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)is paper concentrates on the adaptive fuzzy control problem for stochastic nonlinear large-scale systems with constraints and
unknown dead zones. By introducing the state-dependent function, the constrained closed-loop system is transformed into a
brand-new system without constraints, which can realize the same control objective. )en, fuzzy logic systems (FLSs) are used to
identify the unknown nonlinear functions, the dead zone inverse technique is utilized to compensate for the dead zone effect, and a
robust adaptive fuzzy control scheme is developed under the backstepping frame. Based on the Lyapunov stability theory, it is
proved ultimately that all signals in the closed-loop system are bounded and the tracking errors converge to a small neighborhood
of the origin. Finally, an example based on an actual system is given to verify the effectiveness of the proposed control scheme.

1. Introduction

)e nonlinear large-scale systems are a common and sig-
nificant class of nonlinear systems. As its name implies, it is
composed of multiple subsystems, and each subsystem is
connected by the terms. Numerous actual systems can be
described as nonlinear large-scale systems, such as instance
power supply systems, ecological systems, water resources
systems, and social-economic systems. )e decentralized
control study for nonlinear large-scale systems has achieved
a lot over the years. In [1, 2], the authors studied the adaptive
state feedback control problems of nonlinear large-scale
systems. )en, the authors in [3, 4] have extended the works
to the output feedback control problems of nonlinear large-
scale systems by designing a state observer. To remove the
restriction that the system dynamics must be known for the
control design exists in [1–4], adaptive fuzzy or neural
network (NN) control schemes have been developed [5–12].
In order to achieve the objective in a finite time, the authors
in [5, 6, 13–15] presented the finite-time stabilities for
nonlinear large-scale systems with measured and unmea-
sured states, respectively. To improve the robustness of the
system, Tong et al. [7, 8] studied the adaptive fuzzy robust

control designs for nonlinear large-scale systems with ac-
tuator faults and dead zones, respectively. To spare the re-
sources of network communication, the authors in [9, 10]
studied the event-trigger control problems of nonlinear
large-scale systems. However, the results [9–11] will no
longer be applicable when stochastic disturbances exist. To
deal with this problem, the authors in [16] first presented the
method using a quartic Lyapunov function. Based on [16],
the authors in [17, 18] studied the adaptive fuzzy decen-
tralized control designs for stochastic nonlinear large-scale
systems with dynamic uncertainties, the authors in [19]
investigated the adaptive fuzzy decentralized control
problem for stochastic nonlinear large-scale systems with
unknown control directions, and Tong et al. [20] proposed a
control algorithm for stochastic nonlinear large-scale sys-
tems via the dynamic surface control (DSC) technique.

Note that the above results do not have any requirements
for the states of the plants. However, due to the restriction of
some physical conditions, the constraints are inevitable in
practical engineerings, such as the chemical industry, boiler
industry, and robot industry.)erefore, the control study for
nonlinear constrained systems becomes necessary, and some
meaningful results have been achieved in [21–37]. In
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[21, 22], the authors proposed two approaches for uncertain
nonlinear systems with output constraints and time-
varying output constraints, respectively. To investigate the
more complex constrained problem, Liu et al. [23–25]
studied adaptive control designs for nonlinear systems with
full state constraints. Subsequently, by utilizing the fuzzy
logic systems (FLSs) and radial basis function neural
networks (RBFNNs) [26, 27], the authors in [30–32]
studied adaptive fuzzy or NN control problems of un-
certain state-constrained nonlinear systems. Furthermore,
the authors in [33] investigated the adaptive fuzzy control
design for stochastic high-order nonlinear systems with
asymmetric output constraints by designing a novel barrier
Lyapunov function (BLF). However, the results above all
depend on the feasibility condition, which means that the
states of the controlled system cannot be constrained di-
rectly. To handle this problem, Zhao et al. [34, 35] studied
the control problems for single-input and single-output
(SISO) nonlinear systems and multiple-input and multiple-
output (MIMO) nonlinear systems with full state con-
straints by utilizing the nonlinear state-dependent func-
tions, respectively. )en, the authors in [36–38] extended
the results in [34, 35] to the time-varying state-constrained
problems of SISO nonlinear systems and MIMO nonlinear
systems, respectively. As another unavoidable factor in the
actual system, the dead zone input nonlinearity has been
also paid much attention and some valuable results have
been achieved in [7, 39–47]. In [39, 40], the authors have
investigated the adaptive control problems for nonlinear
systems with the symmetric dead zone and asymmetric
dead zone, respectively. To deal with the nonlinear dead
zone problem, an adaptive NN control approach has been
proposed for uncertain nonlinear systems via the Lagrange
mean value theorem in [42]. Furthermore, by using the
adaptive estimation mechanism, the dead zone inverse
technique has been proposed to compensate the dead zone
effect in [7].

It is worth mentioning that most of the results
mentioned are for the strict-feedback nonlinear systems
instead of nonstrict-feedback nonlinear systems. Different
from the strict-feedback nonlinear systems, the unknown
nonlinear functions in the nonstrict-feedback nonlinear
systems are composed of the whole states. If the tradi-
tional control schemes for strict-feedback nonlinear
systems are adopted, the algebraic loop problem will be
ineluctable. To find a way out of the dilemma, the authors
in [46–48] proposed the control algorithms for nonstrict-
feedback nonlinear systems via the variable separation
technique. Since the variable separation technique re-
quires the nonlinear functions to be strictly monotonic
increasing, the authors in [49, 50] proposed the novel
control algorithms for nonstrict-feedback nonlinear
systems by using the property of radial basis function,
which do not have any restriction for the nonlinear
functions. Motivated by all the mentioned works, an
adaptive fuzzy robust control scheme is developed for
stochastic state-constrained nonlinear large-scale systems
with unknown dead zones. Its main contributions can be
summarized as follows.

(1) )is paper studied the constrained problem for
nonlinear large-scale systems with unknown dead
zones. Note that stochastic disturbance is inevitable
in engineering practice and the stochastic system is
always a research hot spot [51–55]. A novel adaptive
law is used to overcome the algebraic loop problem, a
variable transformation method is utilized to solve
the constrained problem, and a dead zone inverse
technique is used to compensate for the dead zone
effect.

(2) Although the results in references, like [21–24], are
also for the constrained study, they all depend on the
feasibility condition, which cannot constrain the
states of the system directly, and the developed
control scheme in this paper can remove the re-
striction. On the other hand, the controlled plants in
[21–24] are all SISO or MIMO nonlinear systems
instead of large-scale nonlinear systems.

