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Community detection is one of the key research directions in complex network studies. We propose a community detection
algorithm based on a density peak clustering model and multiple attribute decision-making strategy, TOPSIS (Technique for
Order Preference by Similarity to an Ideal Solution). First, the two-dimensional dataset, which is transformed from the network by
taking the density and distance as the attributes of nodes, is clustered by using the DBSCAN algorithm, and outliers are de-
termined and taken as the key nodes. 'en, the initial community frameworks are formed and expanded by adding the most
similar node of the community as its newmember. In this process, we use TOPSIS to cohesively integrate four kinds of similarities
to calculate an index, and use it as a criterion to select the most similar node. 'en, we allocate the nonkey nodes that are not
covered in the expanded communities. Finally, some communities are merged to obtain a stable partition in two ways. 'is paper
designs some experiments for the algorithm on some real networks and some synthetic networks, and the proposed method is
compared with some popular algorithms. 'e experimental results testify for the effectiveness and show the accuracy of
our algorithm.

1. Introduction

Research on complex networks [1] has been an important
aspect of data mining. Complex networks are often abstracted
from actual systems and are composed of nodes representing
entities and edges representing connections between them.
Due to the complexity of the mechanism of the systems, the
macroscopic behavior of the networks does not conform to
the single statistical randomness or the complete regularity,
and the networks present a kind of complexity between the
two properties. In different applications, the networks present
a complex topology structure due to the diversity of the nodes
and edges. Researches show that the networks abstracted from
the real systems often have such characteristics as small-world
[2], scale-free [3], and community structure [4, 5]. 'e small-
world characteristic shows that the nodes in the network are
connected by a short path; and the scale-free feature means
that the degree of the nodes follows a power-law distribution.
'e nodes in the network can be divided into several groups,
wherein the nodes within each group have more dense
connections, and the connections between the groups sparse,

with each group constituting a so-called “community.” 'e
community structure contains the organizational information
in each part of the network and the interaction information
between these parts, which can be of great help to the research
on the underlying structure and potential functions of the
actual systems. And, community detection can promote other
complex network studies, like influence maximization [6–8],
network embedding [9–11], feature-level fusion [12], and
vulnerability assessment [13]. 'erefore, finding the com-
munity structure has become an important research direction
of complex networks.

Community detection can be regarded as a clustering
problem in the network. 'e density peak clustering algo-
rithm [14] argues that the cluster centers have larger density
because they are usually surrounded by lots of data points.
At the same time, they are separated by the data points,
resulting in larger distance between them. 'at makes them
significantly larger in density and distance than the non-
center data points. Density peak clustering uses this feature
to mine the cluster centers in the dataset and identify clusters
of any shape.
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'e density peak clustering model is highly compatible
with the problem of community detection. Due to their
scale-free feature, the key nodes of the communities are
surrounded by many low-degree nodes, so their densities are
relatively higher, and there is larger distance between them
because of the sparse connections between the communities.
In recent years, there have been many methods for suc-
cessfully applying the density peak clustering model to
address the problem of community detection [15–19], which
will be introduced in Section 2.

We find that some traditional methods applying density
peak clustering model in community detection often use
simple mathematical methods to distinguish the key nodes
from the nonkey nodes, which include the product or simple
linear combination of nodes’ density and distance as the
standard of discrimination. 'ese methods often encounter
difficulties when distinguishing key nodes whose attributes
are not particularly obvious from the node set. 'e reason is
that some nonkey nodes which only have a larger density in
the dense community might interfere with the key nodes of
the sparser communities due to the intricate structure of the
network.

In this paper, we think about this problem from another
aspect, and we propose a new DPC-based method of
community detection. Because the key nodes have larger
density and distance, they become outliers facilitating the
use of these properties as the nodes’ attributes. 'erefore, we
can turn the problem into outlier detection in the two-di-
mensional space about the nodes’ properties instead of using
traditional simple mathematical methods. 'e key nodes
and other nodes can be distinguished more accurately from
this aspect. And, in our method, the DBSCAN algorithm
[20] is used for outlier detection.

After obtaining the key nodes, we generate the frame-
works of communities by taking them as the seeds, and
expand each framework by gradually absorbing the most
similar node iteratively. In the process of expansion, we use
the T-similarity as a criterion to select the most similar node,
and this index is computed by using the multiple attribute
decision-making strategy, TOSIS (Technique for Order
Preference by Similarity to an Ideal Solution) [21] to
combine multiple similarities, and avoids the insufficient
adaptation of a single similarity. 'e expansion phase stops
when the benefit of external edges is greater than that of
internal edges for the community. 'en, we also use the
T-similarity to allot the nonkey nodes, which are not covered
by the expanded communities, and obtain the initial
community structure. At the end of this step, there are some
small communities in our partition. To get the final result, we
use two strategies to merge some of them, which include an
approach by optimizing modularity and a strategy about
community metrics.

Optimizing modularity [22] is a fast and quality-assured
way of community merge. 'erefore, we make use of this
strategy to merge some initial communities. Sometimes, this
waymight merge communities excessively due to the pursuit
of modularity, which affects the resolution of communities.
Community metric [23] is an indicator to evaluate the
significance of a community. So, we also provide a way to

solve the resolution problem by controlling the minimum
community metric allowed in the network.

'e contributions of our work are summarized as
follows:

(i) In this paper, we mine the key nodes (cluster
centers) in the DPC model from a new perspective
that the DBSCAN algorithm is applied to the
transformed two-dimensional dataset of network,
which provides a new idea for distinguishing the key
nodes from the nonkey nodes in the DPC model
accurately.

(ii) TOPSIS, a multi-attribute decision-making algo-
rithm, is used to synthesize the four similarities in
our method. On the one hand, the communities’
expansion and merging operations are more stable
and reasonable, and on the other hand, the
adaptability of the proposed algorithm to different
networks is improved.

(iii) We propose two approaches for merging some of
small communities; the difference between them is
that they merge the unstable communities in the
detection process from different directions. One is
inclined to be higher modularity, and the other pays
more attention to solve the resolution limit prob-
lem. Under the guarantee of the previous steps,
either approach will result in a higher quality of
partition.

'e organization of this paper is as follows. Section 2
investigates the problem of community detection, Section 3
clarifies the specific steps of the proposed method, Section 4
testifies the effect of the proposed method through exper-
iments, and Section 5 concludes the entire paper.

