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%is paper aims to investigate energymanagement of the hybrid AC/DCmicrogrid with the high penetration of distributed energy
resources (DERs), such as electrical vehicles, heat pumps, and photovoltaics. In the previous studies, energy management of the
hybrid microgrid is usually carried out by the system operator in a centralized manner, which suffers from the compromise of
privacy information protection and the risk of single-point failure. %erefore, this paper proposes a distributed energy man-
agement scheme of the hybrid microgrid using the projection function-based alternating direction method of multipliers (P-
ADMM), which allows each subgrid, i.e., AC subgrid and DC subgrid, to make day-ahead schedules independently with in-
formation exchanges while obtaining the optimal energy management solution. %e energy management problem of the hybrid
microgrid is formulated as a mixed-integer quadratic programming (MIQP) model, considering DER and energy storage system
operation constraints, system operation constraints, and converter operation constraints. %en, the MIQP model is decomposed
and distributed into smaller-scale QP models between subgrids using the P-ADMM algorithm, which can handle binary variables
through projection functions. %e numerical results conducted on the hybrid microgrid demonstrate that the proposed dis-
tributed scheme can effectively achieve optimal energy management for the hybrid AC/DC microgrid in a distributed manner.

1. Introduction

%e next-generation distribution system involves the mas-
sive deployment of distributed energy resources (DERs),
such as electrical vehicles (EVs), heat pumps (HPs), and
photovoltaics (PVs) [1]. Adopting the microgrid concept (a
small-scale autonomous energy system) has become an ef-
fective and promising technology for the integration of
DERs due to its technical and economic benefits including
the lower operation cost, higher reliability, and stronger
resiliency [2].

Generally, microgrids can be put into three main cate-
gories according to the voltage type: (1) AC microgrids, (2)
DC microgrids, and (3) hybrid AC/DC microgrids [3]. %e
hybrid AC/DC microgrid separates the AC and DC power
supplies and loads, with the AC bus and DC bus linked

through a bidirectional converter (BC) [4]. Compared with
the conventional AC microgrid requiring a number of AC/
DC converters to convert power, the hybrid AC/DC
microgrid has the lower equipment investment and can
reduce the energy loss during power conversion. %erefore,
the hybrid AC/DC microgrid has been considered as an
important type of microgrids as more DC power sources and
loads are connected [5].

Although the utilization of the microgrid brings about
technical and economic benefits, there exist challenges on
the microgrid operation, such as energy management. En-
ergy management refers to the optimized operation of
dispatchable resources within microgrids such as control-
lable generation units and loads in order to realize the best
tech-economic operation of the microgrid based on system
information and forecast data [6].
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Energy management for AC or DC microgrids has been
widely studied. In [6], a double-layer coordinated energy
management approach was proposed for microgrids con-
sidering grid-connected and islanding modes, which con-
sists of two layers: the schedule layer obtains an economic
operation scheme based on forecast data, while the dispatch
layer dispatches controllable units based on real-time data. A
centralized optimal microgrid scheduling model which
considers multiperiod islanding constraints was proposed in
[7].%e optimal scheduling model is solved using the bender
decomposition technique, and the obtained solution ensures
themicrogrid has sufficient capacity to switch to the islanded
mode if needed by examining the solution with a proposed
islanding criterion. In [8], a practical energy management
model for microgrids which considers the operational
constraints of DERs, active-reactive power balance, unbal-
anced system configuration, and voltage-dependent loads
was formulated. Moreover, a novel linearization approach
was used to reduce the computation complexity. In [9], a
model predictive control-based microgrid energy manage-
ment framework was proposed, which considers the demand
response in smart loads and models power flow and unit
commitment constraints simultaneously. A multiobjective
optimal scheduling model for a DC microgrid considering
PVs and EVs was formulated in [10] and solved by the
NSGA-II algorithm. In [11], energy management of a DC
microgrid with energy storage systems (ESSs) and EVs was
studied. Moreover, the uncertainty of renewable energy
resources was widely studied and modeled in the microgrid
energy management problem in [12–14].

