
Research Article
StudyofHIVDisease and ItsAssociationwith ImmuneCells under
Nonsingular and Nonlocal Fractal-Fractional Operator

Shabir Ahmad ,1 Aman Ullah ,1 Ali Akgül ,2 and Manuel De la Sen 3

1Department of Mathematics, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
2Art and Science Faculty, Department of Mathematics, Siirt University, TR-56100 Siirt, Turkey
3Institute of Research and Development of Processes Faculty of Science and Technology, University of the Basque Country,
Campus of Leioa (Bizkaia), 644-Leioa, Biscay, Spain

Correspondence should be addressed to Shabir Ahmad; shabirahmad2232@gmail.com

Received 18 May 2021; Revised 3 August 2021; Accepted 10 August 2021; Published 20 August 2021

Academic Editor: Ning Cai

Copyright © 2021 Shabir Ahmad et al. %is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

HIV, like many other infections, is a severe and lethal infection. Fractal-fractional operators are frequently used in
modeling numerous physical processes in the current decade. %ese operators provide better dynamics of a mathematical
model because these are the generalization of integer and fractional-order operators. %is paper aims to study the dynamics
of the HIV model during primary infection by fractal-fractional Atangana–Baleanu (AB) operators. %e sufficient
conditions for the existence and uniqueness of the solution of the proposed model under the AB operator are derived via
fixed point theory. %e numerical scheme is presented by using the Adams–Bashforth method. Numerical results are
demonstrated for different fractal and fractional orders to see the effect of fractional order and fractal dimension on the
dynamics of HIV and CD4+ T-cells during primary infection.

1. Introduction

Over the past few decades, the field of mathematical
modeling of the physical process has gained considerable
attention from scientists and investigators.We point out that
mathematical models are important tools for studying many
physical and biological science dynamic problems [1, 2].
Bernoulli has initiated this concept in 1776. Mathematical
models of the biological problem have become important
means for understanding the many infectious diseases and
choosing the appropriate technique for controlling the
disease or reducing its social transmission. In this respect,
many mathematical models were built to study the under-
standing of many infectious diseases and to follow certain
precautions to save a community from excessive loss. HIV is
one of the most severe and dangerous illnesses of the last
decades. Many people all over the world have died because of
the disease. According to UNAIDS, about 690,000 people
died from AIDS-related illnesses in 2019. %e

aforementioned infections target the largest WBCs in the
immune system (IS) during HIV disease, called CD4+T-
cells [3]. In this way, HIV infection affects human IS. It has
detrimental impacts on the CD4+T-cells and other cells. A
body becomes susceptible to diseases because the number of
CD4+T-cells falls below the amount needed, and thus the IS
begins to weaken. Several countries, particularly in Africa,
have recently been infected with HIV for up to 35% of the
population aged 15–50 years. Usually, differential equations
are commonly used during mathematical models. A basic
model for primary HIV infection was first developed in 1989
by Perelson [4]. In 1993, Perelson et al. [5] expanded the
model and further addressed some of the behavior of the
models. For examination of the HIV infection, the two cells
model was established in [6]. A simple general model in [7]
was considered. In this regard, numerous models have been
further developed and to explain the dynamics of HIV decay
observed and studied for local and global stability [8, 9].
Further, Arafa et al. [10] have proposed the following model:
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(1)

%e symbol X denotes the concentration of susceptible
CD4+ T-cells, Y represents concentration of infected
CD4+T-cells, and free HIV virus particles in the blood cells
are denoted by Z. %e parameter μ represents new T-cells
supply rate. %e rate of natural death is denoted by d∗, k∗ is
the rate of infection T-cell, δ is the death rate of infected
T-cells, b∗ represents the rate of return of infected cells to
uninfected class, c∗ is the death rate of virus, and N∗ is
average number of particles infected by an uninfected cell.