2. Related Work

'e research on community detection in complex networks
has been ongoing for decades, and a large number of
methods have emerged. Here, we introduce some of them
that have inspired the ideas of the proposed algorithm.

2.1. Traditional Community Detection Methods.
Optimizing modularity is a classical and efficacious way in
community detection. And, the modularity is first proposed
in the literature [22] along with the GN algorithm, which is
used to evaluate the quality of the community structure—
larger modularity often means higher quality of the struc-
ture. Fast Q [24] is a classic modularity optimization al-
gorithm proposed by Newman. It initially takes each node as
a community, and the hierarchical community structure is
obtained by continuously merging the two communities
with the largest modularity increment. Louvain algorithm
[25] obtains the community structure with larger modularity
by moving each node to its neighbor’s community with the
largest modularity increment, then compressing the com-
munity as a supernode, and repeatedly performing the above
operations until the modularity is the largest. ECG [26]
obtains k groups of communities by using one-level Louvain
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k times, and weights the edges according to the probability
that the two nodes are in the same community, then uses
Louvain on the weighted network to get the community
partition. Leiden [27] is an improvement of Louvain. 'e
authors argue that weakly connected or even disconnected
communities may appear during the operation of Louvain.
'erefore, they pay more attention to the connectivity of the
communities when moving the nodes. 'e shortcomings of
Louvain are overcome, and the algorithm is also optimized
on the time complexity through the fast local node-moving
method. In addition, there are many evolutionary algo-
rithms which detect communities aiming at optimizing the
modularity [28, 29].

Optimizing modularity is not the only direction for
community detection. Based on a variety of information on
the network, there have been a lot of methods to partition
networks from different directions. Attractor [30] is a
method based on network dynamics wherein the interac-
tion between nodes and the distance between nodes affect
each other. Under their interplays, there are obvious dif-
ferences between inter-community edges and intra-com-
munity edges on distance. After deleting the inter-
community edges with a large distance, the community
structure can be obtained. LPA [31] is a community de-
tection algorithm based on the mechanism of information
propagation and has high efficiency. Every node is initially
assigned with a unique label, and iteratively updates its own
label to be the one that occurs in its neighborhood most
frequently. 'e label update procedure is repeated until
every node’s label is the most frequent one among its
neighbors. At that time, the network is divided into
communities according to the same labels held by the
nodes. Infomap [32] links the problem of community
detection with information coding through coding the
communities and nodes. When the code length is shorter,
the corresponding community structure is clearer. In the
process of random walk, Infomap puts the node into its
neighbor’s community, and takes the community with the
largest reduction of code length as the node’s affiliation,
until the code length reaches the minimum. Walktrap [33]
defines the distance between nodes through random walks,
and continuously merges the two communities with the
shortest distance to obtain multilevel community structure.
'e structures with the largest modularity are selected as
the final partition. PPC [34] is a top-down divisive method,
in which an ordered sequence of nodes is generated
through random walk repeatedly first, and then PPC uses
modularity to determine the cut point to separate sub-
graphs, and the network is continuously partitioned until
there is no positive modularity gain. 'e literature [35]
proposes a community detection method based on game
theory. 'is method defines the leadship of nodes by se-
quential-move game, and optimizes the attribution of
nonleader nodes in dynamic systems. 'e community
partition result with high objective function value is ob-
tained in iterations. In addition, there are many excellent
ideas to partition the network from various aspects such as
spectral analysis [36–38], nonnegative matrix factorization
[17, 39–41], and network embedding [42, 43].

2.2. Community Detection Methods Based on Density Peak
Clustering. Since the DPC (Density Peak Clustering) algo-
rithm [14] was proposed in 2014, there have been many
methods of applying DPC to detect communities. Isofdp
[15] uses IsoMap to map nodes to a d-dimensional space,
which presents more diversity while retaining the charac-
teristics of the original network, then calculates the density
and distance corresponding to the nodes in the low-di-
mensional space, and selects k community centers. By re-
peating the above process in the scopes of d and k, the
optimum d and k and the corresponding community
structures are obtained. IDPM [16] defines nodes’ density
and distance using Jaccard similarity and the shortest path
length of other nodes, respectively, and mines the key nodes
whose density is larger than a calculated threshold; then, the
nonkey nodes are assigned to the key nodes correspond-
ingly. 'en, IDPM iteratively merges the community and
modifies the community affiliations of the unstable nodes in
the community boundaries. Finally, the community struc-
ture of the network is obtained. IDPCNMF [17] uses the
improved page rank score as the density, takes the shortest
path length between the node and another one with the
larger density as the distance. 'en, it calculates the product
of the density and the distance, and selects the nodes whose
value of product is larger than the mean plus the twice of the
standard deviation as the center nodes. Taking the number
of center nodes obtained as the parameter of NMF, the
adjacency matrix is factorized into vectors containing
community structure information; then, IDPCNMF ana-
lyzes the communities from the result. EADP [18] weights
the link strength through common neighbors, no matter
whether there are direct connections between nodes or not.
'e authors use the reciprocal of the link strength as the
distance, and map it to the density using the Gaussian kernel
function. 'is algorithm takes the product of density and
distance, calculates the product difference for all adjacent
pairs of nodes, and then compares the difference with the
value predicted by using a linear regression on other smaller
differences. 'e community centers are obtained automat-
ically. In addition, the expansion phase of EADP has been
extended to the scope of the overlapping community de-
tection. CDEP [19] compresses the nodes with degrees of 1
or 2 in the network to higher degree neighbors as super
nodes. 'e degree of each super node is taken as the density,
and the number of nodes contained in each super node is
taken as the quality. CDEP uses the second-order difference
method to mine some super nodes as the seeds, and uses
common neighbor weighted similarity as a criterion to
expand the seeds to generate communities.

3. Method

'is paper proposes a community detection algorithm
DPCT, which is based on the density peak clustering model
[19] and the multiple attribute decision-making algorithm,
TOPSIS [21]. Transforming the network topology into a
two-dimensional space related to the density and the dis-
tance, the clustering algorithm DBSCAN [20] is used to find
the key nodes of the communities. We mine them in a more
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precise scope than traditional DPC methods that only use
the simple mathematical combination of the density and the
distance, so the key nodes are exact and reasonable. Because
the networks are different in their topological structure, and
single similarity is difficult to reflect the accurate similar
situation in different scenarios. 'erefore, DPCT uses the
multiple attribute decision-making algorithm TOPSIS to
calculate a new similarity T-similarity, which can combine
the advantages of multiple similarities.