2. Preliminaries

Consider a class of stochastic nonlinear large-scale systems
with unknown dead zones which are composed of N sub-
systems connected by outputs. )e i th subsystem can be
expressed as

􏽘
i

dxi,1 � xi,2 + fi,1 xi( 􏼁 + Δi,1(y)􏽨 􏽩dt + gi,1 xi( 􏼁dw

dxi,2 � xi,3 + fi,2 xi( 􏼁 + Δi,2(y)􏽨 􏽩dt + gi,2 xi( 􏼁dw

⋮

dxi,ni − 1 � xi,ni
+ fi,ni− 1 xi( 􏼁 + Δi,ni− 1(y)􏽨 􏽩dt + gi,ni − 1 xi( 􏼁dw

dxi,ni
� Di ui( 􏼁 + fi,ni

xi( 􏼁 + Δi,ni
(y)􏽨 􏽩dt + gi,ni

xi( 􏼁dw

yi � xi,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where the state vectors of the system are expressed as
xi � [xi,1, xi,2, . . . , xi,ni

]T, xi,j � [xi,1, xi,2, . . . , xi,j]
T, 1≤ i≤N

and 1≤ j≤ ni, ui ∈ R and yi ∈ R denote the actuator input
and sensor output of the system, respectively, Di(ui) ∈ R

denotes the output of the dead zone, fi,j(xi) and gi,j(xi) are
the unknown nonlinear functions, Δi,j(y) is the inter-
connected term which connects each subsystem, and w is an
independent r- dimensional Wiener process, and we assume
that the states of the system can be measured directly.

Remark 1. Different from the research results in references,
such as [1–3, 6–8], the control study in this paper is to design
a robust adaptive fuzzy control method for nonstrict-
feedback nonlinear systems. If the traditional control
schemes are adopted, the algebraic loop problem will not be
able to be avoided. )e algebraic loop problem means that if
the control design method in strict feedback systems is
adopted, the virtual control signal αi in nonstrict-feedback
nonlinear systems for the i th subsystem will be a function
which contains the entire states x � [x1, x2, . . . , xn]T, but
the states xi+1, xi+2, . . . , xn are not available at this time. Also,
the time-varying state constrained problem is considered in
this paper.
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Similar to [7, 40], the output of the dead zone is defined
as

Di ui( 􏼁≜

mi,r ui − di,r􏼐 􏼑 if ui ≥di,r,

0, if − di,l < ui <di,r,

mi,l ui + di,l􏼐 􏼑, if ui ≤ − di,l.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

In (2), ui is the input to the dead zone, mi,r and mi,l are
the slopes of the dead zone, and di,r and di,l denote the dead
zone width parameters. In this paper, we assume that the
output of the dead zone is unmeasurable, and the dead zone
parameters mi,r, mi,l, di,r, and di,l are not available, but their
signs are available (mi,r > 0, mi,l > 0, di,r ≥ 0, and di,l ≥ 0,
respectively). Dead-zone slopes are bounded by known
constants mi,rmax, mi,rmin, mi,lmax and mi,lmin such that
0<mi,rmin ≤mi,r ≤mi,rmaxand 0<mi,lmin ≤mi,l ≤mi,lmax. )e
dead-zone inverse technique is used to compensate the
dead-zone effect [7]. Setting u∗i as the control input which is
free of a dead zone, the control signal ui can be expressed as
follows:

ui � Di u
∗
i( 􏼁􏼂 􏼃

− 1
�

u
∗
i + 􏽢di,r,m

􏽢mi,r

δi +
u
∗
i + 􏽢di,l,m

􏽢mi,l

1 − δi( 􏼁, (3)

where 􏽢mi,r, 􏽢mi,l, 􏽢di,r,m, and 􏽢di,r,l are the estimations of mi,r¸
mi,l, mi,rdi,r, and mi,ldi,l, respectively. And,

δi �
1, if u

∗
i ≥ 0,

0, if u
∗
i ≤ 0.

⎧⎨

⎩ (4)

)e resulting error between u∗i and ui is given by

Di ui( 􏼁 − u
∗
i � 􏽥di,r,m −

u
∗
i + 􏽢di,r,m

􏽢mi,r

􏽥mi,r􏼠 􏼡δi

+ 􏽥di,l,m −
u
∗
i + 􏽢di,l,m

􏽢mi,l

􏽥mi,l􏼠 􏼡 1 − δi( 􏼁 + εiu∗
i

,

(5)

where parameter errors are defined as 􏽥mi,r � mi,r − 􏽢mi,r,
􏽥mi,l � mi,l − 􏽢mi,l, 􏽥di,r,m � di,r,m − 􏽢di,r,m, and 􏽥di,r,l �

di,l,m − 􏽢di,l,m.

)e bound εiu∗
i

is expressed as

εiu∗
i

� − mi,rκi,r ui − di,r􏼐 􏼑 − mi,lκi,l ui − di,l􏼐 􏼑, (6)

where

κi,r �
1, if 0≤ ui <di,r

0, otherwise,
􏼨

κi,l �
1, if di,l ≤ ui < 0,

0, otherwise.
􏼨

(7)

To solve the state-constrained problem as well as re-
moving the restriction of the feasibility condition, a non-
linear state-dependent function is introduced, which has
form below:

χi,j � log
λi,j,1 + xi,j

λi,j,2 − xi,j

, (8)

where λi,j,1 and λi,j,2 are time-varying bounded functions and
χi,j is the state which is constrained.

From (8), χi,j holds the following property:

χi,j⟶ ±∞, only if xi,j⟶ λi,j,2

or xi,j⟶ − λi,j,1.
(9)

)e property means that the state xi,j will be constrained
in the region (− λi,j,1, λi,j,2) only when χi,j is bounded.

In order to complete the constrained control design
without the feasibility condition, system (1) will be trans-
formed into a brand-new system without any constraint.
From (6), we can obtain

xi,j �
e
χi,jλi,j,2 − λi,j,1

e
χi,j + 1

, (10)

dxi,j �
e
χi,j _λi,j,2 − _λi,j,1

e
χi,j + 1

+
e
χi,j λi,j,2 + λi,j,1􏼐 􏼑

e
χi,j + 1( 􏼁

2 dχi,j. (11)

Substituting (10) and (11) into system (1), a new system
dynamic is obtained as

􏽘
i

dχi,1 � hi,1 χi,2 + fi,1 χi( 􏼁 + Δi,1(Y)􏼐 􏼑 + li,1􏽨 􏽩dt + gi,1 χi( 􏼁dw

dχi,2 � hi,2 χi,3 + fi,2 χi( 􏼁 + Δi,2(Y)􏼐 􏼑 + li,2􏽨 􏽩dt + gi,2 χi( 􏼁dw

⋮

dχi,ni − 1 � hi,ni − 1 χi,ni
+ fi,ni − 1 χi( 􏼁 + Δi,ni − 1(Y)􏼐 􏼑 + li,ni − 1􏽨 􏽩dt + gi,ni− 1 χi( 􏼁dw

dχi,ni
� hi,ni

Di ui( 􏼁 + fi,ni
χi( 􏼁 + Δi,ni

(Y)􏼐􏽨 􏽩 + li,ni
􏽩dt + gi,ni

χi( 􏼁dw

Yi � χi,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)
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where

χi � χi,1, χi,2, . . . , χi,ni
􏽨 􏽩

T
,

li,j � −
e
χi,j + 1( 􏼁

2
e
χi,j _λi,j,2 − _λi,j,1􏼐 􏼑

e
χi,j λi,j,2 + λi,j,1􏼐 􏼑 e

χi,j + 1( 􏼁
,

gi,j � −
e
χi,j + 1( 􏼁

2

e
χi,j λi,j,2 + λi,j,1􏼐 􏼑

gi,j,

hi,j �
e
χi,j + 1( 􏼁

2

e
χi,j λi,j,2 + λi,j,1􏼐 􏼑

,

Y � Y1, Y2, . . . YN􏼂 􏼃
T
.

