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Graph theory is one of those subjects that is a vital part of the digital world. It is used to monitor the movement of robots on a
network, to debug computer networks, to develop algorithms, and to analyze the structural properties of chemical structures,
among other things. It is also useful in airplane scheduling and the study of diffusion mechanisms. ,e parameters computed in
this article are very useful in pattern recognition and image processing. A number d(f, w) � min d(w, t), d(w, s){ } is referred as
distance betweenf � ts an edge andw a vertex. d(w, f1)≠d(w, f2) implies that two edges f1, f2 ∈ E are resolved by node w ∈ V.
A set of nodes A is referred to as an edge metric generator if every two links/edges of Γ are resolved by some nodes of A and least
cardinality of such sets is termed as edge metric dimension, edim(Γ) for a graph Γ. A set B of some nodes of Γ is a mixed metric
generator if any two members of V∪E are resolved by some members of B. Such a set B with least cardinality is termed as mixed
metric dimension, mdim(Γ). In this paper, the metric dimension, edge metric dimension, and mixed metric dimension of dragon
graph Tn,m, line graph of dragon graph L(Tn,m), paraline graph of dragon graph L(S(Tn,m)), and line graph of line graph of dragon
graph L(L(Tn,m)) have been computed. It is shown that these parameters are constant, and a comparative analysis is also given for
the said families of graphs.

1. Introduction

For several years, the characteristics associated to graph
distances have piqued the interest of various scholars, and
one of them, the metric dimension, has recently been the
focus of them. ,e theory of metric dimension was given by
Slater in 1975 [1] and this theory was further elaborated as
resolving set of graphs by Harary and Melter in 1976 [2]. In
2003, Brigham et al. [3] determined resolving dominating set
and resolving domination number in graphs. In 2003,
Chartrand et al. [4] studied the independent resolving set in
nontrivial connected graphs of order n. ,e order of min-
imal independent resolving set is known as independent
resolving number and is denoted as ir(Γ). In 2003, Saen-
pholphat and Zhang [5] calculated the connected resolving
number of complete graph Kn, star graph K1,n−1, and
Cartesian products of Γ × K2. In 2007, Oellermann and
Peters-Fransen [6] found the strong metric dimension of

graphs and digraphs. In 2010, Okamoto et al. [7] discussed
the local metric dimension of graphs and some bounds of it.
In 2017, Yero et al. [8] determined the k-metric dimensional
graphs. In 2016, Imran and Siddiqui [9] computed themetric
dimension of some convex polytopes generated by wheel
related graphs. A graph in which all vertices have the same
degree is called a regular graph. Ali presented a survey of
antiregular graphs [10], and he gathered the known results
concerning the antiregular graphs.

,ere are many applications of this parameter to robot
navigation in networks which have been discussed in [11]
and applications to chemistry have been discussed in [4, 12].
Furthermore, this issue has certain applications to pattern
recognition and image processing difficulties, some of which
require the usage of hierarchical data structures [13]. Some
interesting connections between metric generators in graphs
and the master mind game or coin weighing have been
presented in [14]. ,e metric dimension of infinite graphs
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was studied in [15], and extremal graphs for metric di-
mension and diameter were considered in [16].

Let Γ be a simple connected and undirected graph with
the vertex set V(Γ) and edge set E(Γ). ,e distance between
any two vertices u, v ∈ V(Γ) is denoted as d(u, v) and is
defined as the length of the shortest path between u and v.
,e vertex t resolves the vertices u and v if d(t, u)≠d(t, v).
An ordered set of i vertices R � x1, x2, . . . , xi􏼈 􏼉; the iden-
tification of x depending on R is the order i− tuple and is
written as

r(u|R) � d x, x1( 􏼁, d x, x2( 􏼁, d x, x3( 􏼁, . . . , d x, xi( 􏼁( 􏼁. (1)

If the different vertices of Γ have different codes based on
R, then R is known as a resolving set for Γ. LetΩ ⊂ Γ of graph
Γ be such that |Ω| � min |R|: R is a resolving set for Γ􏼈 􏼉, then
Ω is a metric basis for the graph Γ and dim(Γ) � |Ω| is metric
dimension of the graph Γ.

Recently, the idea of edge metric dimension of graph
(edim(Γ)) was given by Kelenc et al. [17], and they also
presented some results and comparison of metric dimension
and edge metric dimension for some well-known families of
graphs like path graph Pn, edim(Pn) � dim(Pn) � 1 where n

is number of vertices of graph, cycle graph Cn:
edim(Cn) � dim(Cn) � 2, complete graph Kn: edim(Kn)

� dim(Kn) � n − 1, and complete bipartite graph K(r,t):
edim(K(r,t)) � dim(K(r,t)) � r + t − 2, where r, t> 1 are
vertices of each partite set; if Γ is a grid graph Γ � Pr × Pt

with r≥ t≥ 2, then edim(Γ) � 2. Furthermore, they have
raised many open problems linked to the nature of metric
dimension and edge metric dimension. In 2018, Liu et al.
[18] worked on edge version of metric dimension and
calculated edge metric dimension of necklace graph and line
graph of necklace graph. In 2021, Deng et al. [19] discussed
the edge resolvability parameter for different families of
Mobius ladder networks, and they find the exact edge metric
dimension of triangular, square, and hexagonal Mobius
ladder networks.

,e distance between an edge e � tp and a vertex q is
denoted as d(e, q) and is defined as
d(e, q) � min d(t, q), d(p, q)􏼈 􏼉. ,e vertex u resolves the
edges ei and el if d(ei, u)≠ d(el, u). An ordered set of j

vertices A � a1, a2, . . . , aj􏽮 􏽯; the identification of an edge eα
depending on A is the order j− tuple and is written as

r eα|A( 􏼁 � d eα, a1( 􏼁, d eα, a2( 􏼁, d eα, a3( 􏼁, . . . , d eα, aj􏼐 􏼑􏼐 􏼑.