'e steps are shown in Figure 1, and can be summarized
as follows: (1) Mine the key nodes using DBSCAN on a two-
dimensional dataset, which is transformed from the net-
work. (2) Generate the community frameworks and expand
them according to the calculated T-similarity. (3) Allocate
the remaining nonkey nodes to the existing communities, or
generate new small communities on the basis of T-similarity.
(4) Merge some of the small communities. 'e pseudo code
of the proposed method is shown in Algorithm 1.

3.1.KeyNodesMining. 'edensity and distance of the nodes
need to be calculated, which makes the network’s topological
information to be transformed into a two-dimensional
space. First of all, the density contribution of a node with
degree k to its neighbors is 1/k, so we use equation (1) to
define the density of node v.

ρ(v) � 
u∈N(v)

1
k(u)

, (1)

where N(v) represents the set of neighbors of the node v,
and k(u) represents the degree of node u. 'at is, the density
of a node is the sum of all the neighbors’ contributions to it.
'e distance of node v is defined as the minimum length of
the shortest path between it and the other nodes with higher
density, and the distance of the node with the largest density
is the maximum value to the other nodes’ distance:

d(v) �
minu: ρ(u)>ρ(v)dis(u, v) if ρ(v)<max ρ(x)|x ∈ V ,

maxi,jdis(i, j) if ρ(v) � max ρ(x)|x ∈ V ,

⎧⎨

⎩

(2)

where dis(u, v) refers to the length of the shortest path
between the nodes u and v. In order to facilitate the sub-
sequent operations, we normalize the two attributes of each
node according to

ρ′(v) �
ρ(v)

max ρ(v)|v ∈ V 
,

d′(v) �
d(v)

max d(v)|v ∈ V{ }
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

In this way, we transform the nodes into a two-di-
mensional space. Figure 2, for instance, shows the visuali-
zation of the dolphin social network [44] and the
transformed data points. 'e key nodes in the four com-
munities are “tigger,” “jet,” “grin,” and “sn96,” and they are
obvious outliers in the two-dimensional space shown in
Figure 2(b). In addition, the node “sn96” is a conspicuous

key node in Figure 2(b), but this node does not have a
particularly high density due to the sparse connections
within its community. Finding the boundary between some
key nodes like “sn96” and larger density nonkey nodes is
always a problem worth exploring in the application of the
DPC model.

In some of them, this boundary is often distinguished by
simple mathematical methods. However, we found that
some key nodes with lower density value, like the node
“sn96,” only holds a value of 0.2, and is interfered by nonkey
nodes with higher density. Simple mathematical calculation
is difficult to prevent such interference, and it may lose some
key nodes.

We think about this problem from a more reasonable
and accurate aspect, and turn it into an outlier detection
problem. According to the scale-free characteristic of the
network, the key nodes are outliers in the two-dimensional
space, whether their density values are prominent or not.
'erefore, we use the DBSCAN to cluster the transformed
dataset, and the nodes that cannot be clustered are taken as
the key nodes.

DBSCAN is a classic clustering algorithm that clusters
the dataset by using two parameters, the radius Eps and the
minimal number of data points within the radius Minpts,
and the data points that cannot be clustered are outliers. We
use this algorithm to find the key nodes from the two-di-
mensional space like the one presented in Figure 2(b).

We intend to take the outliers which cannot be absorbed
in any clusters as the key nodes for community detection.
However, some key nodes may be recognized as small
clusters on large-scaled networks. In this case, if we only
select outliers, some potential key nodes will be left out. If
multiple clusters are recognized, there must be some clusters
formed by the key nodes. 'erefore, we check the attributes
of the nodes in each cluster to determine the target clusters,
and extract the key nodes from them. It is clearly shown that
the nodes in each cluster have similar characteristics. If any
member is not suitable for a key node, all the nodes in the
cluster cannot be selected. Here, we calculate a density
threshold θ as the criterion for examining clusters. 'e
condition for a cluster CL to be excluded is

∃v ∈ CL, ρ′(v)< � θ. (4)

In this paper, the value of θ is set to d/mρ′, d is the
average degree of the network, and mρ′ � max ρv

′|v ∈ V  is
the maximal normalized density. After excluding all the
clusters containing the nonkey nodes, the outliers and nodes
in the remaining clusters together are selected as the key
nodes.

In the above discussion, the largest cluster tends to be
formed by nonkey nodes because of the power-law distri-
bution characteristic [3]. 'us, it can be excluded. 'e
pseudo code for the procedure of mining the key nodes is
shown in Algorithm 2.

'e steps in the procedure are clear. DBSCAN is used
for clustering the dataset, which is transformed from the
network. After the clusters and the outliers are deter-
mined, we examine all the clusters except for the biggest
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�e network.

Transform the network into a two-dimensional data
set by calculating density and distance of each node,

and use DBSCAN to identify outliers and small
clusters’ members as the key nodes.

Generate the frameworks of
communities and expand them

according to T-similarity calculated by
TOPSIS.

Allocate the remaining
nodes to the existed or new

communities.

Merge some of the
small communities.

�e partition of
network.

Figure 1: 'e main procedure of DPCT.

Input: G (V, E), the network; Eps, the radius of the DBSCAN algorithm; Minpts, the minimal number of data points contained
within the radius.
Output: partition, the partition of network.

(1) keynodes�Keynodes_mine (G(V, E), Eps,Minpts);
(2) partition⟵Community_expansion (G(V, E), keynodes);
(3) nonkeynodes� V- u | u in communities of partition ;
(4) partition�Non-keynodes_allocation (G(V, E), partition, nonkeynodes);
(5) partition�Commnunity_merge (partition);
(6) return partition

ALGORITHM 1: DPCT, density peak clustering and TOPSIS-based community detection method.
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Figure 2: 'e dolphin network and its transformed data visualization.
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one, and take the members in the suitable clusters and the
outliers as the key nodes.

3.2. Community Expansion. After processing using Algo-
rithm 2, we have discovered the key nodes. In this sub-
section, we generate community frameworks based on them
and attach most of the nonkey nodes.

We intend to take each key node as a community ini-
tially, but we find that some key nodes hold the close
connection. 'erefore, they should be contained in the same
community. We use the condition presented in equation (5)
to determine whether two key nodes v and u are close or not,

|N(v)∩N(u)|>
min(k(v), k(u))

2
. (5)

'at is to say, if the common neighbors between a pair of
key nodes are more than half of the smaller degree node’s
neighbors, they are considered to be closely connected and
put together; otherwise, each key node is regarded as an
initial community framework separately.