(13)

Remark 2. Although BLF is regarded as a strong tool for
constrained issues, some limitations exist. )e virtual
controllers are required to meet the feasibility conditions,
which means the optimal parameters have to be selected
offline and additional computation is inevitable. By utilizing
the above system transformation, the constrained closed-
loop system is transformed into a novel closed-loop system
without any constraint. )e control design will become
easier, and the control design for the novel closed-loop
system can achieve the same control objective.

Assumption 1. )e unknown nonlinear function Δi,j(Y), i �

1, 2, . . . , N and j � 1, 2, . . . , ni, satisfies the following in-
equality, which is a common assumption for large-scale
systems:

Δi,j(Y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 􏽘
N

l�1
ρ2i,j,l Yl( 􏼁, (14)

where ρi,j,l is an unknown smooth function satisfies
ρi,j,l(0) � 0.

Since system (1) contains unknown nonlinear dynamics,
the FLSs are employed to approximate these unknown
nonlinear dynamics.

For any continuous function ρ(υ) defined over a com-
pact set Λand any given positive constant ψ, there always
exists an FLS 􏽢ρ(υ|μ∗) � μ∗Tϕ(υ) such that

sup
υ∈Λ

ρ(υ) − μ∗Tϕ(υ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ψ, (15)

where ϕi(υ) are always chosen as the Gaussian functions.
ϕ(υ) � [ϕ1(υ), ϕ2(υ), . . . , ϕN(υ)]T/􏽐

N
1 ϕi(υ) are the fuzzy

basis function vectors and satisfy 0<ϕT(υ)ϕ(υ)≤ 1. )e
ideal weight is defined as ρ � [ρ1, ρ2, . . . , ρN]T, and M is the
fuzzy rule numbers.

3. Robust Constrained Control Design

In this section, we will carry out the control design for new
system (12) with the new state vector χi and new nonlinear
functions hi,j, fi,j, li,j, and gi,j. Combining backstepping
design with the dead zone inverse technique, an adaptive

fuzzy decentralized controller is established, and based on
the Lyapunov stability theory, the stability of the closed-loop
system is proved. )e ni steps backstepping control design
process is based on the following coordinate transformation:

zi,1 � Yi − Yi,r

zi,j � χi,j − αi,j− 1, j � 2, 3, . . . , ni,
(16)

where Yi,r � log((λi,1,1 + yi,r)/(λi,1,2 − yi,r)) is the new ref-
erence signal with yi,r being the original reference signal, zi,j

denotes the tracking error, and αi,j represents the virtual
control signal which will be designed in each step.

Step 1: from (12) and (16), the derivative of zi,1 is
expressed as

dzi,1 � hi,1 χi,2 + fi,1 χi( 􏼁 + Δi,1(Y)􏼐 􏼑 + li,1 − _Yi,r􏽨 􏽩dt + gi,1 χi( 􏼁dw.

(17)

Consider the following Lyapunov function candidate:

V1 � 􏽘
N

i�1
Vi,1 � 􏽘

N

i�1

1
4
z
4
i,1 +

1
2ci,1

􏽥Θ2i,1 +
1
2ςi

􏽥W
2
i􏼠 􏼡, (18)

where ci,1 > 0 is a design parameter, 􏽥Θi,j � Θi,j − 􏽢Θi,j, 􏽢Θi,j is
the estimation ofΘi,j,Θi,j � ‖θi,j‖

2, 􏽥Wi � Wi − 􏽢Wi, 􏽢Wi is the
estimation of Wi, and Wi � ‖wi‖

4. )e definitions of wi and
θi,j will be given later.

Combining (17) and (18), it can be obtained that

ℓV1 ≤ 􏽘
N

i�1
z
3
i,1 hi,1 zi,2 + αi,1 + fi,1 χi( 􏼁 + Δi,1(Y)􏼐 􏼑􏽨􏽮

+ li,1 − _Yi,r􏽩 +
3
2
z
2
i,1g

T
i,1gi,1 −

1
ci,1

􏽥Θi,1
_􏽢Θi,1 −

1
ςi

􏽥Wi
_􏽢Wi}.

(19)

Based on Young’s inequality, we have

z
3
i,1hi,1zi,2 ≤

1
4
z
4
i,2 +

3
4
z
4
i,1h

4/3
i,1 , (20)

3
2
z
2
i,1g

T
i,1gi,1 ≤

3
4
z
4
i,1 gi,1

����
����
4

+
3
4
, (21)

􏽘

N

i�1
z
3
i,1Δi,1(Y)≤ 􏽘

N

i�1

1
2
z
6
i,1 + 􏽘

N

i�1
Y
2
i 􏽘

N

l�1

1
2
ρ2l,1,i Yi( 􏼁. (22)

Substituting (20)–(22) into (19) yields

ℓV1 ≤ 􏽘
N

i�1
z
3
i,1 hi,1αi,1+fi,1􏼑􏼐 + YiFi −

1
ςi

􏽥Wi
_􏽢W +

1
4
z
4
i,2􏼢

+
3
4

−
1

ci,1

􏽥Θi,1
_􏽢Θi,1 − Y

2
i 􏽘

N

l�1
􏽘

nl

j�1
􏽘

j

k�1

1
2
ρ2l,k,i Yi( 􏼁􏼣,

(23)

where fi,1 � hi,1fi,1(χi) + (3/4)zi,1h
4/3
i,1 + (1/2)z3

i,1 + (3/4)

z3
i,1g

4
i,1 + li,1 − _Yi,r and Fi � Yi 􏽐

N
l�1 􏽐

nl

j�1 􏽐
j

k�1(1/2)ρ2l,k,i(Yi).
)en, the following FLSs are used to approximate fi,1

and Fi as
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fi,1 Xi,1􏼐 􏼑 � θT
i,1φi,1 Xi,1􏼐 􏼑 + εi,1, (24)

Fi Yi( 􏼁 � w
T
i ϕi Yi( 􏼁 + δi, (25)

where the unknown constants εi,1 and δi denote the ap-
proximated errors and satisfy |εi,1|≤ ε∗i,1, |δi|≤ δ

∗
i .

Xi,1 � (χi, Yi,r).
Substituting (24) and (25) into (23) yields

ℓV1 ≤ 􏽘

N

i�1
z
3
i,1 hi,1αi,1 + θT

i,1φi,1 Xi,1􏼐 􏼑 + εi,1􏼐 􏼑 +
1
4
z
4
i,2􏼔

− Y
2
i 􏽘

N

l�1
􏽘

nl

j�1
􏽘

j

k�1

1
2
ρ2l,k,i Yi( 􏼁 + Yi w

T
i ϕi Yi( 􏼁 + δi􏼐 􏼑 −

1
ci,1

􏽥Θi,1
_􏽢Θi,1 −

1
ςi

􏽥Wi
_􏽢W +

3
4
􏼕.