For hybrid AC/DC microgrids, the energy management
problem of the hybrid microgrid was modeled in [14]
considering multiple distributed ESSs. In [15], a decen-
tralized power sharing method was proposed to share power
demands between the AC and DC sources without requiring
communication between power sources. A temporally co-
ordinated energy management strategy for the hybrid
microgrid was proposed in [16] to deal with uncertainties of
the RESs, loads, and converters while considering the dy-
namic conversion efficiency model of the converter. A two-
stage min-max-min robust optimal energy management for
the hybrid microgrid was proposed in [17] to deal with the
uncertainties of generation sources and loads. An up-down
energy management scheme of the hybrid microgrid was
proposed in [18], which consists of two levels: the generation
and load balance are realized at the system level, while power
converter-based resources are used to control the voltage
variations at the device level. However, energy management
of the hybrid microgrid in the aforementioned studies is
carried out by the system operator in a centralized manner,
which suffers from the compromise of privacy information
protection and single-point failure risk.

To resolve the aforementioned issues, distributed
methods, such as analytical target cascading (ATC) and
alternating direction method of multipliers (ADMM), have
been widely applied to solve optimization models in a
distributed/decentralized manner in order to design dis-
tributed/decentralized schemes. For instance, in [19–22], the
ATC method was used. In [19], a decentralized data-driven

load restoration scheme was proposed for the coupled
transmission and distribution system based on ATC. %e
uncertainty of wind power and load consumption was dealt
with by formulating a data-driven robust model. In [20], an
ATC-based decentralized generator startup sequence
scheme was proposed for bulk system restoration consid-
ering the available black-start resources in the distribution
system. In [21], a spatiotemporal decomposition and co-
ordination scheme was proposed for load restoration in an
AC/DC hybrid based on the ATC algorithm. In [22], the
ADMM algorithm was used to solve the local flexibility
market clearing problem and to design a distributed market
clearing scheme.

For the energy management of the microgrid, in [23], a
distributed energy management scheme was proposed for
the ACmicrogrid based on the predictor-corrector proximal
multiplier method. In the proposed scheme, the local
controller of each unit (DERs and loads) optimizes its cost
function and sends an optimal schedule to the centralized
controller, and the centralized controller optimizes the total
cost function based on the system operational constraints.
However, the hybrid AC/DC configuration is not consid-
ered. In [24], a distributed robust energy management
scheme for networked hybrid AC/DC microgrids was
proposed, in which each hybrid AC/DC microgrid operator
solves the adjustable robust optimization model to optimize
its operational cost considering the uncertainty of the re-
newable generation and load demand. For the networked
microgrids, the coordination of energy sharing is carried out
to minimize the power loss based on the alternating di-
rection method of multipliers (ADMM). However, in order
to use the ADMM to solve the energy management model in
a distributed manner, the model was reformulated as a
convex model by removing nonlinear terms based on strict
assumptions regarding the structure of the objective func-
tion, which makes the proposed distributed energy man-
agement only suitable for specific models. In order to resolve
the aforementioned issues, we propose a distributed energy
management scheme for the hybrid AC/DCmicrogrid based
on the projection function-based alternating direction
method of multipliers (P-ADMM) that can deal with binary
variables efficiently. %e P-ADMM algorithm has been
widely used to solve nonconvex instances. In [25–28], the
P-ADMM algorithm was used to solve the service restora-
tion problem of distribution networks in a hierarchical/
distributed manner. In [29], a P-ADMM-based distributed
scheme was proposed to coordinate the fast dispatch of PV
inverters with the slow dispatch of on-load tap changer and
capacitor banks for voltage regulation in unbalanced dis-
tribution systems. %e practical evidence in these studies
denotes that the P-ADMM is an effective method to obtain
quality solutions for mixed-integer quadratic programming
(MIQP) and mixed-integer linear programming (MILP)
models.

In this study, the energy management problem of the
hybrid microgrid is firstly formulated as a MIQP model,
considering DER and ESS operation constraints, system
operation constraints, and converter operation constraints.
%en, the MIQP model is decomposed and distributed into
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smaller-scale submodels using the P-ADMM-based algo-
rithm that can handle binary variables through projection
functions. In the proposed scheme, each subgrid, i.e., AC
subgrid and DC subgrid, can make day-ahead schedules
independently with information exchanges while achieving
optimal energy management.