We find that the processing order of these key nodes will
affect the expansion result, and the experimental results
show that firstly expanding the community framework
formed by nodes with larger density and distance has the
best effect. 'erefore, we integrate the density and the
distance of every node v ∈ V as in the literature [14] to be the
product c(v) of them:

c(v) � ρ(v) × d(v). (6)

'en, we arrange the community frameworks in the
descending order of the largest product of the nodes in each
of them.

In the expansion process, there are mainly two problems;
one is how to choose the suitable node to add to the
community, the other one is the termination condition of
the procedure. For the first problem, we attempt to find the
most similar node to the community as its new member

continuously. We use equation (7) to calculate the similarity
between the community and other nodes,

savg(C, v) �
u∈Cs(v, u)

|C|
, (7)

where s(v, u) is the similarity between nodes u and v.
In the experiments, we sometimes found that a single

similarity may not adapt to diverse networks. We ponder
whether multiple similarities can be combined to integrate
the advantages and determine the similar conditions be-
tween nodes accurately. So, we propose the T-similarity by
introducing the multiple attribute decision-making algo-
rithm TOPSIS to combine multiple similarities that include
Jaccard similarity [45], Salton’s cosine similarity [46], HPI
similarity[47], and HDI similarity [47]. 'e four similarities
between nodes are defined as

sJaccard(v, u) �
|N(v)∩N(u)|

|N(v)∪N(u)|
,

sSalton(v, u) �
|N(v)∩N(u)|

������
|N(v)|


∗

������
|N(u)|

 ,

sHPI(v, u) �
|N(v)∩N(u)|

max(|N(v)|, |N(u)|)
,

sHDI(v, u) �
|N(v)∩N(u)|

min(|N(v)|, |N(u)|)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

It can be seen from the above formulae that the most
similar node will only appear in the first- or second-order
neighbors of the community. 'erefore, we only calculate
the similarities between the community and the nodes in this
area, so that unnecessary calculations can be avoided.

For the issue of the termination condition, since the
community is a node group with tight internal connections
and sparse external connections, if the number’s gain of the

Input: G(V, E), the network; Eps, the radius of the DBSCAN algorithm; Minpts, the minimal number of data points contained
within the radius.

(1) nodedata← (ρv
′, dv
′)|v ∈ V ;

(2) d � 2(|E|/|V|); mρ′�max ρv
′|v ∈ V ;

(3) θ� d/mρ′;
(4) clusters, outliers�DBSCAN (nodedata, Eps,Minpts);
(5) keynodes� outliers;
(6) i←argmaxi |Ci||Ci ∈ clusters ;
(7) clusters.remove (Ci);
(8) for cluster in cluters do
(9) if ∃ v ∈ cluster and ρ(v)< θ then
(10) continue;
(11) else
(12) keynodes.add (cluster);
(13) end
(14) end
(15) return keynodes

ALGORITHM 2: Keynodes_mine (G(V, E), Eps,Minpts).
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external edges is greater than that for the integral edges after
a node is added to the community, this node is not suitable
to enter the community. 'erefore, if the community ex-
pands to a node that satisfies equation (9), the community
expansion should be stopped before the node enters.

e
c
in − olde

c
in + 1

olde
c
in + 1

≤
e

c
out − olde

c
out + 1

olde
c
out + 1

, (9)

where ec
in and ec

out refer to the numbers of internal and
external edges after a node is added to the community c,
respectively, oldec

in and oldec
out refer to the counterparts

before the node enters the community. 'e addition of 1 to
the numerator and denominator ensures that the fraction is
significant.

'e specific steps for community expansion are sum-
marized as the pseudo code in Algorithm 3.We first generate
the community frameworks using the single key node or the
close pairs of them, and then arrange the frameworks in the
descending order of the key node’s product of density and
distance. 'en, T-similarities are calculated, and the most
similar node is added to the frameworks continuously until
the termination condition presented in equation (9) is met.

3.3. NonKey Nodes Allocation. When the community ex-
pansion ends, there are still some nonkey nodes that have
not been classified into any community. In order to obtain
the community partition of the entire network, these nonkey
nodes should be allotted.

To this end, we also use the T-similarity as a criterion to
select the most similar node of each unclassified nonkey
node. However, some nodes have no connection with their
most similar nodes, and putting them into the same com-
munity without special consideration may create weakly
connected or even disconnected communities. So after
finding the most similar node, we classify the nonkey nodes
according to the actual situation. For better explanation, we
use v to represent the nonkey node to be allocated, and u, Cu

to represent v’s most similar node and the community to
which node u belongs. 'e different situations and pro-
cessing strategies are shown in Table 1.

It is clearly shown that the processing order of nonkey
nodes also affects the community partition result, and the
descending order of the c(v) of each nonkey node v

according to equation (6) is optimal distinctly.
'e specific steps of this process are as follows.'e value of

c(v) for each unclassified nonkey node v is calculated firstly,
and these nodes are arranged in the descending order of the
values. 'en, we calculate the T-similarity between each
nonkey node and its first- and second-order neighbors; the
most similar node is selected, and the nonkey node is allotted
according to the specific connection situation of the two nodes.
'is process is repeated until all nonkey nodes are allotted.'e
pseudo code of this process is shown in Algorithm 4.

3.4.CommunityMerging. We have obtained the preliminary
partition of the entire network by running Algorithms 2–4,
sequentially. However, some preliminary communities each

contain only one or two node(s), which are too small so that
the intra-community edges are less than the inter-com-
munity ones. Here, we merge them using the modularity or
community metric as the criteria separately, and the cor-
responding approaches are named as DPCT–Q and
DPCT–M in this paper, respectively.

