proof. We proceed as the proof of Proposition 2. By making
the incremental changes of variable y � G(x), then
z � eαy/α, and we have

mG(s) � 
+∞

− ∞
x

s
fNTM− G(x)dx

� Cα 
+∞

− ∞
x

s
g(x) e

αG(x)
− α exp αG(x) −

1
α

e
αG(x)

− 1  dx

� Cα 
1

0
QG(y) 

s
e
αy

− α( exp αy −
1
α

e
αy

− 1(  dy

� Cααe
1/α


eα/α

1/α
QG

1
α
log(αz)  

s

(z − 1)e
− zdz.

(33)

)e demonstration of the proposition is now
complete. □

6 Complexity



According to the complexity of QG(x), the integral in
Proposition 5 may have further development. Based on
ordinary moments, the well-known moment measures as
presented in Section 2.4 can be defined in a similar way;
mean mG(1), standard deviation σ, moments skewness
coefficient S, and moment kurtosis coefficient K, among
others.

In the setting of the NTMW distribution, we have

mG(s) � Cααe
1/α

c
s


eα/α

1/α
− log 1 −

1
α
log(αz)  

s/k
(z − 1)e

− zdz.

(34)

)is integral seems to be not reported in the literature. It
can, however, be computed by using mathematical software.

3.4.2. Series Approach. )e following result proposes an-
other approach for the calculation of ordinary moments in
the form of a series expansion.)is may be of interest for in-
depth mathematical or computational manipulations.

Proposition 6. Let s be a positive integer and X be a random
variable with the pdf of the NTM-G family. Under the
condition that sums and integral can be inverted, the sth
ordinary moment of X can be expanded as

mG(s) � 
+∞

k,ℓ�0
Ak,ℓTℓ;G(s), (35)

where Ak,ℓ � Cαe1/α(− 1)kαℓ− k((k + 2)ℓ − α(k + 1)ℓ)/(k!ℓ!)
and

Tℓ;G(s) � 
+∞

− ∞
x

s
g(x)G(x)

ℓdx. (36)

Proof. First, we recall that mG(s) � 
+∞
− ∞ xsfNTM− G(x)dx.

We can apply the Taylor series to the exponential function
several times after rewriting fNTM− G(x) in a suitable
manner, yielding the following expansions in turn:

fNTM− G(x) � Cαe
1/α

g(x) e
2αG(x)

− αe
αG(x)

 exp −
1
α

e
αG(x)

 

� Cαe
1/α

g(x) e
2αG(x)

− αe
αG(x)

  

+∞

k�0

(− 1)
k

αk
k!

e
αkG(x)

� Cαe
1/α

g(x) 
+∞

k�0

(− 1)
k

αk
k!

e
α(k+2)G(x)

− α 
+∞

k�0

(− 1)
k

αk
k!

e
α(k+1)G(x)⎡⎣ ⎤⎦
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Figure 1: Plots showing different shapes of the pdf (a) and hrf (b) of the NTMW distribution.
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� Cαe
1/α

g(x) 
+∞

k�0

(− 1)
k

αk
k!



+∞

ℓ�0

αℓ(k + 2)
ℓ

ℓ!
G(x)

ℓ
− α 

+∞

k�0

(− 1)
k

αk
k!



+∞

ℓ�0

αℓ(k + 1)
ℓ

ℓ!
G(x)

ℓ⎡⎣ ⎤⎦

� 
+∞

k,ℓ�0
Ak,ℓ g(x)G(x)

ℓ
 . (37)

)e sth ordinary moment of X is expanded under the
condition that sums and integrals can be inverted, which is
primarily determined by the definition of G(x). In this case,
we have

mG(s) � 
+∞

k,ℓ�0
Ak,ℓ 

+∞

− ∞
x

s
g(x)G(x)

ℓdx � 
+∞

k,ℓ�0
Ak,ℓTℓ;G(s).