(2)

If the different edges of Γ have different codes based on
A, then A is known as an edge resolving set for Γ. Let L be a
subset of vertex set of graph Γ such that
|L| � min |L|: L is an edge resolving set for Γ􏼈 􏼉, then L is an
edge metric basis for the graph Γ and edim(Γ) � |L| is edge
metric dimension of the graph Γ.

Kelenc et al. [20] has presented the idea of mixed metric
dimension and denoted it as m di m(Γ), and they presented
the mixed metric dimension of path graph Pn,
mdim(Pn) � 2, cycle graph Cn, mdim(Cn) � 3, and com-
plete bipartite graph K(r,t), mdim(K(r,t)) � r + t − 1 where
r, t � 2; otherwise, mdim(K(r,t)) � r + t − 2 and grid graph

Γ � Pr□Pt, mdim(Γ) � 3 where r≥ t≥ 2. An ordered subset
of a vertex set of a graph is called mixed resolving set if it is
both vertex resolving set and edge resolving set. Let Γ be a
graph and X � x1, x2, . . . , xk be an ordered subset of vertices
of graph Γ. If all vertices and edges of Γ have different codes
of representation with respect to the set X, then X is known
as a mixed resolving set for graph Γ. Let M be a subset of
vertex set of graph Γ such that |M| � min
: X is amixed resolving set for graph Γ􏼈 􏼉. ,en, M is known
as a mixed metric basis for Γ, and mdim(Γ) � |M| is a mixed
metric dimension of the graph Γ. In 2016, Yero [21] pre-
sented some bounds or closed formulae for the (edge,
mixed) metric dimension of several families of graphs.

Figure 1 represents graph Γ with V(Γ) � v1, v2, . . . , v8􏼈 􏼉,
and E(Γ) � a, b, c, d, e, f, g, h􏼈 􏼉 are vertex set and edge set,
respectively. ,e set A � v2, v7􏼈 􏼉 is an edge resolving set of Γ.
,e representation of all edges with respect toA is as given in
Table 1.

All edges have different representations with respect to
A, so edim(Γ) � 2.

,e set B � v2, v7, v8􏼈 􏼉 is a mixed resolving set of Γ. ,e
representation of all edges and vertices with respect to B is as
given in Table 2.

All edges and vertices have different representations with
respect to B, so mdim(Γ) � 3.

Theorem 1 (see [12]). A connected graph Γ of order n has
dimension 1 if and only if Γ � Pn.

Theorem 2 (see [22]). Let Tn,m be a dragon graph for n≥ 3
and m≥ 2. 0en, dim(Tn,m) � 2.

Theorem 3 (see [17]). 0e edge metric dimension of a graph
G is 1 if and only if Γ is a path.

Theorem 4 (see [20]). 0e mixed metric dimension of a
graph G is 2 if and only if Γ is a path.

2. Results on Dragon Graph Tn,m

Dragon graph is obtained by identifying vertex vn of cycle
graph Cn with vertex u0 of path graph Pm+1 and is denoted as
Tn,m. Order of dragon graph Tn,m is n + m. Its vertex set is
V(Tn,m) � v1, v2, . . . , vn, u1, u2, . . . , um􏼈 􏼉 and edge set is
E(Tn,m) � vivi+1: 1≤ i≤ n􏼈 􏼉∪ ujuj+11≤ j≤m − 1􏽮 􏽯∪ vnu1􏼈 􏼉

where vn+1 � v1 as shown in Figure 2.

Theorem 5. Let Tn,m be a dragon graph for n≥ 3 and m≥ 2.
0en, edim(Tn,m) � 2.

Proof. Since dragon graph is not a path graph,
edim(Tn,m)≥ 2. In this case,A � v1, um􏼈 􏼉 is an edge resolving
set of Tn,m. All edges are labeled as

ei � vivi+1: 1≤ i≤ n􏼈 􏼉,

ej+1′ � ujuj+1: 1≤ j≤m − 1􏽮 􏽯,

e1′ � vnu1.

(3)
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,e representations of all edges with respect to A are as
follows:

r ei|A( 􏼁 �

(i − 1, m + i) 1≤ i≤
n

2
􏼖 􏼗 − 1;

(i − 1, m + n − i − 1) i �
n

2
􏼖 􏼗;

(n − i, m + n − i − 1)
n

2
􏼖 􏼗 + 1≤ i≤ n − 1;

(0, m) i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ej
′|A􏼐 􏼑 � (j, m − j): 1≤ j≤m.

(4)

All edges have distinguished representation, and this fact
can easily be verified, which implies that edim(Tn,m)≤ 2. So,
we obtained edim(Tn,m) � 2.

Theorem 6. Let Tn,m be a dragon graph for n≥ 3 and m≥ 2.
0en, mdim(Tn,m) � 3.

Proof. Since dragon graph is not a path graph,
mdim(Tn,m)≥ 3. All edges are labeled as

ei � vivi+1: 1≤ i≤ n􏼈 􏼉,

ej+1′ � ujuj+1: 1≤ j≤m − 1􏽮 􏽯,

e1′ � vnu1.

(5)

In this case, A � v1, v⌈n/2⌉, um􏽮 􏽯 is mixed resolving set of
Tn,m. ,e representations of all vertices with respect to A are
as follows:

r uj|A􏼐 􏼑 � j + 1,
n

2
􏼖 􏼗 + j, m − j􏼒 􏼓: 1≤ j≤m. (6)

For n even,

r vi|A( 􏼁 �

i − 1,
n

2
− i, m + i􏼒 􏼓 1≤ i≤

n

2
;

n − i + 1, i −
n

2
, m + n − i􏼒 􏼓

n

2
+ 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

For n odd,

r vi|A( 􏼁 �

i − 1,
n

2
􏼘 􏼙 − i, m + i􏼒 􏼓 1≤ i≤

n

2
􏼖 􏼗;

i − 1,
n

2
􏼘 􏼙 − i, m + n − i􏼒 􏼓 i �

n

2
􏼖 􏼗 + 1;

n − i + 1, i −
n

2
􏼘 􏼙, m + n − i􏼒 􏼓

n

2
􏼖 􏼗 + 2≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

,e representations of all edges with respect to A are as
follows:

r ej
′|A􏼐 􏼑 � j,

n

2
􏼖 􏼗 + j − 1, m − j􏼒 􏼓: 1≤ j≤m. (9)

For n even,

u1v8

v7
v6

v5

v4

v3

v2

v1

u2 u3 u4 u5

Figure 2: Dragon graph T8,5.
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Figure 1: A graph with the edim(Γ) � 2.