3.4.1. Community Merging Based on Modularity.
Modularity [22] is an important standard to measure the
quality of the community partitions, reflecting the con-
nection relationship among the nodes within the
communities:

Q � 
k

i�1
eii − a

2
i 

� 
k

i�1
eii − 

k

i�1
a
2
i ,

(10)

where k represents the number of communities, eij is the
fraction of the number of edges between the communities Ci

and Cj to the total number of edges, therefore 
k
i�1 eii

represents the proportion of the communities’ internal
edges, ai is the sum of eij, so 

k
i�1 a2

i represents the ex-
pectation of 

k
i�1 eii. We have mentioned in Section 2 that

Fast Q [24] is a classic algorithm targeting at optimizing the
modularity. Here, we use the preliminary partition result to
replace the initial partition of the original Fast Q algorithm
with each single node being a community, and use the
modularity increment as the basis for merging the pre-
liminary communities. 'e modularity increment led by
joining a pair of communities Ci and Cj is calculated as

ΔQi,j � 2 eij − aiaj . (11)

In the merging process, the two communities with the
largest modularity increment are joined together each time,
and the corresponding modularity increments are updated,
until there are no pair of communities that can lead to the
positive modularity increment. In the whole process, whether
communities are merged or not are determined by the
modularity increment, which can merge the small commu-
nities in a direction that improves the overall modularity.

3.4.2. Community Merging Based on the Community Metric.
Although DPCT–Q has the advantages of parameter-free
and large modularity, it might result in the merging of
communities excessively and loss of part of the community’s
information. 'e community metric [23] measures the
significance of a community, and determines which one
most needs to be merged. 'e community metric is used
along with the minimum threshold δ; the communities
whose community metric is less than δ are merged with the
most similar community.

According to the characteristics of community, if a
community is small in size and has many connections to the
outside, it needs to be merged. 'erefore, the community
metric for the community Ci is defined as the product of the
sparseness αi and the size fraction βi of Ci:

Complexity 7



Input: G(V, E), the network; keynodes, the keynodes of communities.
Output: partition, the partition of network.

(1) partition⟵∅;
(2) for v in keynodes do
(3) if ∃u ∈ keynodes and |N(v)∩N(u)|>min(k(v), k(u))/2 then
(4) partition.add ( u, v{ });
(5) else
(6) partition.add ( v{ });
(7) end
(8) end
(9) arrange community frameworks in partition in the descending order of product of density and distance of nodes in the

framework;
(10) for c in partition do
(11) candidate⟵ c ’s first- and second-order neighbors;
(12) simmat� calculate the four similarities between c and canidiate;
(13) while True do
(14) T-similarity�TOPSIS (simmat);
(15) simnode⟵ node with max T-similarity;
(16) c.add (simnode);
(17) if ec

in − oldec
in + 1/oldec

in + 1≤ ec
out − oldec

out + 1/oldec
out + 1 then

(18) add simnode’s first- and second-order neighbors to candidate;
(19) update simmat;
(20) else
(21) c.remove (simnode);
(22) break;
(23) end
(24) end
(25) end
(26) return partition

ALGORITHM 3: Community_expansion (G(V, E), keynodes).

Table 1: 'e different situations of nonkey nodes and their most similar node, and the processing strategies.

(u, v) ∉ E (u, v) ∈E
u is not classified Generate a new community v{ } Generate a new community v, u{ }

u is classfied |N(v)∪Cu|> |N(v)|/2 Add v into Cu Add v into Cu

|N(v)∪Cu|≤ |N(v)|/2 Generate a new community v{ }

Input: G(V, E), the network; partition, the community partition of network; nonkeynodes, the nodes not covered in the
expanded communities.
Output: partition, the partition of network.

(1) arrange nonkeynodes by c(v) of each v;
(2) for each v in nonkeynodes do
(3) candidate⟵ v’s first- and second-order neighbors;
(4) simmat� calculate the four similarities between u and candidate;
(5) T-similarity�TOPSIS (simmat);
(6) u⟵ node with max T-similarity;
(7) if (v, u) ∈ E then
(8) if u in partition then
(9) add v to the community in which u belongs;
(10) else
(11) partition.add ( v, u{ });
(12) end
(13) else
(14) partition.add (v);
(15) end
(16) end
(17) return partition

ALGORITHM 4: Nonkeynodes_alloction (G(V, E), partition, nonkeynode).
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mi � αi × βi, (12)

where αi and βi are calculated as equations (13) and (14),
respectively,

αi �
E
in
i





E
out
i



, (13)

βi �
Vi




|V|
, (14)

where Ein
i and Eout

i represent the internal and external edge
sets of community Ci, respectively; Vi represents the set of
nodes in community Ci, and V represents that in the entire
network. 'at is, αi is defined as the ratio of the number of
internal edges to the number of external connections for Ci,
and βi is defined as the size of the community relative to the
entire network. 'at means the smaller size of a community
and the weaker the internal connections, the more it needs to
be merged.

'erefore, we choose the community with the smallest
community metric denoted as Ci, then find the community
Cj that is most similar to Ci and merge them. 'e similarity
between the two communities is defined as equation (15),

Sim Ci, Cj  �
u∈Ci,v∈Cj

s(u, v)

Cj




. (15)

Same as the previous discussion, we use the T-similarity
for s(u, v) in equation (15).

In this process, we merge the community with the
smallest community metric into its most similar community,
and update the community metric of the relevant com-
munity in turn, until all the communities whose community
metric is less than δ are merged.

Comparing the two strategies, it can be seen that
DPCT–Q merges communities automatically and tends to
acquire a larger modularity. DPCT–M is more inclined to
solve the resolution limit problem by adjusting the given
threshold.

3.5. TimeComplexity. 'e time complexity of our algorithm
is analyzed in this subsection. DPCTcan be divided into four
phases from the above discussion, and we analyze these
steps.

Firstly, we transform the network into a two-dimen-
sional dataset. For each node, the density is calculated in
O(d), where d is the mean degree. And, the calculation of
distance can be accomplished by a breadth first search
process of finding a node with larger density value.
According to the small-world law, this node can be found in
O(n). 'erefore, the time complexity of the transforming
step is O(n2). And, the process of DBSCAN can be ac-
complished in O(n log n) [20].

If we obtain k community frameworks, each community
finds its most similar node in O(logj), and the expansion
phase is terminated in O(ilogj), where i is the average
number of nodes absorbed, j is the mean number of

communities’ neighbors. At the end of the community
expansion process, there are u nodes not covered; finding
each node’s most similar node needs O(logw), where w is
the mean number of nodes’ neighbors, and this process can
be carried out within O(u logw).

In the community merging process, if there are c

communities that need to be merged, the modularity op-
timization way needs O(c2) [22] and the way of community
metric control can be implemented in O(c log c) [23]. In
conclusion, since k, i, j, u, w, c are all much smaller than n,
DPCT-Q and DPCT-M partition the network in
O(n2 + n log n) ∼ O(n2).