(26)

By completing the squares, one has

z
3
i,1 θT

i,1φi,1 Xi,1􏼐 􏼑 + εi,1􏼐 􏼑≤
z
6
i,1Θi,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

+ τi 1 + ε∗2i,1􏼐 􏼑 +
z
6
i,1

4τi

, (27)

Yi w
T
i ϕi Yi( 􏼁 + δi􏼐 􏼑≤

z
4
i,1Wi

4τi

+
z
4
i,1

4τi

+
3τi

4
1 + 2 δ∗i

����
����
4/3

􏼒 􏼓 +
Wi

4τi

+
3τi

4
Y
2
i,r +

Y
4
i,r

4τi

, (28)

where Xi,1 � (χi,1, Yi,r). Substituting (27) and (28) into (26) yields

ℓV1 ≤ 􏽘
N

i�1
z
3
i,1 hi,1αi,1 +

z
3
i,1

􏽢Θi,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

+
zi,1

􏽢Wi

4τi

+
z
3
i,1 + zi,1

4τi

⎛⎝ ⎞⎠⎡⎢⎢⎣

− Y
2
i 􏽘

N

l�1
􏽘

nl

j�1
􏽘

j

k�1

1
2
ρ2l,k,i Yi( 􏼁 +

1
ci,1

􏽥Θi,1􏼠
ci,1z

6
i,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

−
_􏽢Θi,1􏼡 +

1
ςi

􏽥Wi􏼠
ςiz

4
i,1

4τi

− _􏽢W􏼡 +
1
4
z
4
i,2 + Di,1􏼣,

(29)

where

Di,1 � τi 1 + ε∗2i,1􏼐 􏼑 +
3τi

4
1 + 2 δ∗i

����
����
4/3

􏼒 􏼓

+
Wi

4τi

+
3τi

4
Y
2
i,rmax +

Y
4
i,rmax

4τi

+
3
4
.

(30)

Design the virtual control function αi,1 and adaptive laws
of 􏽢Θi,1 and 􏽢Wi as below:

αi,1 � h
− 1
i,1 − ci,1zi,1 −

z
3
i,1

􏽢Θi,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

−
zi,1

􏽢Wi

4τi

−
z
3
i,1 + zi,1

4τi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(31)

_􏽢Θi,1 �
ci,1z

6
i,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

− σi,1
􏽢Θi,1, (32)

_􏽢Wi �
ςiz

4
i,1

4τi

− σi
􏽢Wi. (33)

Substituting (31)–(33) into (29) yields

ℓV1 ≤ 􏽘
N

i�1
− ci,1z

4
i,1 − Y

2
i 􏽘

N

l�1
􏽘

nl

j�1
􏽘

j

k�1

1
2
ρ2l,k,i Yi( 􏼁 +

1
4
z
4
i,2

⎡⎢⎢⎣

+
σi,1

ci,1

􏽥Θi,1
􏽢Θi,1 +

σi

ςi

􏽥Wi
􏽢W + Di,1􏼣.

(34)

Step i and j(1≤ i≤N and 2≤ j≤ ni): based on (12) and
(16), the derivative of zi,j is expressed as

dzi,j � hi,j χi,j+1 + fi,j χi( 􏼁 + Δi,j(Y)􏽨 􏽩 + li,j − Lαi,j􏽮

− 􏽘

j− 1

k�1

αi,j− 1

χi,k

hi,kΔi,k(Y)
⎫⎬

⎭dt + gi,j χi( 􏼁dw,

(35)

Complexity 5



where

Lαi,j � 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

hi,k χi,k+2 + fi,k χi( 􏼁􏼐 􏼑 + li,k􏽨 􏽩

+ 􏽘

j− 1

k�1

zαi,j− 1

zY
(k)
i,r

Y
(k+1)
i,r + 􏽘

i− 1

k�1

zαi,j− 1

􏽢Θi,k

_􏽢Θi,k +
zαi,j− 1

z 􏽢Wi

_􏽢Wi

+
1
2

􏽘

j− 1

p1 ,p2�1

z
2αi,j− 1

zχp1
zχp2

gi,p1
g

T
i,p2

.

(36)

Consider the following Lyapunov function candidate:

Vj � 􏽘
N

i�1
Vi,j � 􏽘

N

i�1
Vi,j− 1 + z

4
i,j +

1
2ci,j

􏽥Θ2i,j􏼠 􏼡, (37)

where ci,j > 0 is a design parameter.
Combining (35) and (37), it is shown that

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j− 1

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni− j+1
􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁

⎧⎪⎨

⎪⎩

+
1
4
z
4
i,j + 􏽘

j− 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢W + Di,j− 1

+ z
3
i,j hi,j zi,j+1 + αi,j + fi,j χi( 􏼁 + Δi,j(Y)􏼐 􏼑 + li,j􏽨

− Lαi,j − 􏽘

j− 1

k�1

αi,j− 1

χi,k

hi,kΔi,k(Y)⎤⎥⎦ +
3z

3
i,j

2
gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k
⎛⎝ ⎞⎠

· gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k
⎛⎝ ⎞⎠

T

−
1

yi,j

􏽥Θi,j
_􏽢Θi,j,

(38)

where Di,j− 1 � Di,1 + (3(j − 2)/4) + 􏽐
j− 1
k�2(1 + τi)ε∗2i,k .

Based on Young’s inequality, we obtain

z
3
i,jhi,jzi,j+1 ≤

1
4
z
4
i,j+1 +

3
4
z
4
i,jh

4/3
i,j ,

3z
3
i,j

2
gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k
⎛⎝ ⎞⎠ gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k
⎛⎝ ⎞⎠

T

≤
3z

6
i,j

4
gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k

���������

���������

4

+
3
4
,

􏽘

N

i�1
z
3
i,jhi,jΔi,j(Y)≤ 􏽘

N

i�1

1
2
z
6
i,jh

2
i,j + 􏽘

N

i�1
Y
2
i 􏽘

N

l�1

1
2
ρ2l,j,i Yi( 􏼁,

− 􏽘
N

i�1
z
3
i,j 􏽘

j− 1

k�1

αi,j− 1

χi,k

hi,kΔi,k(Y)≤ 􏽘
N

i�1
􏽘

j− 1

k�1

1
2

αi,j− 1

χi,k

􏼠 􏼡

2

z
6
i,jh

2
i,k + 􏽘

N

i�1
Y
2
i 􏽘

j− 1

k�1
􏽘

N

l�1

1
2
ρ2l,k,i Yi( 􏼁.