(38)

)e stated result is obtained. □

)e integral termTℓ;G(s) can be expressed in the context of
the NTMW distribution, and the series expansion becomes
explicit. In addition, by taking an integer K large enough, we
can approximate mG(s) as mG(s) ≈ 

K
k,ℓ�0 Ak,ℓTℓ;G(s).

3.5. Numerical Study. We now provide a numerical illus-
tration of the moment analysis. In this regard, values of
moment measures of the NTMW distribution are calculated
for selected values of the parameters. )ese values are
presented in Tables 2–4 .

We can see from Tables 2–4 that, for the considered
values, when α increases, m(1) tends to increase, but S and K

tend to decrease. Additionally, when k increases, S and K

tend to decrease.

4. Applied Study

In this section, we use the ML procedure to suggest some
estimates for the unknown parameters of the NTMWmodel.
Simulation experiments are used to evaluate the efficiency of
these estimates. )en, two real-life datasets are used to suit
the proposed distribution, with comparisons to valuable
competitors.

4.1. ML Procedure. Let us now describe the ML procedure
employed to estimate the NTMW model parameters. We
denote by x1, . . . , xn some generic data that are supposed to
be observed independently from a random variable with a
distribution belonging to the NTM-G family. With this data,
the total likelihood function is defined by
L(α, ζ) � 

n
i�1 fNTM− G(xi), where ζ denotes the possible

parameters involved in G(x) and thus in g(x). In an ex-
panded form, the total likelihood function becomes

L(α, ζ) � C
n
α 

n

i�1
g xi( ⎡⎣ ⎤⎦ 

n

i�1
e
αG xi( ) − α ⎡⎣ ⎤⎦exp

α
n

i�1
G xi(  −

1
α



n

i�1
e
αG xi( ) − 1 ⎡⎣ ⎤⎦.

(39)

)e total log-likelihood function is derived as
ℓ(α, ζ) � log[L(α, ζ)], that is, in an expanded form,

ℓ(α, ζ) � n log Cα(  + 
n

i�1
log g xi(   + 

n

i�1
log e

αG xi( ) − α 

+ α
n

i�1
G xi(  −

1
α



n

i�1
e
αG xi( ) − 1 .

(40)

)eML estimates (MLEs) of (α, ζ) are defined as (α, ζ) �

argmax(α,ζ)L(α, ζ) or equivalently (α, ζ) � argmax(α,ζ)ℓ
(α, ζ). )us, when ℓ(α, ζ) is differentiable, (α, ζ) can be
obtained by solving the following equations simultaneously
according to the parameters: zℓ(α, ζ)/zα � 0 and
zℓ(α, ζ)/zζ � 0, where

zℓ(α, ζ)

zα
� n

zCα/zα
Cα

+ 

n

i�1

G xi( e
αG xi( ) − 1

e
αG xi( ) − α

+ 
n

i�1
G xi(  1 −

1
α

e
αG xi( )  +

1
α2



n

i�1
e
αG xi( ) − 1 ,

(41)

with

zCα

zα
� exp α −

1
α

e
α

− 1(  
e
α

− 1( /α2 − e
α/α + 1

1 − exp α − e
α

− 1( /α  
2,

zℓ(α, ζ)

zζ
� 

n

i�1

zg xi( /zζ
g xi( 

+ α
n

i�1

e
αG xi( )zG xi( /zζ

e
αG xi( ) − α

+ 

n

i�1

zG xi( 

zζ
α − e

αG xi( ) .

(42)

Due to the complex nature of these equations, there are
few chances to obtain closed-form expressions for (α, ζ).
Numerical techniques such as the (quasi) Newton–Raphson
method can be used to find precise numerical solutions. An
advantage of using the ML procedure is that, under well-
identified conditions, the underlying asymptotic distribu-
tion of (α, ζ) can be approximated by a multivariate normal
distribution with a mean vector as (α, ζ) and the following
matrix of covariance: [− z2ℓ(α, ζ)/zξ zξt

]− 1|
(α,ζ)�(α,ζ)

with
ξ � (α, ζ). )is matrix can be computed with the help of
mathematical software. )anks to this standard multivariate
distribution, we can construct approximate confidence in-
tervals (CIs) for the model parameters at a certain level, say
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100p% with p ∈ (0, 1); the formula for the associated lower
bounds (LBs) and upper bounds (UBs) remains quite
standard. All technical details and results of the ML pro-
cedure can be found in [27].