Table 1: Edge distance codes of Γ w.r.t. A.

d(., .) a b c d

A � v2, v7􏼈 􏼉 (0, 1) (0, 2) (1, 3) (2, 3)

d(., .) e f g h

A � v2, v7􏼈 􏼉 (2, 2) (1, 1) (1, 0) (2, 4)

Table 2: Mixed distance codes of Γ w.r.t. B.

d(., .) a b c d

B � v2, v7, v8􏼈 􏼉 (0, 1, 3) (0, 2, 2) (1, 3, 1) (2, 3, 1)

d(., .) e f g h

B � v2, v7, v8􏼈 􏼉 (2, 2, 2) (1, 1, 3) (1, 0, 4) (2, 4, 0)

d(., .) v1 v2 v3 v4
B � v2, v7, v8􏼈 􏼉 (1, 1, 4) (0, 2, 3) (1, 3, 2) (2, 4, 1)

d(., .) v5 v6 v7 v8
B � v2, v7, v8􏼈 􏼉 (3, 3, 2) (2, 2, 3) (1, 1, 4) (2, 0, 5)
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r ei|A( 􏼁 �

i − 1,
n

2
− i − 1, m + i􏼒 􏼓 1≤ i≤

n

2
− 1;

i − 1, i −
n

2
, m + n − i − 1􏼒 􏼓 i �

n

2
;

n − i, i −
n

2
, m + n − i − 1􏼒 􏼓

n

2
+ 1≤ i≤ n − 1;

0,
n

2
− 1, m􏼒 􏼓 i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

For n odd,

r ei|A( 􏼁 �

i − 1,
n

2
􏼘 􏼙 − i − 1, m + i􏼒 􏼓 1≤ i≤

n

2
􏼖 􏼗 − 1;

i − 1,
n

2
􏼘 􏼙 − i − 1, m + n − i − 1􏼒 􏼓 i �

n

2
􏼖 􏼗;

n − i, i −
n

2
􏼘 􏼙, m + n − i − 1􏼒 􏼓

n

2
􏼖 􏼗 + 1≤ i≤ n − 1;

0,
n

2
􏼘 􏼙 − 1, m􏼒 􏼓 i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

From the above representation, it is clear that no two
vertices, edges, and an edge or a vertex of Tn,m have the same
representation which implies that mdim(Tn,m)≤ 3. So, we
obtained mdim(Tn,m) � 3.

3. Results on Line Graph of Dragon
Graph L(Tn,m)

A line graph L(Γ) of Γ can be generated by assuming edge set
of Γ as vertex set of L(Γ), and any two vertices of L(Γ) are
adjacent if and only if they are neighboring edges in Γ. Line
graph of dragon graph has V(L(Tn,m)) � a1, a2, . . . , an,􏼈

b1, b2, . . . , bm} and E(L(Tn,m)) � ai, ai+1, bjbj+1: 1≤ i≤ n,􏽮

1≤ j≤m − 1}∪ a1b1, anb1􏼈 􏼉 as its set of vertices and set of
edges, where an+1 � a1 as shown in Figure 3.

Theorem 7. Let L(Tn,m) be a line graph of dragon graph for
n≥ 3 and m≥ 2. 0en, dim(L(Tn,m)) � 2.

Proof. Since dim(L(Tn,m))≥ 2, it is not a path graph Pn.
A � a2, bm􏼈 􏼉 is resolving set of L(Tn,m), and the represen-
tations of all vertices with respect to A are as follows:

r ai|A( 􏼁 �

(1, m), i � 1;

(i − 2, m + i − 1) 2≤ i≤
n

2
􏼘 􏼙;

(i − 2, n + m − i) i �
n

2
􏼘 􏼙 + 1;

(n − i + 2, n + m − i)
n

2
􏼘 􏼙 + 2≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r bj|A􏼐 􏼑 � (j + 1, m − j): 1≤ j≤m.

(12)

All vertices have different representation, which implies
that dim(L(Tn,m))≤ 2. So, we obtained dim(L(Tn,m)) � 2.

Theorem 8. Let L(Tn,m) be a line graph of dragon graph for
n≥ 3 and m≥ 2. 0en, e di m(L(Tn,m)) � 2.

Proof. Since edim(L(Tn,m))≥ 2, it is not a path graph Pn. All
edges of L(Tn,m) are labeled as e1′ � a1b1 and e0′ � anb1.

ei � aiai+1: 1≤ i≤ n􏼈 􏼉 and ej+1′ � bjbj+1: 1≤ j≤m − 1􏽮 􏽯.
A � a2, bm􏼈 􏼉 is an edge resolving set of L(Tn,m), and

representations of all edges with respect to A are as follows:

r e0′|A( 􏼁 � (2, m − 1),

r ej
′|A􏼐 􏼑 � (j, m − j): 1≤ j≤m,

r ei|A( 􏼁 �

(0, m + i − 1) i � 1;

(i − 2, m + i − 1) 2≤ i≤
n

2
􏼖 􏼗;

(i − 2, m + n − i − 1) i �
n

2
􏼖 􏼗 + 1;

(n − i + 1, m + n − i − 1)
n

2
􏼖 􏼗 + 2≤ i≤ n − 1;

(n − i + 1, m) i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

All edges have different representation, which implies
that edim(L(Tn,m))≤ 2. So, we obtained
edim(L(Tn,m)) � 2.