(39)

)en, we have

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j− 1

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni− j+1
􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁

⎧⎪⎨

⎪⎩

+
1
4
z
4
i,j + 􏽘

j− 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢W +

1
4
z
4
i,j+1

+
3
4
z
4
i,jh

4/3
i,j + z

3
i,j hi,j αi,j + fi,j χi( 􏼁 + Δi,j(Y)􏼐 􏼑􏽨

+ li,j − Lαi,j − 􏽘

j− 1

k�1

αi,j− 1

χi,k

hi,kΔi,k(Y)⎤⎥⎦ +
1

ci,j

􏽥Θi,j
_􏽢Θi,j
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+
3z

6
i,j

4
gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k

���������

���������

4

+
3
4

+ Di,j− 1

⎫⎪⎬

⎪⎭
,

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j− 1

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni− j+1
􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁

⎧⎪⎨

⎪⎩

+
1
4
z
4
i,j + 􏽘

j− 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢W +

1
4
z
4
i,j+1

+
3
4
z
4
i,jh

4/3
i,j +

1
2
z
6
i,jh

2
i,j + Y

2
i 􏽘

N

l�1

1
2
ρ2l,j,i Yi( 􏼁 +

3
4

+ z
3
i,j hi,j αi,j + fi,j χi( 􏼁􏼐 􏼑 + li,j − Lαi,j􏽨

− 􏽘

j− 1

k�1

αi,j− 1

χi,k

hi,kΔi,k(Y)⎤⎥⎦ +
1

ci,j

􏽥Θi,j
_􏽢Θi,j+

3z
6
i,j

4
gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k

���������

���������

4

+ Di,j− 1

⎫⎪⎬

⎪⎭
.

(40)

We finally yield

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j− 1

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni− j

􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁⎡⎢⎢⎣

+
1
4
z
4
i,j+1 + 􏽘

j− 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢W + Di,j− 1 +

3
4

+z
3
i,j hi,jαi,j + fi,j􏼐 􏼑 −

1
ci,j

􏽥Θi,j
_􏽢Θi,j],

(41)

where

fi,j � hi,jfi,j χi( 􏼁 +
3
4
zi,jh

4/3
i,j +

1
4
zi,j +

1
2
z
3
i,jh

2
i,j

+ 􏽘

j− 1

k�1

1
2

αi,j− 1

χi,k

􏼠 􏼡

2

z
3
i,jh

2
i,k + li,j − Lαi,j

+
3z

3
i,j

4
gi,j − 􏽘

j− 1

k�1

zαi,j− 1

zχi,k

gi,k

���������

���������

4

.

(42)

)en, fi,j is approximated by the FLS:

fi,j Xi,j􏼐 􏼑 � θT
i,jφi,j Xi,j􏼐 􏼑 + εi,j, (43)

where Xi,j � (χi,
􏽢Wi,

􏽢Θi,1, . . . , 􏽢Θj− 1, Yi,r, Y
(1)
i,r , . . . , Y

(j)
i,r ) and

εi,j denotes the approximate error and satisfies |εi,j|≤ ε∗i,j with
ε∗i,j being an unknown constant.

Substituting (43) into (41) yields

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j− 1

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni − j

􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁

⎧⎪⎨

⎪⎩

+
1
4
z
4
i,j+1 + 􏽘

j− 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢W + Di,j− 1 +

3
4

+ z
3
i,j hi,jαi,j + θT

i,jφi,j Xi,j􏼐 􏼑 + εi,j􏽨 􏽩 −
1

ci,j

􏽥Θi,j
_􏽢Θi,j}.

(44)

Note that φT
i,j(Xi,j)φi,j(Xi,j) � 1; based on Young’s in-

equality, we have

z
3
i,j θT

i,jφi,j Xi,j􏼐 􏼑 + εi,j􏽨 􏽩 � z
3
i,jθ

T
i,jφi,j Xi,j􏼐 􏼑 + z

3
i,jεi,j

≤
1

4τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑

z
6
i,j θi,j

�����

�����
2

+ τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑 + τiε

∗2
i,j +

z
6
i,j

4τi

.

(45)

Complexity 7



)en, we obtain

z
3
i,j θT

i,jφi,j Xi,j􏼐 􏼑 + εi,j􏽨 􏽩≤
z
6
i,jΘi,j

4τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑

+ τi 1 + ε∗2i,j􏼐 􏼑 +
z
6
i,j

4τi

,

(46)

where Xi,j � (χi,j,
􏽢Wi,

􏽢Θi,1, . . . , 􏽢Θi,j− 1, Yi,r, Y
(1)
i.r , . . . , Y

(j)
i.r ).

Combining (44) and (46), we obtain

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j− 1

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni − j

􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁

⎧⎪⎨

⎪⎩

+
1
4
z
4
i,j+1 + 􏽘

j− 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢Wi + z

3
i,j hi,jαi,j +

z
3
i,j

􏽢Θi,j

4τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑

+
z
3
i,j

4τi

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
1

ci,j

􏽥Θi,j

ci,jz
6
i,j

4τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑

−
_􏽢Θi,j] + Di,j},

⎡⎢⎢⎣

(47)

where Di,j � Di,j− 1 + τi(1 + ε∗2i,j ) + (3/4).
Design the virtual controller αi,j and adaptive law of 􏽢Θi,j

as

αi,j � h
− 1
i,j − ci,jzi,j −

z
3
i,j

􏽢Θi,j

4τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑

−
z
3
i,j

4τi

⎡⎢⎢⎣ ⎤⎥⎥⎦, (48)

_􏽢Θi,j �
ci,jz

6
i,j

4τiφ
T
i,j Xi,j􏼐 􏼑φi,j Xi,j􏼐 􏼑

− σi,j
􏽢Θi,j. (49)

Substituting (48) and (49) into (41) yields

ℓVj ≤ 􏽘
N

i�1
− 􏽘

j

k�1
ci,kz

4
i,k − Y

2
i 􏽘

N

l�1
􏽘

nl

q�ni− j

􏽘

q

k�1

1
2
ρ2l,k,i Yi( 􏼁⎡⎢⎢⎣

+
1
4
z
4
i,j+1 + 􏽘

j

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢Wi + Di,j

⎤⎥⎦.

(50)

Step i and ni: in the final step, the actual controller is
constructed. Similar to the above steps, the derivative of zi,ni

is expressed as

dzi,ni
� hi,ni

Di ui( 􏼁 + fi,ni
χi( 􏼁 + Δi,ni

(Y)􏽨 􏽩􏽮 + li,ni

− Lαi,ni
− 􏽘

ni − 1

k�1

αi,ni − 1

χi,k

hi,kΔi,k(Y)
⎫⎬

⎭dt + gi,ni
χi( 􏼁dw,

(51)

where

Lαi,ni
� 􏽘

ni− 1

k�1

zαi,ni− 1

zχi,k

hi,k χi,k+2 + fi,k χi( 􏼁􏽨 􏽩 + li,k􏽮 􏽯

+ 􏽘

ni− 1

k�1

zαi,ni − 1

zY
(k)
i,r

Y
(k+1)
i,r + 􏽘

ni − 1

k�1

zαi,ni − 1

􏽢Θi,k

_􏽢Θi,k +
zαi,ni − 1

z 􏽢Wi

_􏽢Wi

+
1
2

􏽘

ni− 1

p1 ,p2�1

z
2αi,ni− 1

zχp1
zχp2

gi,p1
g

T
i,p2

.