Fractional calculus theory has been a hot topic of the
twenty-first century due to its applications in various fields
of science. Different fractional operators have been imple-
mented in many mathematical models, and they have
yielded a lot of success. Different forms of operators exist in
fractional calculus, depending on the kernels involved. %e
three major operators, which are widely used by researchers,
are briefly discussed here. %e Caputo operator, which is
built on the power law kernel, is the first. %is operator has a
problem with the singularity of the kernel involved in it. %e
second operator is the Caputo–Fabrizio fractional derivative,
which is based on an exponential-decay kernel but has a
locality problem. %e third operator is the AB fractional
derivative which is based on the Mittag-Leffler kernel. Be-
cause of its nonlocal and nonsingular kernel, this derivative
gives superior results as compared with Caputo and
Caputo–Fabrizio. %e FDEs had a significant impact on
modeling and simulation using these three types of kernels
[11, 12]. In literature [1], computational solutions of the
HIV-1 infection of the CD4+ T-cells fractional mathematical
model that causes acquired immunodeficiency syndrome
(AIDS) with the effect of antiviral drug therapy are pre-
sented. Khater et al. analyzed abundant stable computational
solutions of Atangana–Baleanu fractional nonlinear HIV-1
infection of CD4+ T-cells of immunodeficiency syndrome
[2]. In comparison to the classical model, the model in-
volving FDEs is more accurate [13]. Various methods are
used by researchers for solving linear and nonlinear frac-
tional DEs [14, 15]. Many problems in nature are solved by
the concept of fractal derivatives. Atangana [16] recently
proposed new kinds of general operators called fractal-
fractional operators, which combine fractional and fractal
derivatives. %e newly proposed operators have been
implemented by many scientists to investigate the dynamics
of different models. Ahmad et al. studied the model de-
scribing the tumor and its relation with immune cells under
the AB fractal-fractional operators [17]. Literature [18] has
demonstrated the dynamics of the dengue infection model
via fractal-fractional operators which are best fitted with real
data. For more applications of fractional-fractal calculus, see

[19, 20]. We will investigate the above model using the AB
fractal-fractional operator, as suggested by the literature. We
extend the above model as follows:

D
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(2)

along with the following initial conditions:

X(0) � X0,

Y(0) � Y0,

Z(0) � Z0.

(3)

Here, we use more generalized operators to model HIV
infections and their association with immune cells. We
explore the existence theory under AB fractal-fractional
derivative through fixed point theory. Our proposed model
is nonlinear. One common obstacle is determining the exact
solution to a nonlinear problem. Due to the complexity, we
will find a numerical solution to the model. %e Adam
Bashforth methodology is an efficient and stable numerical
method.We use this method to determine the solution to the
given model. We obtain the numerical scheme for the
Mittag-Leffler law via the Adams–Bashforth technique. To
present the effect of fractal dimension on fractional order, we
simulate the proposed model for various values of fractal
values. We find out that the AB operator provides better
dynamics of the disease due to nonsingular kernel. We show
the impact of fractal and fractional order on the dynamics of
HIV infection and its association with immune cells.

%e paper is structured as follows. %e introduction and
motivation part is presented in Section 1. %e basic defi-
nitions of AB fractal-fractional operators are given in Section
2. %e existence theory under AB fractal-fractional deriva-
tive is explored in Section 3. Section 4 is devoted to the
numerical scheme for the proposed model. Numerical re-
sults are simulated in Section 5, whereas the manuscript is
concluded in Section 6.

2. Preliminaries

Let G(t) be continuous and fractal differentiable on (m, n).
Let 0≤ α, τ ≤ 1, where α and τ represent fractional and fractal
order, respectively.

Definition 1 (see [16]). %e AB fractal-fractional derivative
of G(t) is defined as follows:

FFM
D

α,τ
0,t (G(t)) �

AB(α)

1 − α
d
dt

τ 
t

0
Eα −

α
1 − α

(t − ξ)
α

 G(ξ)dξ,

(4)

where AB(α) � 1 − α + (α/Γ(α)).

Definition 2 (see [16]). %e AB fractal-fractional integral of
G(t) is defined as follows:
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FFM
J

α,τ
0,t G(t) �

τ(1 − α)t
τ− 1

G(t)

AB(α)
+

ατ
AB(α)


t

0
ξα− 1

(t − ξ)
α− 1

G(ξ)dξ. (5)

3. Existence and Uniqueness

In this section, we present the existence and uniqueness of
the solution of the proposed model under AB fractal-frac-
tional derivative via fixed point theory.