4.2. Simulation Work. )e methodology of the ML proce-
dure presented above can be applied to the NTMW dis-
tribution by taking G(x) � GW(x) and g(x) � gW(x). In
this case, ξ � (α, c, k) becomes the unknown vector of pa-
rameters. )us, it is natural to think that the MLEs are
adequate at estimating the parameters α, c, and k. We il-
lustrate this claim by providing a simulation study to assess
the behavior of these MLEs by considering the mean square
errors (MSEs), lower bounds (LBs) of CIs, upper bounds
(UBs) of CIs, and the corresponding average lengths (ALs)
with the levels chosen as 90% or 95%.

)e results are obtained using the R software (see [28]).
Our simulation process is designed as follows :

(i) As a first operation, 5000 samples of values with
sizes n � 100, 200, 300, and 1000 are generated from
the NTMW distribution

(ii) Values of true parameters α, c, and k, in this order,
are taken as Set1 (− 0.5, 0.5, 0.7), Set2
(− 0.3, 0.5, 0.8), Set3 (0.5, 0.5, 1.5), and Set4
(0.3, 0.8, 1.2)

(iii) )e MLEs, MSEs, LBs, UBs, and ALs of the CIs for
the selected values of the parameters are calculated

(iv) )e numerical results are given in Tables 5–8

)e values in Tables 5–8 for the four considered sets of
parameters indicate that when n increases, the MLEs are
near equal to the expected values. Also, the MSEs and ALs
decrease and tend to 0 as n becomes consequent. Overall, the
simulation work found that estimating the model parame-
ters using the ML procedure is appropriate.

4.3. Application to Real Datasets. In this section, the fits of
the NTMW model are compared to those of modified
Weibull models. Precisely, we consider the beta Weibull
(BW) model by Famoye et al. [29], M Weibull (MW)
model by Almarashi and Elgarhy [7], exponentiated
Weibull (EW) model by Mudholkar and Srivastava [30],
and classical M model. )e cdf related to these models is
described below.

(i) )e underlying cdf of the BW model is given by

Table 2: Values of moment measures of the NTMW distribution for c � 0.5 and k � 0.5 and different values for α.

α mG(1) mG(2) mG(3) mG(4) σ2 S K

− 0.9 0.446 2.207 31.722 879.446 2.008 10.173 204.704
− 0.7 0.48 2.413 34.789 965.123 2.183 9.781 189.251
− 0.5 0.519 2.656 38.418 1066.546 2.386 9.377 174.024
− 0.3 0.567 2.959 42.966 1193.818 2.637 8.944 158.446
− 0.1 0.629 3.358 48.992 1362.664 2.962 8.465 142.119
0.1 0.712 3.905 57.299 1595.782 3.398 7.932 125.037
0.3 0.824 4.666 68.931 1922.617 3.987 7.35 107.77
0.5 0.977 5.716 85.021 2374.997 4.762 6.749 91.41
0.7 1.177 7.108 106.368 2975.182 5.722 6.176 77.204
0.9 1.426 8.83 132.714 3715.149 6.798 5.684 66.074

Table 3: Values of moment measures of the NTMW distribution for c � 0.5 and k � 1.2 and different values for α.