(52)

Consider the following Lyapunov function candidate:

V � 􏽘
N

i�1
Vi,ni

� 􏽘
N

i�1
Vi,ni − 1􏼐 +

1
4
z
4
i,ni

+
1

2ci,ni

􏽥Θ2i,ni
,

V � 􏽘

N

i�1
Vi,ni − 1􏼐 +

1
4
z
4
i,ni

+
1

2ci,ni

􏽥Θ2i,ni
+

1
2ξi,1

􏽥m
2
i,r

+
1

2ξi,2
􏽥m
2
i,l +

1
2ξi,3

􏽥d
2
i,r,m +

1
2ξi,4

􏽥d
2
i,l,m􏼡,

(53)

where ci,ni
> 0, ξi,1 > 0, ξi,2 > 0, ξi,3 > 0, and ξi,4 > 0 are

designed parameters.
Combining (51) and (53), it can be shown that

8 Complexity



ℓV≤ 􏽘
N

i�1
− 􏽘

ni − 1

k�1
ci,kz

4
i,k + 􏽘

ni − 1

k�1

σi,k

ci,k

􏽥Θi,k
􏽢Θi,k +

σi

ςi

􏽥Wi
􏽢W

⎧⎨

⎩

−
1
ξi,1

􏽥mi,r
_􏽢mi,r −

1
ξi,2

􏽥mi,l
_􏽢mi,l −

1
ξi,3

􏽥di,r,m
_􏽢di,r,m

−
1
ξi,4

􏽥di,l,m
_􏽢di,l,m + z

3
i,ni

hi,ni
δi

􏽥di,r,m −
u
∗
i + 􏽢di,r,m

􏽢mi,r

􏽥mi,r􏼠 􏼡􏼢

+ 􏽥di,l,m −
u
∗
i + 􏽢di,l,m

􏽢mi,l

􏽥mi,l􏼠 􏼡 1 − δi( 􏼁􏼣 + z
3
i,ni

hi,ni
u
∗
i +

z
3
i,ni

􏽢Θi,ni

4τiφ
T
i,ni

Xi,ni
􏼐 􏼑φi,ni

Xi,ni
􏼐 􏼑

+
z
3
i,ni

4τi

+
1
2
z
3
i,ni

h
2
i,ni

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
1

ci,ni

􏽥Θi,ni

ci,ni
z
6
i,ni

4τiφ
T
i,ni

Xi,ni
􏼐 􏼑φi,ni

Xi,ni
􏼐 􏼑

−
_􏽢Θi,ni

] + Di,ni
,⎡⎢⎢⎣

(54)

where Di,ni
� Di,ni − 1 + τi(1 + ε∗2i,j ) + (3/4) + (1/2)(εiu∗

i
)2.

Design the actual controller u∗i and adaptive laws of 􏽢Θi,ni
,

􏽢mi,r, 􏽢mi,l, 􏽢di,r,m, and 􏽢di,r,l as

u
∗
i � h

− 1
i,ni

− ci,ni
zi,ni

−
z
3
i,ni

􏽢Θi,ni

4τiφ
T
i,ni

Xi,ni
􏼐 􏼑φi,ni

Xi,ni
􏼐 􏼑

−
z
3
i,ni

4τi

−
1
2
z
3
i,ni

h
2
i,ni

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(55)

_􏽢Θi,ni
�

ci,ni
z
6
i,ni

4τiφ
T
i,ni

Xi,ni
􏼐 􏼑φi,ni

Xi,ni
􏼐 􏼑

− σi,ni

􏽢Θi,ni
, (56)

_􏽢mi,r �
u
∗
i + 􏽢di,r,m

􏽢mi,r

ξi,1z
3
i,ni

hi,ni
δi + ξi,1 􏽢mi,r, (57)

_􏽢mi,l �
u
∗
i + 􏽢di,l,m

􏽢mi,l

ξi,2z
3
i,ni

hi,ni
1 − δi( 􏼁 + ξi,2 􏽢mi,l, (58)

_􏽢di,r,m � − ξi,3z
3
i,ni

hi,ni
δi + ξi,3

􏽢di,r,m, (59)

_􏽢di,l,m � − ξi,4z
3
i,ni

hi,ni
1 − δi( 􏼁 + ξi,4

􏽢di,l,m. (60)

Substituting (55)–(60) into (54) yields

ℓV≤ 􏽘

N

i�1
− 􏽘

ni

k�1
ci,kz

4
i,k − 􏽘

ni

k�1

σi,k

2ci,k

􏽥Θ2i,k −
σi

2ςi

􏽥W
2
i + Di

⎛⎝

−
ξi,1

2ξi,1
􏽥m
2
i,r −

ξi,2

2ξi,2
􏽥m
2
i,l −

ξi,3

2ξi,3

􏽥d
2
i,r,m −

ξi,4

2ξi,4

􏽥d
2
i,l,m􏼡,

(61)

where

Di � Di,j + 􏽘

ni

k�1

σi,k

2ci,k

Θ2i,k +
σi

2ςi

W
2
i +

ξi,1

2ξi,1
m

2
i,r

+
ξi,2

2ξi,2
m

2
i,l +

ξi,3

2ξi,3
d
2
i,r,m +

ξi,4

2ξi,4
d
2
i,l,m.

(62)

Define Ci � min ci,k, σi,k, σi, ξi,1, ξi,2, ξi,3, ξi,4􏽮 􏽯; then, (61)
is written as

ℓV≤ 􏽘
N

i�1
− CiVi,ni

+ Di􏼐 􏼑. (63)

Let C � min1≤i≤N Ci􏼈 􏼉 and D � max1≤i≤N Di􏼈 􏼉; then, (62)
becomes

ℓV≤ − CV + D. (64)

We summarize the above robust constrained control
design as the following theorem.

Theorem 1. Consider nonlinear system (12); under As-
sumption 1, the virtual controllers are designed as (31) and
(48), the actual controller is designed as (55), and adaptive
laws are designed as (32), (33), (49), and (56)–(60); then, the
developed control scheme can guarantee that all the signals in
the closed-loop system are bounded, and the tracking errors
converge to a small neighborhood of the origin.

Proof. Integrating (64) over [0, t] results in

0≤EV(t)≤ e
− Ct

EV(0) +
D

C
. (65)

From (57), we can obtain that all the closed-loop signals
χi,j, zi,j, 􏽢Θi,j, 􏽢Wi, 􏽢mi,r, 􏽢mi,l, 􏽢di,r,m, and 􏽢di,l,m are bounded,
1≤ i≤N and 1≤ j≤ ni. )e tracking error satisfies

zi,1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
���������������

2 e
− Ct

V(0) +
D

C
􏼒 􏼓

􏽲

. (66)

Furthermore, since the novel closed-loop signal χi,j is
bounded, according to the definition of the nonlinear state-
dependent function in (8), the signal xi,j remains in the
constrained region (− λi,j,1, λi,j,2). )en, the proof of )eo-
rem 1 has been completed. □

Remark 3. )e control design in this paper does not depend
on the feasibility condition, and it is no need to utilize the
BLFs, which can achieve the same control objective.
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Although the results in [21–33] can also solve the state
constrained problem, the control designs appear much
complicatedly.