FFM
D

α,τ
0,t

(X(t)) � H1(t,X, Y, Z),
FFM

D
α,τ
0,t (Y(t)) � H2(t,X, Y, Z),

FFM
D

α,τ
0,t (Z(t)) � H3(t,X, Y, Z), (6)

where

H1(ξ,X, Y, Z) � μ − k
∗
XZ − d

∗
X + b

∗
Y,

H2(ξ,X, Y, Z) � k
∗
XZ − b

∗
+ δ( Y,

H3(ξ,X, Y, Z) � N
∗δY − c

∗
Z.

⎧⎪⎪⎨

⎪⎪⎩
(7)

For this, we can write system (6) as follows:
FFM

D
α,τ
0,t [Ω(t)] � Ξ(t,Ω(t)), (8)

where Ω(t) �

X(t)

Y(t)

Z(t)

⎧⎪⎨

⎪⎩
and Ξ(t,Ω(t)) �

H1(t,X, Y, Z)

H2(t,X, Y, Z)

H3(t,X, Y, Z).

⎧⎪⎨

⎪⎩

Since by definition FFMD
α
0,t[Ω(t)]

� (AB(α)/1 − α)d/dtτ 
t

0 Ξ(ϑ,Ω(ϑ))Eα(− α/1
− α(t − ξ)α)dξ and integral is differentiable, we can write the
above expression as follows:

FFM
D

α
0,t[Ω(t)] �

1
τt

τ− 1
AB(α)

1 − α
d
dt


t

0
Ξ(ϑ,Ω(ϑ))Eα −

α
1 − α

(t − ξ)
α

 dξ. (9)

%erefore, system (8) can be expressed as follows:

AB(α)

1 − α
d
dt


t

0
Ξ(ϑ,Ω(ϑ))Eα −

α
1 − α

(t − ξ)
α

 dξ � τt
τ− 1Ξ(t,Ω(t)). (10)

Substituting the right hand side by Caputo and imple-
menting the fractional integral, we get

Ω(t) � Ω(0) +
1 − α

AB(α)
τt

τ− 1Ξ(t,Ω(t)) +
ατ

AB(α)Ω(α)


t

0
(t − ξ)

α− 1Ξ(ξ,Ω(ξ))ξτ− 1dξ. (11)

Here, also like Picard Lindlof theorem, we let



b

a

� In tn(  × A0 Ω0( , (12)

where In(tn) � [tn− a, tn+a] and A0(Ω0) � [t0 − b, t0 + b].
Also, let sup

t∈
b

a

‖Ξ‖ � K; now, we define the norm as
follows:
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‖Ψ‖∞ � sup
t∈

b

a
|Ψ(t)|.

(13)
Next, we define the operator

O: C[In(tn),Ab(tn)]⟶ C[In(b),Ab(tn)] as

OΩ(t) � Ω0 +
1 − α

AB(α)
τt

τ− 1Ξ(t,Ω(t)) +
ατ

AB(α)Γ(α)


t

0
ξτ− 1

(t − ξ)
α− 1Ξ(ξ,Ω(ξ))dξ. (14)

%e goal is to show that the defined operator is a con-
traction mapping that translates a complete norm empty
metric space Y into itself. First, we need to show that
‖OΩ(t) − Ω0‖≤ b. For this, consider

OΩ(t) − Ω0
����

����≤
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AB(α)
τt
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‖Ξ(t,Ω(t))‖∞

+
ατ

AB(α)Ω(α)


t

0
(t − ξ)
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τt

τ− 1
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K
t

0
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(15)

Let ξ � ty, expression (15) becomes

OΩ(t) − Ω0
����

����≤
1 − α

AB(α)
τt

ξ− 1
K +

ατK
AB(α)Γ(α)

t
α+τ− 1

B(α, τ),

(16)

where B(α, τ) represents beta function; thus,

OΩ(t) − Ω0
����

����≤ b⟶K<
bB(α, τ)

Γ(α)(1 − α)τt
τ− 1

+ ατt
τ+α− 1/AB(α)Γ(α)

. (17)

Now, for any Ω1,Ω2 ∈ C[In(tn),Ab(tn)], we have

OΩ1 − OΩ2
����

����≤
1 − α

AB(α)
τt

τ− 1 Ξ t,Ω1(t)(  − Ξ t,Ω2(t)( 
����

����

+
ατ

AB(α)Γ(α)


t

0
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����

����dξ.