α mG(1) mG(2) mG(3) mG(4) σ2 S K

− 0.9 0.296 0.18 0.171 0.221 0.093 2.245 10.415
− 0.7 0.308 0.193 0.186 0.241 0.097 2.174 9.922
− 0.5 0.323 0.207 0.202 0.264 0.103 2.099 9.418
− 0.3 0.339 0.224 0.223 0.293 0.109 2.015 8.886
− 0.1 0.36 0.247 0.249 0.331 0.117 1.919 8.309
0.1 0.387 0.276 0.285 0.383 0.126 1.808 7.682
0.3 0.423 0.316 0.335 0.455 0.137 1.678 7.02
0.5 0.47 0.37 0.402 0.555 0.149 1.536 6.381
0.7 0.53 0.44 0.491 0.686 0.16 1.399 5.868
0.9 0.603 0.527 0.602 0.849 0.164 1.313 5.627

Table 4: Values of moment measures of the NTMW distribution
for c � 0.5 and k � 2 and different values for α.

α mG(1) mG(2) mG(3) mG(4) σ2 S K

− 0.9 0.327 0.147 0.083 0.056 0.04 1.084 4.438
− 0.7 0.336 0.154 0.088 0.06 0.042 1.044 4.3
− 0.5 0.346 0.162 0.095 0.065 0.043 1 4.156
− 0.3 0.357 0.172 0.102 0.071 0.044 0.95 4.003
− 0.1 0.372 0.184 0.112 0.079 0.046 0.891 3.837
0.1 0.39 0.2 0.124 0.089 0.048 0.82 3.656
0.3 0.414 0.221 0.141 0.103 0.05 0.733 3.471
0.5 0.444 0.249 0.164 0.122 0.052 0.633 3.311
0.7 0.483 0.285 0.194 0.147 0.052 0.535 3.236
0.9 0.53 0.329 0.23 0.178 0.048 0.505 3.317
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FBW(x) �
1

B(α, β)

1− e− (x/λ)θ

0
t
α− 1

(1 − t)
β− 1dt, x> 0,

(43)

and FBW(x) � 0 for x≤ 0, with α, β, λ, and θ> 0,
where B(α, β) denotes the standard beta function,
i.e., B(α, β) � 

1
0 tα− 1(1 − t)β− 1dt

(ii) )e underlying cdf of the MW model is given by

Table 5: Values of the MLEs, MSEs, and elements of CIs associated with the NTMW model parameters for Set1.

n MLE MSE
90% 95%

LB UB AL LB UB AL

100
− 0.4548 0.0167 − 0.7616 − 0.2080 0.5536 − 0.8146 − 0.1550 0.6596
0.8435 1.5680 0.5743 2.6614 3.2358 − 0.8842 2.9712 3.8554
0.7862 0.2260 − 0.4909 2.0634 2.5543 − 0.7355 2.3079 3.0434

200
− 0.4685 0.0150 − 0.6661 − 0.2708 0.3953 − 0.7040 − 0.2330 0.4710
0.8130 0.3653 − 0.1579 1.7839 1.9417 − 0.3438 1.9698 2.3136
0.7757 0.1368 − 0.1556 1.6271 1.7827 − 0.3263 1.7978 2.1241

300
− 0.4872 0.0037 − 0.6669 − 0.3074 0.3595 − 0.7014 − 0.2730 0.4283
0.6564 0.1103 − 0.0891 1.4019 1.4910 − 0.2318 1.5447 1.7765
0.7454 0.0883 − 0.0394 1.5302 1.5695 − 0.1896 1.6804 1.8701

1000
− 0.4913 0.0018 − 0.5919 − 0.3907 0.2012 − 0.6112 − 0.3714 0.2397
0.5616 0.0373 0.2087 0.9145 0.7059 0.1411 0.9821 0.8410
0.6869 0.0396 0.3311 1.2426 0.9115 0.2438 1.3299 1.0861

Table 6: Values of the MLEs, MSEs, and elements of CIs associated with the NTMW model parameters for Set2.

n MLE MSE
90% 95%

LB UB AL LB UB AL

100
− 0.3208 0.0043 − 0.5306 − 0.0911 0.4396 − 0.5727 − 0.0490 0.5237
0.6541 0.5367 − 0.5498 1.8579 2.4077 − 0.7803 2.0884 2.8687
1.0716 0.9261 − 0.9936 3.1369 4.1305 − 1.3891 3.5324 4.9215