4. Simulation Example

Consider an example of two inverted pendulums connected
by a moving spring mounted on two cars. )e input to each
pendulum is the torque ui(i � 1, 2) applied at the pivot
point. We define the state vectors as

x1,1, x1,2􏼐 􏼑
T

� θ1, _θ1􏼐 􏼑
T
,

x2,1, x2,2􏼐 􏼑
T

� θ2, _θ2􏼐 􏼑
T
.

(67)

Define a(t) � sin(5t), K1 � sin(2t), K2 � sin(3t) + L,
β1 � m sin x1,1/M, β2 � m sin x2,1/M, and c � m/(m + M).
)e dynamics equations of the inverted two pendulums on
cars are introduced in [3]:

_x1,1 � x1,2,

_x1,2 �
g

cl
−

ka(t)[a(t) − cl]

cml
2􏼨 􏼩x1,1 +

u1

cml
2 +

ka(t)[a(t) − cl]

cml
2 x2,1 + β1x

2
1,2

+
ka(t)[a(t) − cl]

cml
2 K1 − K2( 􏼁,

y1 � x1,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

_x2,1 � x2,2,

_x2,2 �
g

cl
−

ka(t)[a(t) − cl]

cml
2􏼨 􏼩x2,1 +

u2

cml
2 +

ka(t)[a(t) − cl]

cml
2 x1,1 + β2x

2
2,2

+
ka(t)[a(t) − cl]

cml
2 K2 − K1( 􏼁,

y2 � x2,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

where m(kg), M(kg), l(m), L(m), k(N/m), and g(m/s2) are
the mass of the pendulum and the car, the length of the pole,

the natural length of the connecting spring, the spring
constant, and the gravity constant, respectively.
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Here, both stochastic disturbance and actuator dead
zones are considered on the basis of the above systems:

_x1,1 � x1,2,

_x1,2 �
g

cl
−

ka(t)(a(t) − cl)

cml
2􏼢 􏼣􏼨 x1,1 +

D1 u1( 􏼁

cml
2 +

ka(t)[a(t) − cl]

cml
2 x2,1 + β1x

2
1,2

+
ka(t)[a(t) − cl]

cml
2 K1 − K2( 􏼁􏼉dt + g1,2 x1,1, x1,2􏼐 􏼑dw,

y1 � x1,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

_x2,1 � x2,2,

_x2,2 �
g

cl
−

ka(t)(a(t) − cl)

cml
2􏼢 􏼣􏼨 x2,1 +

D2 u2( 􏼁

cml
2 +

ka(t)[a(t) − cl]

cml
2 x1,1 + β2x

2
2,2

+
ka(t)[a(t) − cl]

cml
2 K2 − K1( 􏼁􏼉dt + g2,2 x2,1, x2,2􏼐 􏼑dw,

y2 � x2,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

where

g1,2 x1,1, x1,2􏼐 􏼑 � cos x1,2􏼐 􏼑 − sin x1,1􏼐 􏼑,

g2,2 x2,1, x2,2􏼐 􏼑 � sin x2,2􏼐 􏼑 − cos x2,1􏼐 􏼑.
(70)

Du1 and Du2 are the outputs of the unknown actuator
dead zones with the dead-zone slopes being given as

m1,r � m2,r � 1.1,

m1,l � m2,l � 1.7,

d1,r � d2,r � 0.3,

d1,l � d2,l � 0.4.

(71)

)e tracking signals are defined as
y1,r � y2,r � 0.45 sin(t), and the states x1,1, x1,2, x2,1, and
x2,2 are constrained in the regions:

− λ1,1,1(t), λ1,1,2(t)􏼐 􏼑,

− λ1,2,1(t), λ1,2,2(t)􏼐 􏼑,

− λ2,1,1(t), λ2,1,2(t)􏼐 􏼑,

− λ2,2,1(t), λ2,2,2(t)􏼐 􏼑,

(72)

with

λ1,1,1(t) � λ2,1,1(t) � 0.5 − 0.4 sin(t),

λ1,1,2(t) � λ2,1,2(t) � 0.6 − 0.1 cos(t),

λ1,2,1(t) � λ2,2,1(t) � 0.4 − 0.3 sin(t),

λ1,2,2(t) � λ2,2,2(t) � 0.5 + 0.1 cos(t).

(73)

From (10)–(12), the novel closed-loop system dynamics
are described as

Complexity 11



dχ1,1 � h1,1χ1,2 + l1,1􏼐 􏼑dt,

dχ1,2 � h1,2
g

cl
−

ka(t)(a(t) − cl)

cml
2􏼠 􏼡􏼢 χ1,1 +

Du1

cml
2 +

ka(t)(a(t) − cl)

cml
2 χ2,1 + β1χ

2
1,2􏼨

+
ka(t)(a(t) − cl)

cml
2 K1 − K2( 􏼁􏼃 + l1,2􏼩dt + g1,2 χ1,1, χ1,2􏼐 􏼑dw,

Y1 � χ1,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

dχ2,1 � h2,1χ2,2 + l2,1􏼐 􏼑dt,

dχ2,2 � h2,2
g

cl
−

ka(t)(a(t) − cl)

cml
2􏼠 􏼡􏼢 χ2,1 +

Du2

cml
2 +

ka(t)(a(t) − cl)

cml
2 χ1,1 + β2χ

2
2,2􏼨

+
ka(t)(a(t) − cl)

cml
2 K2 − K1( 􏼁􏼃 + l2,2􏼩dt + g2,2 χ2,1, χ2,2􏼐 􏼑dw,

Y2 � χ2,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

where χi,j � log(λi,j,1 + xi,j/λi,j,2 − xi,j), gi,j � − ((eχi,j + 1)2

/eχi,j (λi,j,2 + λi,j,1))gi,j, li,j � − ((eχi,j + 1)2(eχi,j _λi,j,2 − _λi,j,1)

/eχi,j (λi,j,2 + λi,j,1)(eχi,j + 1)), and hi,j � ((eχi,j + 1)2/eχi,j (λi,j,2
+λi,j,1)) with i � 1 and 2 and j � 1 and 2. )e reference sig-
nals of the novel closed-loop system are given as

Y1,r � log
λ1,1,1 + y1,r

λ1,1,2 − y1,r

,

Y2,r � log
λ2,1,1 + y2,r

λ2,1,2 − y2,r

.

(76)

Choose the fuzzy membership functions as follows:

μF
k
i,j � e

− 0.5 χi,j+6− 2k( 􏼁
2

􏽨 􏽩
, i � 1, 2, j � 1, 2, . . . , 5, and k � 1, 2, . . . , 5. (77)

)en, the fuzzy basic functions can be constructed as

φi,j,k χ
i,j

􏼒 􏼓 �

􏽑
2
j�1 exp − 0.5 χ

i,j
+ 6 − 2k􏼒 􏼓

2
􏼢 􏼣

􏽐
5
k�1􏽑

2
j�1 exp − 0.5 χ

i,j
+ 6 − 2k􏼒 􏼓

2
􏼢 􏼣.