Theorem 9. Let L(Tn,m) be a line graph of dragon graph for
n≥ 3 and m≥ 1. 0en, mdim(L(Tn,m)) � 3.
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Proof. Since mdim(L(Tn,m))≥ 3, it is not a path graph Pn.
All edges of L(Tn,m) are labeled as

en � a1an,

e1′ � a1b1,

e0′ � anb1.

(14)

ei � aiai+1: 1≤ i≤ n − 1􏼈 􏼉 and ej+1′ � bjbj+1: 1≤ j≤􏽮

m − 1}.
A � a2, a⌊n/2⌋+1, bm􏽮 􏽯 is mixed resolving set of L(Tn,m),

and the representations of all edges with respect to A are as
follows:

r ei|A( 􏼁 �

0,
n

2
􏼖 􏼗 − i, m + i − 1􏼒 􏼓 i � 1;

i − 2,
n

2
􏼖 􏼗 − i, m + i − 1􏼒 􏼓 2≤ i≤

n

2
􏼖 􏼗;

i − 2, i −
n

2
􏼖 􏼗 − 1, m + n − i − 1􏼒 􏼓 i �

n

2
􏼖 􏼗 + 1;

n − i + 1, i −
n

2
􏼖 􏼗 − 1, m + n − i − 1􏼒 􏼓

n

2
􏼖 􏼗 + 2≤ i≤ n − 1;

n − i + 1, i −
n

2
􏼖 􏼗 − 1, m􏼒 􏼓 i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

For n even,

r ej
′|A􏼐 􏼑 �

j,
n

2
, m − j􏼒 􏼓: j � 1;

j,
n

2
+ j − 2, m − j􏼒 􏼓: 2≤ j≤m,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r e0′|A( 􏼁 � 2,
n

2
− 1, m − 1􏼒 􏼓.

(16)

For n odd,

r ej
′|A􏼐 􏼑 � j,

n

2
􏼖 􏼗 + j − 1, m − j􏼒 􏼓: 1≤ j≤m,

r e0′|A( 􏼁 � 2,
n

2
􏼖 􏼗, m − 1􏼒 􏼓.

(17)

,e representations of all vertices with respect to A are as
follows:

r ap|A􏼐 􏼑 �

1,
n

2
􏼖 􏼗 + 1 − p, m + p − 1􏼒 􏼓 p � 1;

p − 2,
n

2
􏼖 􏼗 + 1 − p, m + p − 1􏼒 􏼓 2≤p≤

n

2
􏼘 􏼙;

p − 2, p −
n

2
􏼖 􏼗 − 1, m + n − p􏼒 􏼓 p �

n

2
􏼘 􏼙 + 1;

n − p + 2, p −
n

2
􏼖 􏼗 − 1, m + n − p􏼒 􏼓

n

2
􏼘 􏼙 + 2≤p≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r bq|A􏼐 􏼑 � q + 1,
n

2
􏼘 􏼙 + q − 1, m − q􏼒 􏼓: 1≤ q≤m.

(18)

From the above representation, it is clear that no two
vertices, edges, and an edge or a vertex of L(Tn,m) have the
same representation which implies that mdim(L(Tn,m))≤ 3.
So, we obtained mdim(L(Tn,m)) � 3.

4. Results on Paraline Graph of Dragon
Graph L(S(Tn,m)))

Paraline graph is the line graph of the subdivision graph of
any graph. In subdivision graph S � S(Γ), the vertex set is
V(S) � V(Γ)∪E(Γ) and the vertex of S corresponding to the
edge uv of Γ is inserted in the edge uv of Γ. In line graph
L � L(Γ), the vertex set is V(L) � E(G) and two vertices of L

are adjacent if the corresponding edges of Γ are incident.
Paraline graph of dragon graph has V(L(S(Tn,m))) �

a1, a2, . . . , a2n, b1, b2, . . . , b2m􏼈 􏼉 and E(L(S(Tn,m))) �

ai, ai+1, bjbj+1: 1≤ i≤ 2n, 1≤ j≤ 2m − 1􏽮 􏽯∪ a1b1, a2nb1􏼈 􏼉 as
its set of vertices and set of edges, where a2n+1 � a1 as shown
in Figure 4.

Theorem 10. Let L(S(Tn,m)) be a paraline graph of dragon
graph for n≥ 3 and m≥ 2. 0en, dim(L(S(Tn,m))) � 2.

Proof. Since dim(L(S(Tn,m)))≥ 2, it is not a path graph Pn.
A � a2, b2m􏼈 􏼉 is resolving set of L(S(Tn,m)), and the rep-
resentations of all vertices with respect to A are

r ai|A( 􏼁 �

(1, 2m), i � 1;

(i − 2, 2m + i − 1) 2≤ i≤ n;

(i − 2, 2(n + m) − i) i � n + 1;

(2n − i + 2, 2(n + m) − i) n + 2≤ i≤ 2n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r bj|A􏼐 􏼑 � (j + 1, 2m − j): 1≤ j≤ 2m.

(19)

All vertices have different representation, and this fact
can easily be verified, which implies that dim(L(S(Tn,m)))

≤ 2. So, we obtained dim(L(S(Tn,m))) � 2.