4. Experiments

In order to verify the performance of the proposed method,
we design these experiments. First, we explore the influence
of the DBSCAN’s two parameters Eps and Minpts on the
quality of the detected community structure, and use the
results to set the parameters for the subsequent experiments.
After that, we use some mature community detection al-
gorithms to compare the performance with the proposed
method on some real and synthetic networks. Finally, we
present the comparison between the results of the proposed
method with a single similarity and the results of combining
four similarities using TOPSIS to testify the advantages of
T-similarity.

In our experiments, we use twelve real-world networks
and four groups of synthetic networks, which will be in-
troduced in section 4.2.'e indexes used aremodularity [22]
and NMI [48]. 'e larger the modularity, the better the
community structure. 'e larger the NMI, the closer the
detected community structure is to the real structure, and its
maximum value is 1.

We choose a variety of comparison algorithms for tes-
tifying the proposed algorithm’s performance: they are Fast
Q [24], ECG [26], Louvain [25], Leiden [27], Attractor [30],
Infomap [32], PPC [34], Walktrap [33] and Isofdp [15],
respectively. All of them have been introduced in Section 2.

4.1. Experiments on the Settings of Parameters. Because we
use the clustering results of DBSCAN, its parameters Eps

andMinpts affect the number of the key nodes, so as to affect
the final community partition. Before performing the other
experiments, we first explore the influence of these two
parameters. Here, we conduct experiments on as many
values as possible for them on three smaller networks,
namely, the karate club network [49], the Riskmap network
[50], and the dolphin social network [44], to observe their
impact on the quality of the resultant communities.
DPCT–M’s third parameter δ needs to be adjusted
according to the rule explored in the literature [23] after the
other two parameters are determined.'erefore, we take the
results of DPCT–Qand plot them in the heat maps, as shown
in Figures 3–5:

From the figures, we can see that the detected number of
key nodes decreases with the decrease of Eps and the in-
crease of Minpts. 'ese findings are logical. First, Eps

Complexity 9



0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

Ep
s

4 5 6 8 93 107
Minpts

20

15

10

5

0

number of center

(a)

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

Ep
s

4 5 6 8 93 107
Minpts

0.500

0.475

0.450

0.425

0.400

0.375

0.350

0.325

0.300

Modularity

(b)

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

Ep
s

4 5 6 8 93 107
Minpts

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55

NMI

(c)

Figure 3: 'e influence of different parameters on the results in the karate club network. (a) 'e influence on the number of key nodes. (b)
'e influence on the modularity. (c)'e influence on the NMI. In the figure, the closer the color of blocks to yellow, the greater the value of
the block. 'is illustration style applies to the following figures as well.
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Figure 4:'e influence of different parameters on the results in the Riskmap network. (a)'e influence on the number of key nodes. (b)'e
influence on the modularity. (c) 'e influence on the NMI.

number of center

4 765 8 9 103
Minpts

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

Ep
s

0

5

10

15

20

(a)

Modularity

4 765 8 9 103
Minpts

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

Ep
s

0.520

0.522

0.524

0.526

0.528

0.530

0.532

0.534

(b)

NMI

4 765 8 9 103
Minpts

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

Ep
s

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(c)

Figure 5:'e influence of different parameters on the results in the dolphin network. (a)'e influence on the number of key nodes. (b)'e
influence on the modularity. (c) 'e influence on the NMI.
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represents the radius of the DBSCAN algorithm, andMinpts
represents the minimal number of data points contained
within the radius. Decreasing Eps or increasing Minpts
decrease the probability of data points being clustered.
Because we choose the outliers and nodes in the smaller
clusters, the number of key nodes will increase as Eps de-
creased or Minpts increased. However, if these two pa-
rameters are modified unfounded to increase the number of
key nodes, some inappropriate nodes may be selected, which
may lead to a decrease in the performance of DPCT. Al-
though the DBSCAN algorithm is highly sensitive to pa-
rameters, the proposed method is robust due to the large
difference between the attributes of the key nodes and the
nonkey nodes.

From Figures 3–5, we can also find that the best com-
munity structures are obtained from these three networks
when Eps is 0.1 and Minpts is 3. And, because we nor-
malized the density and distance of nodes, the parameter
settings can still refer to this situation on other networks of
different scales. 'e larger the network’s scale, the smaller
Eps and the larger Minpts need to be tuned.

4.2. Comparative Experiments. In this section, we present
the performance of DPCTon 12 real networks and 4 groups
of synthetic networks with the comparison algorithms. We
use NMI and modularity as the indexes for evaluating the
algorithm’s performance on the networks with known
ground-truth community structures, and use the modularity
as the evaluation index for networks with the ground-truth
being unknown.

In these experiments, we determine the best Eps and
Minpts through DPCT–Q firstly, then apply them to
DPCT–M and adjust the parameter δ. For algorithms with
parameters such as the Attractor, we adjust the parameters
to the best on each network. For algorithms with nonde-
terministic results, such as Louvain and Leiden, we run each
of them 50 times on each network and take the largest value.

4.2.1. Real-World Networks. 'e information of the real-
world networks used is listed in Table 2. For the five net-
works with real community structures in the table, we vi-
sualize the ground-truth structure and the results obtained
by DPCT in Figures 6–10.

As shown in Figure 6, both DPCT–Qand DPCT–M split
the karate network’s two parts into four communities. 'e
difference is that DPCT–Mmistakenly assigns the node “10”
into the community of node “1.” 'is is because the most
similar node for “10” is “29,” but there is no edge between the
nodes “10” and “29,” and the node “10” does not have
enough neighbors in the community to which node “29”
belongs. 'erefore, node “10” is regarded as an isolated
community. In the merging process, joining node “10” into
the community of node “34” yields larger modularity gain in
DPCT–Q. While in DPCT–M,node “10” is more similar
with the community of node “1.” Compared with the ground
truth, both of the two kinds of partitions have larger
modularity values.

In Figure 7, DPCT–Q and DPCT–M obtain the same
partition from the Riskmap network, and both of them split
the community of node “18” in the upper right corner of the
ground-truth structure into two smaller communities, be-
cause the connections between the two small communities
are not close enough.