(18)

Since Ξ being a contraction, we have

OΩ1 − OΩ2
����

����≤
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AB(α)
τt

τ− 1
L Ω1 − Ω2

����
����∞

+
ατL

AB(α)Γ(α)
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����
����∞

t

0
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(19)

It follows that
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Now, since
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AB(α)
τt

τ− 1
L +

ατL
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%us, O is a contraction if

OΩ1 − OΩ2
����

����∞< Ω1 − Ω2
����

����. (22)

For this, we have

L<
1

(1 − α/AB(α))τa
τ− 1

+(ατ/AB(α)Γ(α))a
α+τ− 1

B(α, τ)
,

(23)

so

K<
1

(1 − α/AB(α))τa
τ− 1

+(ατ/AB(α)Γ(α))a
α+τ− 1

B(α, τ)
.

(24)

%us, a unique solution of the proposed model exists.

4. Numerical Scheme with Mittag-Leffler
Type Kernel

Consider model (2) as follows:

BR
D

α
0,t

(X(t)) � τt
τ− 1

H1(t,X, Y, Z),
BR

D
α
0,t(Y(t)) � τt

τ− 1
H2(t,X, Y, Z),

BR
D

α
0,t(Z(t)) � τt

τ− 1
H3(t,X, Y, Z).

(25)

%en, we reach

X(t) � X(0) +
τt

τ− 1
(1 − α)

AB(α)
H1(t,X, Y, Z)

+
ατ

AB(α)Γ(α)


t

0
ξτ− 1

(t − ξ)
α− 1

H1(ξ,X, Y, Z)dξ,

Y(t) � Y(0) +
τt

τ− 1
(1 − α)

AB(α)
H2(t,X, Y, Z)

+
ατ

AB(α)Γ(α)


t

0
ξτ− 1

(t − ξ)
α− 1

H2(ξ,X, Y, Z)dξ,

Z(t) � Z(0) +
τt

τ− 1
(1 − α)

AB(α)
H3(t,X, Y, Z)

+
ατ

AB(α)Γ(α)


t

0
ξτ− 1

(t − ξ)
α− 1

H3(ξ,X, Y, Z)dξ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Now, at t � tn+1, we have

X
n+1

� X
0

+
τt

τ− 1
n (1 − α)

AB(α)
H1 tn,X

n
, Y

n
, Z

n
( 

+
ατ

AB(α)Γ(α)


tn+1

0
ξτ− 1

tn+1 − ξ( 
α− 1

H1(ξ,X, Y, Z)dξ,

Y
n+1

� Y
0

+
τt

τ− 1
n (1 − α)

AB(α)
H2 tn,X

n
, Y

n
, Z

n
( 

+
ατ

AB(α)Γ(α)


tn+1

0
ξτ− 1

tn+1 − ξ( 
α− 1

H2(ξ,X, Y, Z)dξ,

Z
n+1

� Z
0

+
τt

τ− 1
n (1 − α)

AB(α)
H2 tn,X

n
, Y

n
, Z

n
( 

+
ατ

AB(α)Γ(α)


tn+1

0
ξτ− 1

tn+1 − ξ( 
α− 1

H2(ξ,X, Y, Z)dξ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Using the approximation of the integrals in (27), we get
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X
n+1

� X
0

+
τt

τ− 1
n (1 − α)

AB(α)
H1 tn,X

n
, Y

n
, Z

n
( 

+
ατ

AB(α)Γ(α)


p

f�0


tf+1

tf

ξτ− 1
tn+1 − ξ( 

α− 1
H1(ξ,X, Y, Z)dξ,

Y
n+1

� Y
0

+
τt

τ− 1
n (1 − α)

AB(α)
H2 tn,X

n
, Y

n
, Z

n
( 

+
ατ

AB(α)Γ(α)


p

f�0


tf+1

tf

ξτ− 1
tn+1 − ξ( 

α− 1
H2(ξ,X, Y, Z)dξ,

Z
n+1

� Z
0

+
τt

τ− 1
n (1 − α)

AB(α)
H2 tn,X

n
, Y

n
, Z

n
( 

+
ατ

AB(α)Γ(α)


p

f�0


tf+1

tf

ξτ− 1
tn+1 − ξ( 

α− 1
H2(ξ,X, Y, Z)dξ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Now, utilizing the Lagrangian polynomial piecewise
interpolation, one can get