200
− 0.3119 0.0038 − 0.4477 − 0.1762 0.2715 − 0.4737 − 0.1502 0.3235
0.6250 0.3725 − 0.2091 1.4592 1.6683 − 0.3689 1.6189 1.9878
0.9152 0.6074 − 0.3725 2.6030 2.9755 − 0.6574 2.8878 3.5452

300
− 0.3140 0.0031 − 0.4164 − 0.1916 0.2248 − 0.4380 − 0.1701 0.2679
0.5621 0.1282 − 0.0488 1.1731 1.2219 − 0.1658 1.2901 1.4559
0.8774 0.3450 − 0.1100 2.0648 2.1748 − 0.3182 2.2730 2.5912

1000
− 0.3039 0.0008 − 0.3690 − 0.2387 0.1303 − 0.3815 − 0.2263 0.1553
0.5229 0.0214 0.2001 0.8458 0.6456 0.1383 0.9076 0.7693
0.7943 0.0613 0.3152 1.2733 0.9581 0.2234 1.3651 1.1416

Table 7: Values of the MLEs, MSEs, and elements of CIs associated with the NTMW model parameters for Set3.

n MLE MSE
90% 95%

LB UB AL LB UB AL

100
0.6612 0.1665 0.1043 1.2181 1.1138 − 0.0023 1.3248 1.3270
0.7871 0.4728 − 0.2513 1.8256 2.0768 − 0.4501 2.0244 2.4745
1.4427 0.0994 1.0430 1.8424 0.7994 0.9665 1.9190 0.9525

200
0.4777 0.0097 0.2749 0.6805 0.4056 0.2360 0.7193 0.4833
0.4561 0.0408 0.0964 0.8158 0.7194 0.0275 0.8847 0.8572
1.4844 0.0070 1.1985 1.7703 0.5717 1.1438 1.8250 0.6812

300
0.4941 0.0046 0.3233 0.6648 0.3415 0.2906 0.6975 0.4069
0.5217 0.0164 0.1963 0.8471 0.6507 0.1340 0.9094 0.7754
1.4864 0.0064 1.2550 1.7179 0.4630 1.2106 1.7623 0.5516

1000
0.5000 0.0012 0.4066 0.5934 0.1868 0.3887 0.6112 0.2225
0.4861 0.0040 0.3198 0.6523 0.3325 0.2880 0.6841 0.3962
1.5160 0.0053 1.3887 1.6432 0.2545 1.3644 1.6676 0.3032
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FMW(x) � e
1/α 1 − e

− (x/β)c

 
− α

exp −
1
α
1 − e

− (x/β)c

 
− α

 , x> 0,

(44)

and FMW(x) � 0 for x≤ 0, with α, β, and c> 0
(iii) )e underlying cdf of the EW model is given by

FEW(x) � 1 − e
− (x/α)β

 
c

, x> 0, (45)

and FEW(x) � 0 for x≤ 0, with α, β, and c> 0
(iv) )e underlying cdf of the M model is given by

equation (1), with α ∈ (− ∞, 1)/ 0{ }

)e first real dataset, called dataset I, corresponds to the
breaking stress of carbon fibres (in Gba). It was researched in
[31]. It contains n � 66 data values.

)e second dataset, called dataset II, was derived from
studies in [8] and represents n � 84 aircraft windshield
failure times.

)e R software is again employed. Tables 9 and 10 show
theMLEs for the parameters in each of the fivemodels, along
with their standard errors (SEs), for datasets I and II,
respectively.

Classically, the estimated negative maximum log-likelihood
function (ρ), Akaike information criterion (AIC), Bayesian
information criterion (BIC), Cramér von–Mises (W) statistic,
Anderson–Darling (A) statistic, and Kolmogorov–Smirnov
(KS) statistic with p value (p value) are calculated in Tables 11
and 12 for datasets I and II, respectively. )e model with the
smallest AIC, BIC,W, A, and KS, as well as the greatest p value
for the KS test, is the overall best model using these criteria.