%e main contributions of this paper are summarized as
follows: (1) proposes a distributed energy management
scheme for the hybrid AC/DC microgrid, which allows each
subgrid to make energy schedules independently with in-
formation exchanges while realizing optimal energy man-
agement and (2) proposes a P-ADMM-based algorithm to
efficiently solve the MIQP energy management model in a
distributed manner.

%e rest of this paper is organized as follows. %e
framework of the proposed distributed energy management
scheme and energy management model formulations are
presented in Section 2. %e P-ADMM-based algorithm to
solve the energy management model is presented in Section
3. Case studies are presented and discussed in Section 4,
followed by conclusions.

2. Framework and Model Formulations of the
Distributed Energy Management Scheme

2.1. Framework of the Distributed Energy Management
Scheme. Figure 1 illustrates the physical and communica-
tion architecture of the hybrid AC/DC microgrid, to which
various sources and loads are connected. In the DC subgrid,
photovoltaics (PVs), ESSs, EVs, and heat pumps (HPs) are
connected, while diesel generators (DGs) and conventional
AC loads are connected to the AC subgrid. AC subgrid and
DC subgrid are tied by a BC.

In the proposed distributed scheme, the AC subgrid
operator and DC subgrid operator communicate with each
other to make day-ahead energy schedules for respective
sources and loads independently.

2.2. Optimal EnergyManagementModel. In this section, the
optimal energy management model of the hybrid microgrid
is formulated.

2.2.1. Objective Function. For the energy management of
microgrids, the objective function is to minimize operational
costs during the scheduling period. %e objective function is
formulated as follows:

min 
t∈NT

c
G
1 p

DG
t 

2
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2 p
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t + λtp

UG
t + b p

UG
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2
. (1)

%e objective function costs of three terms are as follows:
the first two terms are to minimize energy costs of DGs,
where NT is the set of scheduling periods, cG1 and cG2 are
generation cost parameters, and pDG

t is the DG generation;
the last term is to minimize the cost of purchasing energy
from the external grid, where λt is the energy sport price, b is
the price sensitivity coefficient, and pUG

t is the purchased
power.

2.2.2. Power Balance Equations
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Equations (2) and (3) are active power balance
equations of the AC subgrid and DC subgrid, respec-
tively, where Nh and Ne are sets of HPs and EVs, re-
spectively; pdta

t is the power transferring from the DC side
to the AC side at hour t and patd

t is the power transferring
from the AC side to the DC side at hour t; p

AC_L
t is the

conventional AC load consumption; pev
i,t is the EV

charging power of the ith EV at hour t; p
hp
i,t is the power

consumption of the ith heat pump at hour t; pec
t and ped

t

are the ESS charging and discharging power, respectively;
p
pv
t is the PV generation power; and ηdta and ηatd are

power transfer coefficients.

2.2.3. DG Operation Constraints
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Constraint (4) is the DG capacity constraint, where
pDG,max

t and pDG,min
t are the maximum and minimum limits

of the DG active power generation. Constraint (5) is the DG
ramping constraint, where pDG,ur

t and pDG,dr
t are the

upramping and downramping limits.
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Figure 1: Physical and communication architecture of the hybrid
AC/DC microgrid.
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2.2.4. EV Operation Constraints

e
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t− ≤ t
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ev
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i,t , ∀i ∈ Ne, t ∈ Nt,
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p
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Constraint (6) is the EV SOC level constraint, where dev
i,t

is the power consumption of the ith EV at hour t due to

driving, ei,0 is the initial SOC level of the ith EV, and emin
i,t and

emax
i,t are the minimum and maximum SOC level limits of the
ith EV. Constraint (7) is the EV charging power constraint,
where pev,min

i,t and pev,max
i,t are the minimum and maximum

charging power limits of the ith EV at hour t and ai,t is the
charging availability of the ith EV at hour t.