In the dolphin network, we can see from Figures 8(b)
and 8(c) that because we accurately detect the key node
“sn96” of the community in the upper right corner, its
community has been detected successfully. 'e nodes
“kringer” and “thumper” are mistakenly classified into this
community because of the larger modularity or T-similarity.
Compared with the ground truth, nodes “sn89,” “sn100,”
“zap,” “ccl,” and “double” are a tighter group in the com-
munity of the node “grin,” and they are regarded as a new
community by DPCT–Q, and DPCT–M merges this group
into the community of the node “trigger”.

Figure 9 shows the partition detected on the Santa Fe
network. DPCT–Q splits the community of node “7” and the
community of node “42” into new communities due to the
pursuit of the large modularity. In the partitions of the two
methods, node “83” is not correctly classified.'is is because
it is more similar to the community of node “102”.

'e football network has more connections than the
other four networks. Figures 10(b) and 10(c) show the
partitions of the two methods, respectively. Although, both
DPCT–Q and DPCT–M merge some communities exces-
sively, which is hard to avoid for some communities with
relatively denser inter-community connections, both the
partitions have considerable modularity.

After analyzing the results on these networks, we find
that the proposed algorithm can acquire high-quality par-
titions. In order to better verify the performance of the
proposed algorithm, we apply the comparison algorithms on
the same networks. Here, we compare the modularity and
the NMI of the algorithms’ results and present them in the
bar charts, as shown in Figure 11. From these figures, we can
see that both DPCT–Q and DPCT–M achieve the largest or
the second largest modularity. 'e scenario of NMIs is al-
most the same as that of modularity, but they are more or
less affected by the misclassified nodes. However, the results
still have large values on the Riskmap network and the Santa
Fe network.

In addition, we test the effect of the comparison algo-
rithms and the proposed algorithm on the other seven real
networks, and the results are presented in Figure 12. Due to
the large scale of the networks, some comparison algorithms
cannot detect the community structure. For example,
Attractor, Isofdp, and Walktrap cannot obtain the effective
results from the Cond-mat networks. We do not plot the
corresponding bars on the bar chart for the algorithms that
cannot detect the corresponding results.

In these networks, the community partitions of the
proposed algorithm generally have higher quality, which is
reflected by the modularity of the results. It can be seen that
the proposed algorithm has obtained the largest modularity
on the Polbooks network, the e-mail network, the Power
network, the PGP network, and the Cond-mat network, and
the second largest values on other networks.
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4.2.2. Synthetic Networks. In the experiments on the real
networks, the proposed algorithm exhibits excellent per-
formance. Experiments on the artificially synthesized net-
works also can testify for the proposed algorithm’s accuracy.
'e LFR benchmark networks [59] are a kind of artificially
synthesized networks, the characteristics of which are tuned
by some parameters. We generate networks with different
numbers of nodes, and different community sizes, to meet
the needs for testing the algorithm’s performance. 'e main
parameters for generating the LFR network are as follows: n

represents the number of nodes; k and maxk represent the
average degree and maximum degree in the network; minC

and maxC represent the minimum and maximum size of the
community in the network; and exp1 and exp2 represent the
power-law distribution exponents of the nodes’ degree and
the size of the communities. In addition, there is the most
important parameter μ, which represents the proportion of
the edges associated with each node but connecting outside
of the node’s community. 'at is, the larger the value of μ,
the more difficult it is to detect the community structure.

We generate four groups of networks for experiments,
including two scales of networks with 1000 nodes and 5000
nodes; for both scales, we have generated network groups
holding small and large communities, which are denoted by

Table 2:'e information of real-world networks. ('e columns “|V|” and “|E|” represent the numbers of nodes and edges, respectively. 'e
column “|C|” represents the number of communities in the ground-truth structure of the network, a symbol “—” means that the ground-
truth community structure is unknown, and Eps and Minpts are the parameters.).

Network |V| |E| |C| Eps Minpts
Karate club [49] 34 78 2 0.1 3
Riskmap [50] 42 83 6 0.1 3
Dolphin [44] 62 159 4 0.1 3
Santa Fe [51] 118 197 6 0.08 3
Football [51] 115 613 12 0.05 3
Polbooks [52] 105 441 — 0.05 3
Les. Mis. [53] 77 253 — 0.05 3
email [54] 1133 5451 — 0.05 3
Facebook [55] 4039 88 234 — 0.05 4
Power [56] 4941 6594 — 0.04 4
PGP [57] 10 680 24 316 — 0.04 4
Cond−mat [58] 27 519 116181 — 0.03 4

1

23
4

5

6

7

8

9

10

11
12

13

14
1516

17

18

19

20

21

22

23

24

2526

27

28
29

30

31

32

33

34

(a)

1

23
4

5

6

7

8

9

10

11
12

13

14
1516

17

18

19

20

21

22

23

24

2526

27

28
29

30

31

32

33

34

(b)

1

23
4

5

6

7

8

9

10

11
12

13

14
1516

17

18

19

20

21

22

23

24

2526

27

28
29

30

31

32

33

34

(c)

Figure 6: 'e karate club network. (a) 'e ground-truth community structure. (b) 'e result detected by DPCT–Q. (c) 'e result detected
by DPCT–M.
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Figure 7:'e Riskmap network. (a)'e ground-truth community structure. (b)'e result detected by DPCT–Q. (c)'e result detected by
DPCT–M.
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1000s, 1000b, 5000s, and 5000b, respectively. Each group of
networks are generated by varying the values of μ from 0.1 to
0.8 with increasing 0.1 each time, and ten networks are
generated in the same parameter setting. For each com-
parison algorithm, we take the average of the results of the
ten networks as its result to minimize the error caused by the
occasionality. 'e specific parameters of the LFR network
are shown in Table 3.

In the experiments on the “1000” series of networks,Eps is
set to 0.05 and Minpts is set to 3. And, on the “5000” series of
networks, Eps is set to 0.04 or 0.03, Minpts is set to 3 as well.

For the convenience of comparison, we draw the results of
the algorithms in the line chart, as shown in Figure 13. It can be

seen when the value of μ is low, both DPCT–Q and DPCT–M

can get considerableNMI. As the value of μ gradually increases,
the network’s ground-truth structure gradually becomes in-
distinct. 'e performance of DPCT–Q which uses modularity
increment as the standard is decreasing, and the NMI obtained
is relatively low. 'is phenomenon is also reflected in all the
modularity-optimization-based algorithms, and DPCT–Q

performs particularly better among them. In contrast, the
advantages of DPCT–M gradually appear with the increase of
μ. In the four groups of networks, DPCT–Mcan obtain the best
NMI values even when μ is 0.8. 'ese results show that
DPCT–M can accurately detect communities even when the
community structure is ambiguous.