X
n+1

� X
0

+
τt

τ− 1
n (1 − α)

AB(α)
H1 tn, X

n
, Y

n
, Z

n
(  +

τ(Δt)α

AB(α)Γ(α + 2)

× 

p

f�0

t
τ− 1
f H1 tf, X

f
, Y

f
, Z

f
  × (p + 1 − f)

α
(p − f + 2 + α) − (p − f)

α
(p − f + 2 + 2α)( 

− t
τ− 1
f− 1H1 tf− 1, X

f− 1
, Y

f− 1
, Z

f− 1
  × (p − f + 1)

α+1
− (p − f)

α
(p − f + 1 + α) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y
n+1

� Y
0

+
τt

τ− 1
n (1 − α)

AB(α)
H2 tn, X

n
, Y

n
, Z

n
(  +

τ(Δt)α

AB(α)Γ(α + 2)

× 

p

f�0

t
τ− 1
f H1 tf, X

f
, Y

f
, Z

f
  × (p + 1 − f)

α
(p − f + 2 + α) − (p − f)

α
(p − f + 2 + 2α)( 

− t
τ− 1
f− 1H1 tf− 1, X

f− 1
, Y

f− 1
, Z

f− 1
  × (p − f + 1)

α+1
− (p − f)

α
(p − f + 1 + α) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Z
n+1

� Z
0

+
τt

τ− 1
n (1 − α)

AB(α)
H3 tn, X

n
, Y

n
, Z

n
(  +

τ(Δt)α

AB(α)Γ(α + 2)

× 

p

f�0

t
τ− 1
f H1 tf, X

f
, Y

f
, Z

f
  × (p + 1 − f)

α
(p − f + 2 + α) − (p − f)

α
(p − f + 2 + 2α)( 

− t
τ− 1
f− 1H1 tf− 1, X

f− 1
, Y

f− 1
, Z

f− 1
  × (p − f + 1)

α+1
− (p − f)

α
(p − f + 1 + α) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)
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5. Numerical Simulations

In this section, we discuss the numerical simulations of the
proposed model. For the desired simulation, we take
X0 � 1000 (millions), Y0 � 0, and Z0 � 0.001 (millions). %e
parameter values are as follows: μ�10, d∗ � 0.01,
k∗ � 0.000024, δ � 0.16, b∗ � 0.02, c∗ � 3.4, and N∗ � 1000.
Via MATLAB, we graphically present the different

compartments of the model against the various fractional
and fractal orders. Figures 1–9 represent the dynamics of the
proposed model for the Caputo fractal-fractional operator,
and Figures 10–18 represent the dynamics suggested for the
Atangana–Baleanu fractal-fractional operator. It is observed
in Figures 1–3 and 10–12, which is the primary stage of HIV
infection, the concentration level of uninfected CD4+ T-cells
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Figure 1: Dynamical behavior of concentration of uninfected
(susceptible) cells at α� 1 and various fractal order under power
law kernel.
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Figure 2: Dynamical behavior of concentration of uninfected
(susceptible) cells at τ � 1 and various fractional order under power
law kernel.
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Figure 3: Dynamical behavior of concentration of uninfected (sus-
ceptible) cells at α� 1 and various fractal order� 0.85, 0.9, 0.95, 1 under
power law kernel.
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Figure 4: Dynamical behavior infected cells at α� 1 and fractal
order under power law kernel.
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is significantly decreased. It is because such infected cells
have died. %is decrease occurs mainly due to fractal and
fractional order, with different rates. %e smaller the order,
the faster the decay, and thus the stability takes place before
the highest order. On the other hand, we analyze from
Figures 4–8 that the amount of infected CD4+ T-cells and
free HIV particles is increasing. %is rapid increase is also
different in different fractal and fractional orders, and in
smaller orders, it is faster, and as the order increases, the