Based on Tables 11 and 12, all of the models appear to be
competitive in fitting the datasets, except the M model,
which has very small p values for the KS test. )e proposed
NTMWmodel, however, outperforms the competitors on all
criteria and is the best model for both datasets. Furthermore,
the obtained p values are all greater than 0.9, which is quite
satisfactory in terms of adequacy.

In order to visualize the efficiency of the modeling, the
fitted pdfs and cdfs of each of the five models are plotted in
Figures 2 and 3 , for datasets I and II, respectively.

)e estimated pdfs and cdfs of the NTMW model have
particularly well captured the form of the corresponding
empirical objects, as shown in Figures 2 and 3. In particular,
for the histograms of the datasets, the maximum and tails
have received better treatment for the NTMW model than
for the competitive models.

Table 8: Values of the MLEs, MSEs, and elements of CIs associated with the NTMW model parameters for Set4.

n MLE MSE
90% 95%

LB UB AL LB UB AL

100
0.3214 0.0189 0.1339 0.4688 0.3349 0.1018 0.5009 0.3990
0.8798 0.5527 0.1141 1.6456 1.5315 − 0.0326 1.7922 1.8248
1.4424 0.2932 0.9472 1.9376 0.9904 0.8524 2.0324 1.1801

200
0.3111 0.0033 0.1931 0.4291 0.2359 0.1705 0.4516 0.2811
0.8511 0.0925 0.3345 1.4476 1.1131 0.2279 1.5542 1.3263
1.2647 0.0336 0.9498 1.4595 0.5096 0.9010 1.5083 0.6072

300
0.2979 0.0029 0.2086 0.3872 0.1786 0.1915 0.4043 0.2128
0.8195 0.0736 0.4051 1.2340 0.8289 0.3257 1.3133 0.9876
1.2368 0.0299 1.0237 1.4499 0.4263 0.9829 1.4907 0.5079

1000
0.3064 0.0008 0.2550 0.3579 0.1029 0.2451 0.3677 0.1226
0.8058 0.0161 0.6070 1.0846 0.4776 0.5613 1.1303 0.5690
1.2061 0.0041 1.0914 1.3207 0.2293 1.0695 1.3426 0.2732

Table 9: Values of the estimates for dataset I.

Model MLEs (SEs in parentheses)
NTMW 0.7585 2.8517 2.9959
(α, c, k) (0.2256) (0.2383) (0.5106)
BW 0.7536 0.1509 0.0806 3.8450
(α, β, λ, θ) (0.1689) (0.0204) (0.0018) (0.0026)
MW 0.7239 2.7581 3.0387
(α, β, c) (0.5179) (0.2573) (0.5596)
EW 0.0118 3.8145 0.8320
(α, β, c) (0.0111) (0.6202) (0.2368)
M 0.05675
(α) (0.0474)
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Table 12: Values of the considered criteria for dataset II.

Model ρ AIC BIC W A KS p value
NTMW 127.1974 260.3948 267.7228 0.0478 0.4992 0.0552 0.9579
BW 128.9458 265.8915 275.6621 0.0926 0.6648 0.0722 0.7672
MW 128.2088 262.4177 269.7456 0.0636 0.4818 0.0810 0.6316
EW 129.0980 264.1960 271.5240 0.0762 0.5916 0.0640 0.8769
M 217.3901 436.7803 439.2229 0.1027 0.9541 0.6278 <0.001
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Figure 2: Estimated pdfs (a) and estimated cdfs (b) for the considered models for dataset I.

Table 10: Values of the estimates for dataset II.

Model MLEs (SEs in parentheses)
NTMW 0.8130 2.5148 1.9884
(α, c, k) (0.1495) (0.2289) (0.2666)
BW 0.4187 0.5725 0.0088 4.1573
(α, β, λ, θ) (0.1156) (0.3904) (0.0087) (0.6953)
MW − 0.3072 2.7346 2.4510
(α, β, c) (0.2389) (0.1947) (0.2782)
EW 0.0067 3.9254 0.4667
(α, β, c) (0.0052) (0.4976) (0.0940)
M 0.0424
(α) (0.0435)

Table 11: Values of the considered criteria for dataset I.