2.2.5. HP Operation Constraints
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Constraints (8) and (9) represent thermal equations of
the house equipped with the HP [30, 31], where c

cop
i is the

coefficient of performance; k1, k2, k3, k4, and k5 are thermal
efficiency coefficients; and Kh

i,t, Ku
i,t, and Ks

i,t are the
household inside temperature, outside temperature, and
structure temperature, respectively. Constraint (10) repre-
sents the household temperature constraint, where Kh,max

i,t

and Kh,min
i,t are the maximum and minimum limits of the

household inside temperature. Constraint (11) represents
the HP power consumption constraint, where p

hp,max
i,t and

p
hp,min
i,t are themaximum andminimum limits of the ith heat

pump power consumption at hour t.

2.2.6. ESS Operation Constraints
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Constraints (12) and (13) are ESS charging and discharging
power constraints, respectively, where pec,min

i and pec,max
i are

the minimum and maximum limits of ESS charging power,
respectively; ped,min

i and ped,max
i are the minimum and maxi-

mum limits of ESS discharging power, respectively; and xec
t and

xed
t are the binary variables representing ESS charging/dis-

charging status, ESS is in the charging mode if xec
t � 1, and ESS

is in the discharging mode if xed
t � 1. Constraint (15) is the ESS

energy balance constraint, where Ees
t is the ESS SOC level, Δt is

the time interval of an hour, and ηc and ηd are the charging and
discharging coefficients. Constraint (16) is the ESS SOC level
constraint, where Ees,min

t and Ees,max
t are the minimum and

maximum limits of the ESS SOC level.

2.2.7. Bidirectional Converter Operation Constraint
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(17)

Constraint (17) represents the transferring power limit,
where pbc,max

t is the maximum active power converted on the
BC andxatd

t andxdta
t are binary variables representing the power

conversion direction, power is transferred from the AC side to
the DC side if xatd

t � 1, and power is transferred from the DC
side to the AC side if xdta

t � 1 and also represents that the BC
can operate either in the charging mode or the discharging
mode.

Finally, the energy management problem is formulated as a
MIQP problem in (1)–(17). It is noted that the AC subproblem
and DC subproblem are coupled through the DC conversion
power patd

t and pdta
t in power balance equations (2) and (3) and

constraint (17). In order to realize distributed energy man-
agement, the AC subgrid operator and DC subgrid operator
should solve their own problems independently. %erefore, a
P-ADMM-based algorithm is proposed to solve the energy
management problem in a distributed manner, which will be
detailed in the next section.

3. P-ADMM-Based Solution Method

In this section, the P-ADMM algorithm is used to solve the
optimal energy management problem in a distributed
manner. Firstly, the MIQP problem is reformulated for the
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implementation of the P-ADMM algorithm. %en, the
augmented Lagrangian of the problem is introduced. Finally,
the P-ADMM-based algorithm is presented.

3.1. Decoupling of Coupled Constraints. To decouple power
balance equations and BC operational constraints, a set of
auxiliary variables are introduced as follows:
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We replace original variables with auxiliary variables,
and the model is reformulated.

Objective function of the reformulated model is (1).

Constraints of the reformulated model include original
constraints (4)–(11), auxiliary constraint (18), and
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It is assumed that variables with superscripts of “atd” are
affiliated variables of the AC subgrid operator and variables
with superscripts of “dta” are affiliated variables of the DC
subgrid operator. %erefore, constraints (4)–(11) and
(19)–(25) are fully decomposable between the AC and DC
subgrids, whereas equality constraint (18) is still coupled.

3.2. Augmented Lagrangian. By adding equality constraint
(18) into objective function (1) through dual variables
Λ� :{λt, λt, δt, δt, χt, θt, κt, ψt} and the penalty parameter ρ,
the augmented Lagrangian of theMIQPmodel is formulated
as follows:
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Subject to (4)–(11) and (19)–(25).
%e augmented Lagrangian is optimized over two groups

of primal variables X� : {pDG
t , pUG

t , pev
i,t , p

hp
i,t , pec

t , ped
t , patd

t ,
p
dta
t , pdta

t , p
atd
t , xatd

t , xatd
t , xdta

t , xec
t , xed

t } and Y� : {pdta
t , patd

t ,
xatd

t , xdta
t , xec

t , xed
t } and a group of dual variables Λ.