growth rate becomes slower. From these graphic repre-
sentations, it is clear that the development of healthy T-cells
slows during HIV infection. We conclude from the figures
that the use of fractal-fractional to solve an epidemic model
gives the best results relative to fractional systems. We
provide numerical simulations with different sets of fractal
and fractional order for the proposed model. We observe the
effect of the fractal dimension on the dynamics of the model.
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Figure 5: Dynamical behavior of free HIV virus particles at α� 1
and various fractal order under power law kernel.
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Figure 7: Dynamical behavior of free HIV virus particles at τ � 1
and various fractional order under power law kernel.
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Figure 8: Dynamical behavior infected cells at α� 1 and various
fractal order� 0.85, 0.9, 0.95, 1 under power law kernel.
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Also, we provide a comparison between Caputo and
Atangana–Beleanu operators via numerical simulations. We
have almost same result for the both operators for α � 1 and
τ � 0.85, 0.9, 0.95, 1 (see Figures 1, 4, 5, 10, 13, and 14).
However, by changing fractional order and keeping fractal
dimension fix, Atangana–Baleanu gives better dynamics of
the proposed model. From Figures 2, 6, and 7, one can easily
observe that there is no clear information about the pop-
ulation class for up to 40 days when changing the fractional

order. However, from Figures 11, 15, and 16, the effect of
fractional order on the dynamics of the proposed model is
much more clear. %ere is clear information of memory
property about population class up to 40 days when
changing the fractional order. It provides all previous history
of the diseases, which is the main function of fractional
order. Further, in Figure 19, we compare our simulated
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Figure 9: Dynamical behavior of free HIV virus particles at α� 1
and various fractal order� 0.85, 0.9, 0.95, 1 under power law kernel.
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Figure 10: Dynamical behavior of concentration of uninfected
(susceptible) cells at α� 1 and various fractal order under Mittag-
Leffler kernel.
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Figure 11: Dynamical behavior of concentration of uninfected
(susceptible) cells at τ � 1 and various fractional order under
Mittag-Leffler kernel.
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Figure 12: Dynamical behavior of concentration of uninfected
(susceptible) cells at α� 1 and various fractal order� 0.85, 0.9, 0.95,
1 under Mittag-Leffler kernel.
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results in the case of Atangana–Baleanu operator with the
actual data for the country of Brazil. We have taken the data
of HIV-infected people for 15 years from [21]. %e red dots
represent actual data, and the green curve represents the
dynamics of infected HIV cells under the Atangana–Baleanu
operator at fractional order 0.94. We see that the graph of

simulated data and actual data is very close to each other at
the order of 0.94. On this basis, we conclude that fractal-
fractional operator in Atangana–Baleanu sense provides a
clear understanding of an epidemic model’s dynamics and
can be applied successfully to several other problems.
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Figure 13: Dynamical behavior of infected cells at α� 1 and various
fractal order under Mittag-Leffler kernel.
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Figure 14: Dynamical behavior of free HIV virus particles at α� 1
and various fractal order under Mittag-Leffler kernel.
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Figure 15: Dynamics of infected cells at τ � 1 and various fractional
order under Mittag-Leffler kernel.
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Figure 16: Dynamical behavior of free HIV virus particles at τ � 1
and various fractional order under Mittag-Leffler kernel.
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6. Conclusion

In the current manuscript, we have applied the more gen-
eralized operators to study the relationship between HIV
infection and its relation with CD4+ T-cells during primary
infection. We have derived the results of the existence and
uniqueness of the proposed fractal-fractional HIV model
described by the operator in the Atangana–Baleanu sense.
We have obtained numerical results through the
Adams–Bashforth method. To visualize the dynamics of
considered, we have simulated the obtained results through
MATLAB-18. We have observed the impact of fractal di-
mension on the fractional order through graphs. %e

increase and decrease in fractal dimension affect the dy-
namics of the different compartments of the model. From
the numerical simulations, we have observed that the fractal-
fractional idea produces better results in the sense of
Atangana–Baleanu operators. So, we recommend that the
Atangana–Baleanu fractal-fractional model gives the best
results and may be more valuable to scientists and re-
searchers. It is also observable from the numerical simu-
lations that fractal-fractional order can capture more
complexities than usual fractional derivatives. We keep
hoping that this work may assist young researchers in a
different direction of applied mathematics.

Data Availability
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Figure 17: Dynamical behavior of infected cells at α� 1 and various fractal order� 0.85, 0.9, 0.95, 1 under Mittag-Leffler kernel.
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Figure 18: Dynamical behavior of free HIV virus particles at α� 1
and various fractal order� 0.85, 0.9, 0.95, 1 under Mittag-Leffler
kernel.
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