Model ρ AIC BIC W A KS p value
NTMW 85.5748 177.1496 183.7186 0.0802 0.4467 0.0702 0.9008
BW 85.3660 178.7321 187.4907 0.0847 0.4677 0.0805 0.7850
MW 86.1691 178.3382 184.9072 0.0885 0.4648 0.0759 0.8371
EW 85.9488 177.8977 184.4667 0.0867 0.5090 0.0814 0.7740
M 181.4929 364.9857 367.1754 0.1908 1.0226 0.7126 <0.001
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5. Conclusion

)eMuth distribution is a versatile distribution that can serve
various statistical objectives. In this study, we have briefly
discussed the possibility of a unit truncated version of this
distribution. )en, we exploited it to construct the new
truncated Muth generated (NTM-G) family of distributions.
)e mathematical properties of this family have been thor-
oughly examined. We have outlined a special distribution of
the NTM-G family, providing a motivated three-parameter
modification of the Weibull distribution. It is called the new
truncated Muth Weibull (NTMW) distribution. A rule-of-
thumb simulation research ensures the effectiveness of the
maximum likelihood procedure, which is employed to esti-
mate the model parameters. )e flexibility of the model for
data fitting has been demonstrated using two realistic datasets.
)e NTMW model was shown to be the best for the given
datasets, when compared to various competing models.

Future works of the proposed family include the ap-
plications of the distributions in important applied sce-
narios, such as those considered in [32, 33], a bivariate
extended family based on the method of [34], and a discrete
version following the approach of [35].
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[4] P. Jodrá, H. W. Gómez, M. D. Jimenez-Gamero, and
M. V. Alba-Fernández, “)e power Muth distribution∗,”
Mathematical Modelling and Analysis, vol. 22, no. 2,
pp. 186–201, 2017.

[5] V. K. Sharma, S. V. Singh, and K. Shekhawat, “Expo-
nentiated Teissier distribution with increasing, decreasing
and bathtub hazard functions,” Journal of Applied Statis-
tics, pp. 1–23, 2020.

[6] A. Alzaatreh, C. Lee, and F. Famoye, “A new method for
generating families of continuous distributions,” Metron,
vol. 71, no. 1, pp. 63–79, 2013.

[7] A. M. Almarashi and M. Elgarhy, “A new Muth generated
family of distributions with applications,” !e Journal of
Nonlinear Science and Applications, vol. 11, no. 10,
pp. 1171–1184, 2018.

[8] T. H. M. Abouelmagd, S. Al-mualim, M. Elgarhy, A. Z. Afify,
and M. Ahmad, “Properties of the four-parameter Weibull
distribution and its applications,” Pakistan Journal of Sta-
tistics, vol. 33, no. 6, pp. 449–466, 2017.

[9] A. A. Al-Babtain, I. Elbatal, C. Chesneau, and F. Jamal, “)e
transmuted Muth generated class of distributions with ap-
plications,” Symmetry, vol. 12, no. 10, p. 1677, 2020.

[10] S. V. Singh, M. Elgarhy, Z. Ahmad, V. K. Sharma, and
G. G. Hamedani, Mathematical Modeling, Computational

1 2 3 4 50
x

1 2 3 4 50
x

0.0

0.1

0.2

0.3

0.4
D
en
sit
y

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

NTMW
BW
MW

EW
M

NTMW
BW
MW

EW
M

Figure 3: Estimated pdfs (a) and estimated cdfs (b) for the considered models for dataset II.

Complexity 13



Intelligence Techniques and Renewable Energy: Proceedings of
the First International Conference, MMCITRE 2020, Springer,
Berlin, Germany, 2021.

[11] A. H. Abid and R. K. Abdulrazak, “[0, 1] truncated FréchetG
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