3.3. P-ADMM-Based Algorithm. For the ease of presenta-
tion, the objective function of the augmented Lagrangian is
represented using a compact form L (X, Y, Λ). %e aug-
mented Lagrangian is solved by the P-ADMM-based algo-
rithm with an iterative procedure, as shown in Algorithm 1,
in which optimizations of two subproblems and the dual-
variable update procedure are carried out iteratively.

3.4. Subproblem I. In the kth iteration, primal variables Xk

are optimized in subproblem I, given by (26), subject to
(4)–(11) and (19)–(25), with parameters Y∗,k− 1 and Λ∗ k−1

obtained in the (k− 1)th iteration.

Subproblem · I : · L Xk
,Y∗,k− 1

,Λ∗,k− 1
 , (27)

s.t. constraints (4)–(11) and (19)–(25).
Subproblem I is a QP problem, and its objective function

and constraints can be fully decoupled between AC and DC
subgrids. %erefore, subproblem I can be solved in a dis-
tributed manner between AC and DC subgrids.

3.5. Subproblem II. %e primal variables Yk are optimized in
subproblem II, given by (27) with parameters X∗,k and
Λ∗ k−1 obtained in the kth and (k− 1)th iteration.

Subproblem · II : · L X∗,k,Yk
,Λ∗,k− 1

 . (28)

It is noted that subproblem II is a nonconstrained MIQP
problem. Instead of directly solving the MIQP problem to
optimize binary variables, the binary variables are optimized
using the projection function in (28), where Px denotes the
projection function, which rounds each entry to its nearest
binary value. %e remaining primal variables are optimized
by solving the QP problem after excluding binary variables,
which can be fully decoupled between AC and DC subgrids.
%erefore, subproblem II can be solved in a distributed
manner as well.
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3.6. Update of Dual Variables. After solving subproblems I
and II, dual variables are updated in (29).

Λk
� Λ∗,k− 1

+ Xex,∗,k− 1
− Y∗,k ,

Xex
� : p

atd
t , p

dta
t , p

dta
t , p

atd
t , x

atd
t , x

atd
t , x

dta
t .

(30)

3.7. Stop Criteria. %e iterative procedure continues till
primal and dual residuals are lower than specified thresh-
olds, respectively, as follows:
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�����

�����
2
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4. Case Studies

A case study was conducted on the hybrid AC/DC system
shown in Figure 1 to demonstrate the effectiveness of the
proposed distributed energy management scheme. In the
system, one DG and conventional loads are connected to the
AC bus, whereas one ESS, 200 EVs [30, 32], 200 HPs, and
one PV are connected to the DC bus. Figures 2 and 3 show
the forecasted spot price and PV active power generation
profile. %e key parameters of DGs, EVs, HPs, and ESSs are
given in Table 1. %e P-ADMM-based algorithm is imple-
mented using GAMS [31, 33], and the solution is obtained
with the CPLEX solver [34]. In the algorithm, convergence
thresholds σ1 and σ2 are set as 0.01, and penalty parameter ρ
is set as 50.

4.1. Computational Performance. Although the convergence
of the P-ADMM-based algorithm cannot be guaranteed for
the MIQP model, the algorithm shows good convergence
performance. A convergence analysis is conducted by
solving the MIQP model with different penalty parameter
values between 10 and 150. Table 2 shows that the algorithm
can converge within 650 iterations when the penalty pa-
rameter value varies within 10 and 150. It can be seen that
the convergence performance of the algorithm highly de-
pends on the selection of the penalty parameter value. For
example, an improper value ρ� 30 would cause non-
convergence within the preset iteration limit (1000). Within
the certain range, the algorithm with ρ� 50 has the best
convergence performance. %e convergence process of the
P-ADMM-based algorithm with ρ� 50 is shown in Figure 4.
It can be seen that the primal and dual residuals are lower
than thresholds after 91 iterations.

%e distributed solution Sd is compared with the cen-
tralized solution Sc in Table 3(take hour t12 as an example).
%e centralized solution is obtained by solving the MIQP
model using the GAMS/CPLEX solver with a zero optimality
gap. It is shown in Table 2 that the distributed solution is
almost the same as the centralized solution. %e maximum
relative error (RE) between the centralized and distributed
solutions is 1.28% (the RE is calculated by (31)), which is very
small and demonstrates that the proposed P-ADMM-based
algorithm can reproduce the optimal centralized solution.