(78)

)e virtual control functions αi,1(i � 1 and 2), the actual
control inputs u∗i (i � 1 and 2), and the adaptive laws of the
parameters 􏽢Wi,1(i � 1 and 2), 􏽢Θi,j(i � 1 and 2 and j �

1 and 2), 􏽢mi,r(i � 1 and 2), 􏽢mi,l(i � 1 and 2), 􏽢di,r,m(i � 1
and 2), and 􏽢di,l,m(i � 1 and 2) are designed as below:

αi,1 � h
− 1
i,1 − ci,1zi,1 −

z
3
i,1

􏽢Θi,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

−
zi,1

􏽢Wi

4τi

−
z
3
i,1 + zi,1

4τi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(79)

u
∗
i � h

− 1
i,2 − ci,2zi,2 −

z
3
i,2

􏽢Θi,2

4τiφ
T
i,2 Xi,2􏼐 􏼑φi,2 Xi,2􏼐 􏼑

−
z
3
i,2

4τi

−
1
2
z
3
i,2h

2
i,2

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(80)

_􏽢Θi,1 �
ci,1z

6
i,1

4τiφ
T
i,1 Xi,1􏼐 􏼑φi,1 Xi,1􏼐 􏼑

− σi,1
􏽢Θi,1, (81)

_􏽢Θi,2 �
ci,2z

6
i,2

4τiφ
T
i,2 Xi,2􏼐 􏼑φi,2 Xi,2􏼐 􏼑

− σi,2
􏽢Θi,2, (82)

_􏽢Wi �
ςiz

4
i,1

4τi

− σi
􏽢Wi, (83)

_􏽢mi,r �
u
∗
i + 􏽢di,r,m

􏽢mi,r

ξi,1z
3
i,2hi,2δi + ξi,1 􏽢mi,r, (84)

_􏽢mi,l �
u
∗
i + 􏽢di,l,m

􏽢mi,l

ξi,2z
3
i,2hi,2 1 − δi( 􏼁 + ξi,2 􏽢mi,l, (85)

_􏽢di,r,m � − ξi,3z
3
i,2hi,2δi + ξi,3

􏽢di,r,m, (86)

_􏽢di,l,m � − ξi,4z
3
i,2hi,2 1 − δi( 􏼁 + ξi,4

􏽢di,l,m. (87)
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Figure 1: Trajectories of outputs Yi and reference signals Yi,r.
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Figure 2: Trajectories of state variables χi,2.
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Figure 3: Trajectories of control inputs u∗i and dead zones Di(ui).
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Figure 4: Trajectories of adaptive parameters 􏽢Θi,j and 􏽢Wi.
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Figure 6: Trajectories of state variable x1,2.
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Figure 5: Trajectories of output y1 and reference signals y1,r.
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Figure 7: Trajectories of output y2 and reference signals y2,r.
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Figure 8: Trajectories of state variable x2,2.
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In the simulation, the initial values are chosen as

χ1,1(0), χ1,2(0), χ2,1(0), χ2,2(0)􏽨 􏽩
T

� [0.01, 0.02, 0.03, 0.01]
T
,

􏽢Θ1,1(0), 􏽢Θ1,2(0), 􏽢Θ2,1(0), 􏽢Θ2,2(0)􏽨 􏽩
T

� [0.1, 0.2, 0.3, 0.4]
T
,

􏽢W1(0), 􏽢W2(0)􏽨 􏽩
T

� [0.3, 0.2]
T
,

􏽢m1,r(0), 􏽢m1,l(0), 􏽢d1,r,m(0), 􏽢d1,l,m(0), 􏽢m2,r(0), 􏽢m2,l(0), 􏽢d2,r,m(0), 􏽢d2,l,m(0)􏽨 􏽩
T

� [1, 1, 1, 1, 1, 1, 1, 1]
T

.

(88)

Remark 4. Note that the two inverted pendulums’ systems
introduced above are free of dead zones and did not consider
the stochastic disturbance. However, the stochastic distur-
bance and dead zones are evitable in practical engineering
due to the restrictions of external physical conditions.

)e design parameters are selected as

c1,1 � c2,1 � 30,

c1,2 � c2,2 � 60,

c1,1 � c1,2 � c2,1 � c2,2 � 0.01,

σ1,1 � σ1,2 � σ2,1 � σ2,2 � 0.01,

ς1 � ς2 � 0.01,

σ1 � σ2 � 0.1,

ξ1,1 � ξ1,2 � ξ1,3 � ξ1,4 � 0.02,

ξ1,1 � ξ1,2 � ξ1,3 � ξ1,4 � 0.001,

ξ2,1 � ξ2,2 � ξ2,3 � ξ2,4 � 0.02,

ξ2,1 � ξ2,2 � ξ2,3 � ξ2,4 � 0.001.

(89)

Insert the control schemes (79)–(87) into systems (74)
and (75), and the simulation results are reflected by
Figures 1–10. Figure 1 shows the curves of outputs Yi(i �

1 and 2) and their reference signals Yi,r(i � 1 and 2), and the
trajectory of outputs Yi track the given signals during the
whole period; Figure 2 shows the curves of state variables
χi,2(i � 1 and 2), and it is obvious that χi,2 are bounded; both
the tracking errors showed in Figures 1 and 2 can be directly
reflected by Figures 9 and 10. Figure 3 shows the curves of
control inputs ui(i � 1 and 2) and dead zones
Di(ui)(i � 1 and 2); Figure 4 shows the curves of adaptive
parameters 􏽢Θi,j(i � 1 and 2 and j � 1 and 2) and
􏽢Wi(i � 1 and 2); Figure 5 shows the curves of output y1 and
its reference signals y1,r in the time-varying constrained
closed-loop system; Figure 6 shows the curve of state var-
iable x1,2 in the closed-loop system, and it is constrained by
time-varying bounds; Figure 7 shows the curves of output y2
and its reference signal y2,r; Figure 8 shows that the curve of
state variable x2,2 is constrained by time-varying bounds.

5. Conclusion

In this article, the robust adaptive fuzzy control design for
stochastic state-constrained nonlinear large-scale systems
has been studied. )e constrained closed-loop system is
transformed into a novel system without any constraint by
utilizing the variable transformation method, which can
achieve the same control objective. )en, FLSs are used to
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Figure 9: Trajectories of tracking errors between Y1 and Y1,r.
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Figure 10: Trajectories of tracking errors between Y2 and Y2,r.
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approximate the unknown nonlinear functions, and the
dead zone inverse technique is used to compensate the dead
zone effect. Combining backstepping design with the
decentralized control method, a robust adaptive fuzzy
controller is constructed ultimately. In addition, the states of
the controlled system remain in their constrained bounds all
the time.
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