(a) (b) (c)

Figure 8: 'e dolphin network. (a) 'e ground-truth community structure. (b) 'e result detected by DPCT–Q. (c) 'e result detected by
DPCT–M.
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Figure 9: 'e Santa Fe network. (a)'e ground-truth community structure. (b) 'e result detected by DPCT–Q. (c) 'e result detected by
DPCT–M.
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Figure 10:'e football network. (a)'e ground-truth community structure. (b)'e result detected by DPCT–Q. (c)'e result identified by
DPCT–M.
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'rough comparative experiments, we assess the per-
formance of the proposed algorithm. Irrespective on real
networks or on synthetic networks, both DPCT–Q and
DPCT–M can obtain higher quality partitions. 'e accuracy
of DPCT–Q decreases in some extreme situations. At the
same time, DPCT–M also has a strong ability to adapt to the
extreme networks.

4.3. Similarity Analysis Experiments. In our method, we
use multiple attributes decision-making algorithm,
TOPSIS, to calculate the T-similarity. In this group of

experiments, we compare our method with T-similarity
and with four different single similarities, respectively, on
the five real-world networks with the ground-truth
structure. For DPCT–M, we use Jaccard similarity,
Salton’s cosine similarity, HPI similarity, and HDI
similarity in community expansion and nonkey nodes
allocation process separately, and the corresponding
methods are named as DPCT–Qj, DPCT–Qs, DPCT–Qp,
and DPCT–Qd. For DPCT–M, we also use the four dif-
ferent single similarities to replace T-similarity in the
processes; the replaced methods are denoted as
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Figure 11: Performance comparison between different community detection algorithms in the networks with ground truth: (a) comparison
in modularity; (b) comparison in NMI.
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being unknown.
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DPCT–Mj, DPCT–Ms, DPCT–Mp, and DPCT–Md, re-
spectively. We plot the results in the bar chart for
comparison, as shown in Figure 14.

From Figure 14(a), we can see that under the DPCT–Q

framework, the modularity obtained on the karate club
network by HDI is relatively low, but in contrast it reaches
the largest value on the dolphin network. 'e scenarios for

the other three similarities are similar, which testify that the
single similarity does not have a good adaptiveness, and the
T-similarity can integrate the advantages of four similar-
ities in different networks. 'ere is a similar rule in
Figure 14(c). And we can observe that DPCT–Q and
DPCT–M with T-similarity can obtain the largest modu-
larity on each network.

Table 3: 'e parameters of the LFR benchmark networks, including the number of nodes, the average degree and max degree of nodes, the
power-law distribution exponents, the minimum and maximal size of the community, and the mixing parameter μ with the increment of μ,
dμ.

Network n k maxk exp1 exp2 minC maxC μ(dμ)

1000s 1000 20 50 −2 −1 10 50 0.1 ∼ 0.8 (0.1)
1000b 1000 20 50 −2 −1 20 100 0.1 ∼ 0.8 (0.1)
5000s 5000 20 50 −2 −1 10 50 0.1 ∼ 0.8 (0.1)
5000b 5000 20 50 −2 −1 20 100 0.1 ∼ 0.8 (0.1)
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Figure 13: Performance comparison between different community detection algorithms in the LFR networks. (a)'e results detected in the
1000s networks. (b) 'e results obtained from the 1000b networks. (c) 'e results identified from 5000s networks. (d) 'e results acquired
from 5000b networks.
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'ese comparison results demonstrate the rationality of
the multiple attribute decision-making method. Of course,
more similarities can be used as attributes to improve the
accuracy. In this paper, four node similarities are selected to
improve the quality of the detected communities while taking
into account the calculation efficiency simultaneously.

5. Conclusion

'is paper presents a community detection algorithm,
DPCT, based on the density peak clustering model and
multiple attribute decision-making strategy, TOPSIS. Using
DBSCAN, we mine the key nodes to avoid interference with
the nodes that have larger density, and use TOPSIS to
calculate a new well-adapted T-similarity to replace the
traditional similarities. 'e proposed method generates
communities’ frameworks based on the key nodes and ex-
pands them, and allots the remaining nonkey nodes using
T-similarity; finally, we use two strategies to merge some of

the obtained communities. In the experiments, the influence
of the parameters of DBSCAN on the community detection
is first explored. After determining the best values of the
parameters, the accuracy of DPCT is verified in comparison
with other algorithms. Finally, we testify the adaptation of
T-similarity.

Two strategies, namely DPCT-Q and DPCT-M, are
proposed in this paper, and both of them have their own
advantages; the former tends to obtain high-modularity
partition and get results more handily, and the latter can
partition the networks as accurately as possible even when
the community structure is not clear. 'erefore, we
suggest that DPCT-Q be used to partition the network first
in practical applications. On the one hand, the community
partition result can be obtained handily, and on the other
hand, the suitable parameters Eps and Minpts of
DBSCAN can be found. If the required community in-
formation is lacking in the result of DPCT–Q, DPCT–M

can be used.
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Figure 14: Comparison of the effect of TOPSIS and single similarity. (a) 'e modularities detected by the DPCT–Q framework with T-
Similarity and different single similarities. (b)'e NMIs detected by DPCT–Q framework with T-Similarity and different single similarities.
(c) 'e modularities detected by DPCT–M framework with T-Similarity and different single similarities. (d) 'e NMIs detected by
DPCT–M framework with T-Similarity and different single similarities.
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Frankly speaking, the time complexity of the proposed
method is relatively high, which is mainly due to the fact that
the shortest path length between nodes is used as the distance
attribute of nodes, which takesmore time to acquire the results
when it is applied to large-scale networks. 'erefore, we will
try to use other ways of distance calculation to improve the
adaptability of the proposed method in the future work.

Data Availability

'e networks used in our experiments include some real-
world networks and some artificial datasets. 'e real-world
networks that have been cited in Table 2 were taken from
previously reported studies. Most of them can also be
downloaded from http://www-personal.umich.edu/∼mejn/
netdata/ and https://snap.stanford.edu/data/index.html. We
construct the Riskmap network manually according to the
literature [50]. 'e artificial networks are synthesized using
LFR benchmark network generator, which are freely
available at https://sites.google.com/site/santofortunato/,
and the parameters used are listed in Table 3.
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