RE �
Sc

− Sd
�����

�����

Sc
����

����
. (32)

4.2. Energy Management Results. Figures 5 and 6 show the
optimal day-ahead energy schedules of the AC and DC
subgrids, respectively. In the DC subgrid, the PV active
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power, ESS discharging power, and power converted from
the AC subgird support the total power consumption of EVs
and HPs. For load consumption, it can be seen that EVs and
HPs tend to charge more power at hours with relatively low
spot prices in order to minimize day-ahead energy costs. For
power generations, in most hours, e.g., hours t1–t9 and
t19–t24, AC power is converted into DC power to support EV
and HP power consumption. At hours t10–t16, since there is
sufficient PV active power, there is no need to convert AC
power into DC power. Especially at hours t14 and t16, the DC
subgrid delivers surplus power to the AC grid. In addition,
the ESS would store surplus power at hours with relatively
low prices and discharge power at those hours with relatively
high spot prices to minimize energy costs.

In the AC subgrid, the AC operator chooses to dispatch
the DG unit or buy external electricity for AC load con-
sumption according to DG energy costs and spot prices. In
this case, since the DG energy cost is smaller than the energy
cost of purchasing external electricity in most hours, the DG
maximum capacity is almost used. In addition, the external
purchased electricity profile has almost opposite variation

P-ADMM algorithm
(1) input: system and DER parameters
(2) output: AC and DC energy schedules and BC operation status
(3) while: ‖Xex,∗,k − Y∗,k‖2 ≤ σ1, ‖Xex,∗,k − Xex,∗,k− 1‖2 ≤ σ2
do
Solve subproblem I to update primal variables Xk

Solve subproblem I to update primal variables Yk

Update dual variables Λk+1using (30)
end

ALGORITHM 1: Pseudo-code of the P-ADMM algorithm.
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Figure 2: Forecasted spot prices.
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Figure 3: Forecasted PV active power generation.

Table 1: Key parameters used in simulations.

ESS parameters
ESS battery size Ees,max

t 200 kWh
Min/max charging power limit pec,min

i /pec,max
i 0/50 kW

Min/max discharging power limit ped,min
i /ped,max

i 0/50 kW
Charing/discharging coefficients ηc/ηd 0.90/0.90

HP parameters
COP of HP c

cop
i 2.3

Min/max temperature of the house Kh,min
i,t /Kh,min

i,t 20/24oC
Min/max HP power consumption p

hp,min
i,t /php,max

i,t 0/6 kW
EV parameters

Min/max HP power consumption pev,min
i,t /pev,max

i,t 0/11 kW
EV availability ai,t 1

DG parameters
Min/max DG active power generation
pDG,min

t /pDG,max
t

0/200 kW

Down- and upramping limits pDG,dr
t /pDG,ur

t 80 kW

DG energy costs cG
1 /c

G
2

0.001/
0.15

BC parameters
Max. limit of active power converted pbc,max

t 1000 kW
Power transfer coefficients ηdta/ηdta 0.9/0.9

Table 2: Numbers of iterations with different penalty parameter
values.

ρ 10 20 30 40 50 100 150
Num. of iterations 633 434 — 175 91 245 404
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Figure 4: Convergence process of the P-ADMM-based algorithm
(ρ� 50).
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tendency as compared with the forecasted spot price profile
in order to minimize energy costs.

5. Conclusions

To resolve the privacy information protection compromise
and single-point failure issues when the centralized energy
management scheme is applied, this paper proposes a dis-
tributed energy management scheme for the hybrid AC/DC
microgrid based on the proposed P-ADMM-based algo-
rithm. %e energy management problem of the hybrid
microgrid is formulated as a MIQP model, considering DER
operation constraints, system operation constraints, and
converter operation constraints. %en, the MIQP model is
decomposed and distributed into smaller-scale submodels
between subgrids using the P-ADMM-based algorithm. %e
numerical results demonstrate that the proposed algorithm
can efficiently solve the MIQP model in a distributed
manner and can deal with binary variables. %e proposed
distributed scheme allows each subgrid operator to make
day-ahead schedules independently with information

exchanges while acquiring the optimal energy management
solution.
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