Theorem 11. Let L(S(Tn,m)) be a paraline graph of dragon
graph for n≥ 3 and m≥ 2. 0en, edim(L(S(Tn,m))) � 2.

b1
a8

a7a6

a5

a4

a3 a2

a1

b2 b3 b4 b5

Figure 3: Line graph of dragon graph L(T8,5).
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Proof. Since edim(L(S(Tn,m)))≥ 2, it is not a path graph Pn.
All edges of L(S(Tn,m)) are labeled as e1′ � a1b1 and
e0′ � a2nb1.

ei � aiai+1: 1≤ i≤ 2n􏼈 􏼉 and ej+1′ � bjbj+1: 1≤ j≤􏽮

2m − 1}.
A � a2, b2m􏼈 􏼉 is an edge resolving set of L(S(Tn,m)), and

representations of all edges with respect to A are as follows:

r e0′|A( 􏼁 � (2, 2m − 1),

r ej
′|A􏼐 􏼑 � (j, 2m − j): 1≤ j≤m,

r ei|A( 􏼁 �

(0, 2m + i − 1) i � 1;

(i − 2, 2m + i − 1) 2≤ i≤ n;

(i − 2, 2(m + n) − i − 1) i � n + 1;

(2n − i + 1, 2(m + n) − i − 1) n + 2≤ i≤ 2n − 1;

(2n − i + 1, 2m) i � 2n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

All edges have different representation, which implies
that edim(L(S(Tn,m)))≤ 2. So, we obtained edim(L(S

(Tn,m))) � 2.

Theorem 12. Let L(S(Tn,m)) be a paraline graph of dragon
graph for n≥ 3 and m≥ 1. 0en, mdim(L(S(Tn,m))) � 3.

Proof. Since m di m(L(S(Tn,m)))≥ 3, it is not a path graph
Pn. All edges of L(S(Tn,m)) are labeled as

e2n � a1a2n,

e1′ � a1b1,

e0′ � a2nb1.

(21)

ei � aiai+1: 1≤ i≤ 2n − 1􏼈 􏼉 and ej+1′ � bjbj+1: 1≤ j≤􏽮

2m − 1}.
A � a2, an+1, b2m􏼈 􏼉 is mixed resolving set of L(S(Tn,m)),

and the representations of all edges with respect to A are as
follows:

r ei|A( 􏼁 �

(0, n − i, 2m + i − 1) i � 1;

(i − 2, n − i, 2m + i − 1) 2≤ i≤ n;

(i − 2, i − n − 1, 2(m + n) − i − 1) i � n + 1;

(2n − i + 1, i − n − 1, 2(m + n) − i − 1) n + 2≤ i≤ 2n − 1;

(2n − i + 1, i − n − 1, 2m) i � 2n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ej
′|A􏼐 􏼑 �

2,
n

2
− 1, m − 1􏼒 􏼓 j � 0;

(j, n, 2m − j) j � 1;

(j, n + j − 2, 2m − j) 2≤ j≤ 2m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

,e representations of all vertices with respect to A are as
follows:

r ap|A􏼐 􏼑 �

(1, n + 1 − p, 2m + p − 1) p � 1;

(p − 2, n + 1 − p, 2m + p − 1) 2≤p≤ n;

(p − 2, p − n − 1, 2(m + n) − p) p � n + 1;

(2n − p + 2, p − n − 1, 2(m + n) − p) n + 2≤p≤ 2n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r bq|A􏼐 􏼑 � (q + 1, n + q − 1, 2m − q): 1≤ q≤ 2m.

(23)

From the above representation, it is clear that no two
vertices, edges, and an edge or a vertex of L(S(Tn,m)) have
the same representation which implies that mdim(L(S

(Tn,m)))≤ 3. So, we obtained mdim(L(S(Tn,m))) � 3.

5. Results on Line Graph of Dragon
Graph L(L(Tn,m))

Let Γ be a graph and L(L(Tn,m)) be line graph of line graph
of dragon graph Tn.m. Vertex set of line graph of line graph of
dragon graph is VL((L(Tn,m))) � a1, a2, . . . , an, b0,􏼈

b1, b2, . . . , bm−1}, and its edge set is E(L(Tn,m)) �

ai, ai+1, bjbj+1:􏽮 1≤ i≤ n, 0≤ j≤m − 2}∪ an−1b0, anb0,􏼈 anb1,

a1b1, b0b2} where an+1 � a1 as shown in Figure 5.

(a) (b) (c)

Figure 4: (a) Dragon graph (T4,2); (b) Subdivision graph of dragon graph S(T4,2); (c) Paraline graph of dragon graph L(S(T4,2)).
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Theorem 13. Let L(L(Tn,m)) be a line graph of line graph of
dragon graph for n≥ 3 and m≥ 3. 0en,
dimL((L(Tn,m))) � 2.

Proof. Since dimL((L(Tn,m)))≥ 2, it is not a path graph Pn.
A � a2, bm−1􏼈 􏼉 is resolving set of L(L(Tn,m)), and the rep-
resentations of all vertices with respect to A are as follows:

r bj|A􏼐 􏼑 �
(3, m − 2) j � 0;

(j + 1, m − j − 1) 1≤ j≤m − 1.
􏼨 (24)

For n even,

r ai|A( 􏼁 �

(1, m − 1) i � 1;

(i − 2, m + i − 2) 2≤ i≤
n

2
;

(i − 2, n + m − i − 2) i �
n

2
+ 1;

(n − i + 2, n + m − i − 2)
n

2
+ 2≤ i≤ n − 1;

(2, m − 1) i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

For n odd,

r ai|A( 􏼁 �

(1, m − 1) i � 1;

(i − 2, m + i − 2) 2≤ i≤
n

2
􏼖 􏼗;

(i − 2, n + m − i − 2)
n

2
􏼖 􏼗 + 1≤ i≤

n

2
􏼘 􏼙 + 2;

(n − i + 2, n + m − i − 2)
n

2
􏼖 􏼗 + 3≤ i≤ n − 1;

(2, m − 1) i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

All vertices have different representations, which imply
that dim(L(L(Tn,m)))≤ 2. So, we obtained dim(L(L

(Tn,m))) � 2.

Theorem 14. Let L(L(Tn,m)) be line graph of line graph of
dragon graph for n≥ 5 and m≥ 3. 0en, edimL

((L(Tn,m))) � 4.

Proof. Since edimL((L(Tn,m)))≥ 2, it is not a path graph Pn.
All edges are labeled as ei � aiai+1: 1≤ i≤ n􏼈 􏼉 and
ej
′ � bjbj+1: 0≤ j≤m − 2􏽮 􏽯.

e1″ � an−1b0,

e2″ � anb0,

e3″ � anb1,

e4″ � a1b1,

e5″ � b0b2.

(27)

A � a2, b0, b1, bm−1􏼈 􏼉 is an edge resolving set of
L(L(Tn,m)), and the representations of all edges with respect
to A are as follows:

r ej
′|A􏼐 􏼑 �

(2, 0, 0, m − 2), j � 0;

(2, 1, 0, m − 3), j � 1;

(j + 1, j − 1, j − 1, m − j − 2), 2≤ j≤m − 2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r e1″|A( 􏼁 � (3, 0, 1, m − 2),

r e2″|A( 􏼁 � (2, 0, 1, m − 2),

r e3″|A( 􏼁 � (2, 1, 0, m − 2),

r e4″|A( 􏼁 � (1, 1, 0, m − 2),

r e5″|A( 􏼁 � (3, 0, 1, m − 3).

(28)

For n even,

b2

b1

b0

a7

a6

a5

a4

a3

a2

a1

a8 b3 b4

Figure 5: Paraline graph of dragon graph L(L(T8,5)).
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r ei|A( 􏼁 �

(0, 2, 1, m − 1) i � 1;

(i − 2, i + 1, i, m + i − 2) 2≤ i≤
n

2
− 1;

(i − 2, n − i − 1, n − i, n + m − i − 3)
n

2
≤ i≤

n

2
+ 1;

(n − i + 1, n − i − 1, n − i, n + m − i − 3)
n

2
+ 2≤ i≤ n − 2;

(2, 1, 1, m − 1) i � n − 1;

(1, 1, 1, m − 1) i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

For n odd,

r ei|A( 􏼁 �

(0, 2, 1, m − 1) i � 1;

(i − 2, i + 1, i, m + i − 2) 2≤ i≤
n

2
􏼖 􏼗 − 1;

(i − 2, n − i − 1, n − i − 1, n + m − i − 3) i �
n

2
􏼖 􏼗;

(i − 2, n − i − 1, n − i, n + m − i − 3) i �
n

2
􏼖 􏼗 + 1;

(n − i + 1, n − i − 1, n − i, n + m − i − 3)
n

2
􏼖 􏼗 + 2≤ i≤ n − 2;

(2, 1, 1, m − 1) i � n − 1;

(1, 1, 1, m − 1) i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

All edges have different representations, which implies
that edim(L(L(Tn,m)))≤ 4. On the other hand, we have to
show that edim(L(L(Tn,m)))≥ 4.

Suppose to the contrary that edim(L(L(Tn,m))) � 3, then
we have the following possibilities. If the set A � ai, aj, ak􏽮 􏽯

where i, j, k � 1, 2, . . . , n and i≠ j≠ k is an edge resolving set
for graph L(L(Tn,m), then some edges have same represen-
tations as shown in Table 3 and in Table 4.

If the set A � bs, bt, bu􏼈 􏼉 where s, t, u � 2, 3, . . . , m and
s≠ t≠ u is an edge resolving set for graph L(L(Tn,m), then
some edges have same representations as shown in Table 5.

If the set A � an, b0, b1􏼈 􏼉 is an edge resolving set for
graph L(L(Tn,m), then some edges have same representa-
tions as shown in Tables 6 and 7.

,e set A � an, b0, b1􏼈 􏼉 is not an edge resolving set for
graph L(L(Tn,m) because it did not resolve the following edges:

r e1″|A( 􏼁 � r e5″|A( 􏼁,

r e1′|A( 􏼁 � r e4″|A( 􏼁,

r en−1|A( 􏼁 � r en−2|A( 􏼁.

(31)

Any combination of three vertices will not resolve the all
edges of the graph L(L(Tn,m). Hence, there is no edge re-
solving set with three vertices for L(L(Tn,m) which implies
that e di mL((L(Tn,m)))≥ 4. So, we obtained edim(L(L

(Tn,m))) � 4.

r e0′|A( 􏼁 � r e2″|A( 􏼁 � r e3″|A( 􏼁,

r e4″|A( 􏼁 � r en|A( 􏼁,

r e1″|A( 􏼁 � r en−1|A( 􏼁.

(32)
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Table 7: Comparison of the metric dimension, edge metric dimension, and mixed metric dimension.

Tn,m L(Tn,m) L(S(Tn,m)) L(L(Tn,m))

Vertex metric dimension dim(Γ) 2 2 2 2
Edge metric dimension edim(Γ) 2 2 2 4
Mixed metric dimension mdim(Γ) 3 3 3 5

Table 3: Edge distance codes of L(L(Tn,m)) w.r.t. A � ai, aj, ak􏽮 􏽯.

d(., .) ai aj ak

1≤ i≤ ⌊n/2⌋ 1≤ j≤ ⌊n/2⌋ 1≤ k≤ ⌊n/2⌋

e0′ i j k

e2″ i j k

e3″ i j k

e4″ i − 1 j − 1 k − 1
en i − 1 j − 1 k − 1

Table 4: Edge distance codes of L(L(Tn,m)) w.r.t. A � ai, aj, ak􏽮 􏽯

d(., .) ai aj ak

⌊n/2⌋< i≤ n − 1 ⌊n/2⌋< j≤ n − 1 ⌊n/2⌋< k≤ n − 1
e0′ n − i n − j n − k

e2″ n − i n − j n − k

e3″ n − i n − j n − k

e1″ n − i − 1 n − j − 1 n − k − 1
en−1 n − i − 1 n − j − 1 n − k − 1

Table 5: Edge distance codes of L(L(Tn,m)) w.r.t. A � bs, bt, bu􏼈 􏼉.

d(., .) bs bt bu

2≤ s≤m − 1 2≤ t≤m − 1 2≤ u≤m − 1
e5″ s − 2 t − 2 u − 2
e′11 s − 2 t − 2 u − 2
e1″ s − 1 t − 1 u − 1
e2″ s − 1 t − 1 u − 1
e3″ s − 1 t − 1 u − 1
e4″ s − 1 t − 1 u − 1
e0′ s − 1 t − 1 u − 1
e1 s t u

en s t u

en−1 s t u

en−2 s t u

Table 6: Edge distance codes of L(L(Tn,m)) w.r.t. A � an, b0, b1􏼈 􏼉.

d(., .) e1″ e5″ e′11
A � an, b0, b1􏼈 􏼉 (1, 0, 1) (1, 0, 1) (1, 1, 0)

d(., .) e4″ en en−1
A � an, b0, b1􏼈 􏼉 (1, 1, 0) (0, 1, 1) (0, 1, 1)

Complexity 9



Theorem 15. Let L(L(Tn,m)) be line graph of line graph of
dragon graph for n≥ 5 and m≥ 3. 0en,
mdimL((L(Tn,m))) � 5.

Proof. Since edimL((L(Tn,m)))≥ 3, it is not a path graph Pn.
All edges are labeled as ei � aiai+1: 1≤ i≤ n􏼈 􏼉 and
ej
′ � bjbj+1: 0≤ j≤m − 2􏽮 􏽯.

e1″ � an−1b0,

e2″ � anb0,

e3″ � anb1,

e4″ � a1b1,

e5″ � b0b2.

(33)

If A � a2, a⌈n/2⌉+1, b0, b1, bm−1􏽮 􏽯 is mixed resolving set of
L(L(Tn,m)), then the representation of all edges with respect
to A is as follows:

r ej
′|A􏼐 􏼑 �

2,
n

2
􏼖 􏼗 − 1, 0, 0, m − 2􏼒 􏼓, j � 0;

2,
n

2
􏼖 􏼗, 1, 0, m − 3􏼒 􏼓, j � 1;

j + 1,
n

2
􏼖 􏼗 + i − 2, j − 1, j − 1, m − j − 2􏼒 􏼓, 2≤ j≤m − 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r e1″|A( 􏼁 � 3,
n

2
􏼖 􏼗 − 2, 0, 1, m − 2􏼒 􏼓,

r e2″|A( 􏼁 � 2,
n

2
􏼖 􏼗 − 1, 0, 1, m − 2􏼒 􏼓,

r e3″|A( 􏼁 � 2,
n

2
􏼖 􏼗 − 1, 1, 0, m − 2􏼒 􏼓,

r e4″|A( 􏼁 � 1,
n

2
􏼖 􏼗, 1, 0, m − 2􏼒 􏼓,

r e5″|A( 􏼁 � 3,
n

2
􏼖 􏼗 − 1, 0, 1, m − 3􏼒 􏼓.

(34)
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For n even,

r ei|A( 􏼁 �

0,
n

2
− i, 2, 1, m − 1􏼒 􏼓 i � 1;

i − 2,
n

2
− i, i + 1, i, m + i − 2􏼒 􏼓 2≤ i≤

n

2
− 1;

i − 2,
n

2
− i, n − i − 1, n − i, n + m − i − 3􏼒 􏼓 i �

n

2
;

i − 2, i −
n

2
− 1, n − i − 1, n − i, n + m − i − 3􏼒 􏼓 i �

n

2
+ 1;

n − i + 1, i −
n

2
− 1, n − i − 1, n − i, n + m − i − 3􏼒 􏼓

n

2
+ 2≤ i≤ n − 2;

2, i −
n

2
− 1, 1, 1, m − 1􏼒 􏼓 i � n − 1;

1, i −
n

2
− 1, 1, 1, m − 1􏼒 􏼓 i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

For n odd,

r ei|A( 􏼁 �

0,
n

2
􏼘 􏼙 − i, 2, 1, m − 1􏼒 􏼓 i � 1;

i − 2,
n

2
􏼘 􏼙 − i, i + 1, i, m + i − 2􏼒 􏼓 2≤ i≤

n

2
􏼖 􏼗 − 1;

i − 2,
n

2
􏼘 􏼙 − i, n − i − 1, n − i − 1, n + m − i − 3􏼒 􏼓 i �

n

2
􏼖 􏼗;

i − 2,
n

2
􏼘 􏼙 − i, n − i − 1, n − i, n + m − i − 3􏼒 􏼓 i �

n

2
􏼖 􏼗 + 1;

n − i + 1, i −
n

2
􏼘 􏼙 − 1, n − i − 1, n − i, n + m − i − 3􏼒 􏼓

n

2
􏼖 􏼗 + 2≤ i≤ n − 2;

2, i −
n

2
􏼘 􏼙 − 1, 1, 1, m − 1􏼒 􏼓, i � n − 1;

1, i −
n

2
􏼘 􏼙 − 1, 1, 1, m − 1􏼒 􏼓, i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

,e representation of all vertices with respect to A is as
follows:
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r ai|A( 􏼁 �

1,
n

2
􏼖 􏼗, 2, 1, m − 1􏼒 􏼓 i � 1;

i − 2,
n

2
􏼘 􏼙 − i + 1, i + 1, i, m + i − 2􏼒 􏼓 2≤ i≤

n

2
􏼘 􏼙 − 1;

i − 2,
n

2
􏼘 􏼙 − i + 1, n − i, i, n + m − i − 2􏼒 􏼓 i �

n

2
􏼘 􏼙;

i − 2,
n

2
􏼘 􏼙 − i + 1, n − i, n − i + 1, n + m − i − 2􏼒 􏼓 i �

n

2
􏼘 􏼙 + 1;

n − i + 2, i −
n

2
􏼖 􏼗 − 1, n − i, n − i + 1, n + m − i − 2􏼒 􏼓

n

2
􏼘 􏼙 + 2≤ i≤ n − 1;

2,
n

2
􏼖 􏼗 − 1, 1, 1, m − 1􏼒 􏼓, i � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r bj|A􏼐 􏼑 �

3,
n

2
􏼖 􏼗 − 1, 0, 1, m − 2􏼒 􏼓, j � 0;

2,
n

2
􏼖 􏼗, 1, 0, m − 2􏼒 􏼓, j � 1;

j + 1,
n

2
􏼖 􏼗 + j − 2, j − 1, j − 1, m − j − 1􏼒 􏼓,

2≤ j≤m − 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

All vertices and edges have distinguished representations
with respect to set A � a2, a⌈n/2⌉+1, b0, b1, bm−1􏽮 􏽯, which
implies that mdim(L(L(Tn,m)))≤ 5. On the other hand, we
have to show that mdim(L(L(Tn,m)))≥ 5.

As we know that the edge metric dimension of line graph
of line graph of dragon graph is 4, edim(L(L(Tn,m))) � 4 by
,eorem [6]. Let mdim(L(L(Tn,m))) � 4 and set
A1 � a2, b0, b1, bm−1􏼈 􏼉 be mixed resolving set. ,e set A1 did
not resolve all edges and vertices as r(ei|A1) � r(ai|A1) for
2≤ i≤ n/2 − 1 and r(ei|A1) � r(ai+1|A1) for n/2 + 2≤
i≤ n − 1. ,at is why we have to include one more vertex
a⌈n/2⌉+1 in mixed resolving set which implies that
mdim(L(L(Tn,m)))≥ 5.

If the set A2 � a2, a⌈n/2⌉+1, b0, b1􏽮 􏽯 is mixed resolving set,
then it resolves all edges and vertices of L(L(Tn,m)).
However, r(ej

′|A2) � r(bj|A2) for 2≤ j≤m − 2. ,e set A2
did not resolve all edges and vertices of L(L(Tn,m)); this
implies that mdim(L(L(Tn,m)))≥ 5.

If the set A3 � a2, a⌈n/2⌉+1, b1, bm−1􏽮 􏽯 is mixed resolving
set of L(L(Tn,m)), then r(e3″|A3) � r(e0′|A3); the set A3 did
not resolve all edges of L(L(Tn,m)); this implies that
mdim(L(L(Tn,m)))≥ 5.

If the set A4 � a2, a⌈n/2⌉+1, b0, bm−1􏽮 􏽯 is mixed resolving
set of L(L(Tn,m)), then r(e2″|A4) � r(e0′|A4); the set A4 did
not resolve all edges of L(L(Tn,m)); this implies that
mdim(L(L(Tn,m)))≥ 5.

If the set A5 � a⌈n/2⌉+1, b0, b1, bm−1􏽮 􏽯 is mixed resolving
set of L(L(Tn,m)), then r(an|A5) � r(en|A5), r(b0|A5)

� r(e2″|A5), and r(b1|A5) � r(e4″|A5),; the set A5 did not
resolve all edges and vertices of L(L(Tn,m)); this implies that
mdim(L(L(Tn,m)))≥ 5.

It is clear that mdim(L(L(Tn,m)))≥ 5 is also computed
that no set of cardinality smaller than five is a mixed re-
solving set of L(L(Tn,m)). So, we obtained mdim(L(L

(Tn,m))) � 5.

6. Comparison of Vertex, Edge, and Mixed
Metric Dimension of Dragon Graph

On the basis of some facts given in [17], one can easily
conclude that these parameters are not comparable because
there are some families graph Γ for which dim(Γ)< edim(Γ),
dim(Γ) � edim(Γ), or dim(Γ)> edim(Γ). Moreover, from
[23], infinite families of graphs for which dim(Γ)> edim(Γ)
is satisfied were described, which was an open problem
presented in [17], where only one family satisfying this
inequality was given. Any mixed metric generator is, by
definition, also a metric generator and an edge metric
generator. In this sense, the connection mdim(Γ)
≥max dim(Γ), edim(Γ){ } [20] follows instantly. It is obvious
that the vertex set of any graph Γ forms a mixed metric
generator for any graph Γ. In addition, any vertex of Γ, as
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well as each incident edge with it, has the same distance to
the vertex itself. In this respect, a single vertex in Γ cannot
constitute a mixed metric generator.

7. Conclusion

In this article, we calculate the exact value of vertex, edge,
and mixed dimension for dragon graph, Tn,m, line graph of
dragon graph, L(Tn,m), paraline graph of dragon graph,
L(S(Tn,m)), and line graph of line graph of dragon graph,
L(L(Tn,m)). ,e vertex metric dimension for Tn,m, L(Tn,m),
L(S(Tn,m)), and L(L(Tn,m)) is constant and same;
dim(Tn,m) � dim(L(Tn,m)) � dim(L(S(Tn,m))) � dim
(L(L(Tn,m))) � 2. ,e edge metric dimension for Tn,m,
L(Tn, m), L(S(Tn,m)), and L(L(Tn,m)) is constant but
edim(Tn,m) � e dim(L(Tn, m)) � edim(L(S(Tn,m)))

� 2< edim(L(L(Tn,m))) � 4. ,e mixed metric dimension
for Tn,m, L(Tn,m), L(S(Tn,m)), and L(L(Tn,m)) is constant
but mdim(Tn,m) � mdim(L(Tn,m)) � mdim(L(S(Tn,m)))

� 3<mdim(L(L(Tn,m))) � 5. It is already known from [17]
that there are graphs G for which dim(Γ)< edim(Γ),
dim(Γ) � edim(Γ), or dim(Γ)> edim(Γ). Moreover, dragon
graph, Tn,m, line graph of dragon graph, L(Tn,m), and
paraline graph of dragon graph, L(S(Tn,m)), are families of
graphs for which dim(Γ) � edim(Γ) but line graph of line
graph of dragon graph is L(L(Tn,m))dim(Γ)< edim(Γ).
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