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Biological proceedings are well characterized by solid illustrations for communication networks. The framework of biological
networks has to be considered together with the expansion of infectious diseases like coronavirus. Also, the graph entropies have
established themselves as the information theoretic measure to evaluate the architectural information of biological networks. In
this article, we examined conclusive biochemical networks like ¢-level hypertrees along with the corona product of hypertrees with
path. We computed eccentricity-based indices for the depiction of aforementioned theoretical frameworks of biochemical
networks. Furthermore, explicit depiction of the graph entropies with these indices is also measured.

1. Introduction

Chemical graph theory is the developed mathematical field
to study the problems of chemical networks. This field has
extensive applications in computer sciences, mathematics,
sociology, biology, medicine, and physics [1, 2]. The bio-
logical entities such as proteins, RNA, DNA, metabolites,
and graphs are used to grab the association between these
entities [3, 4]. Topological analysis of wide-ranging protein
association network can bring intuition into repetition
which can be used to predict protein functions [5, 6].
Furthermore, regulation approaches for contagious diseases
generally rely on graph theoretic networks [7]. Schnitzler
and Grass investigated initial analysis of neurological [8].
The obtained results are applied for decision control
measures [9]. Kucharski et al. [10] investigated the fluctu-
ations in transmission rates to analyze the efficiency of the
control measures. Roosa et al. [11] illustrated phenome-
nological models to anticipate the dynamic of COVID-19. In
[12], artificial intelligence approach is presented to find the
top-quality prognostic models for the investigation of

infectious diseases. Wan et al. [13] estimated risk-recogni-
tion for doubtful COVID-19 cases with the help of the graph
embedding method. These complex networks have key role
in communication systems, Internet, the World Wide Web,
environment, and public health. Due to the extensive ap-
plications of complex networks, epidemiological and eco-
logical researchers have chased their consideration to
network analysis.

A tree in which one vertex has been nominated as the root
and each edge is extended away from root is known as hyper
tree. Different biological organisms like DNA sequences or
different species could be represented by the vertices of a
rooted tree. Aforementioned rooted trees of biological con-
cern are termed as evolutionary trees of phytogenetic trees. A
hypertree is a network topology and is a mixture of the
hypercube concept and the binary tree. Artificial intelligence
and machine learning approaches have demonstrated that
when contact tracing is comprehensively exercised, one can
alleviate the outbreak of the pandemic by cracking the existing
sequence of spread of the coronavirus and consequently
supporting to decrease the rate of current epidemic [14].
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Consider & = (&, &) be a graph in which &, and &
are used to represent the vertex set and the edge set of &,
respectively. The degree of any vertex [ is termed as the
number of edges associated to it and is denoted by g (I). The
maximum distance between / and any other vertex of & is
termed as eccentricity of / and is denoted by o (I). Also, if
Im € G, then g (I) and p (m) denote the degrees of vertex [
and m, respectively. In QSPR/QSAR studies, a lot of mo-
lecular descriptors are employed to correlate different bio-
logical and physico-chemical activities. In this study, we will
talk about some eccentricity-based and degree-based
indices.

Uncertainty is prevailing. It turns up as a consequence of
insufficient information than the whole information re-
quired to identify its circumferences. In 1948, Shannon [15]
established a criterion to guess the uncertainty identified as
entropy. The entropy measure has identified comprehensive
employment in physical sciences [16]. In the literature,
numerous graph entropies are estimated by eccentricity of
the vertices and characteristic polynomials [17]. Manzoor
et al. talked about few relations between the complexity of
graphs and Hosoya entropy [18, 19].

In 2014, Chen et al. [17] established the description of the
entropy in equation (1) as follows:

y(I'm') og y(I'm') ]
I'm'e@y Zlme?EV/ (Im) Zlme?Ell/ (Im)

ENT, (%) = -

(1

Also, the compact form of some eccentricity-based to-
pological indices is depicted in Table 1, and some degree-
based topological indices are depicted in Table 2.

2. Methodology

To enumerate our findings, we will exert the approach of
combinatorial computing, edge partition technique, analytic
methods, degree enumerating technique, and graph theo-
retic tools. Additionally, we will utilize Matlab and maple
software for mathematical computing. For plotting our
obtained results, we will use Microsoft Excel.

Complexity

3. Structure of Complete Hypertree

A complete binary tree is termed as hypertree; we will denote
it by €8T (t) with t levels where level k, 0 <k <t, includes
2k vertices. The vertices of BT (t) are designated in the
following way: the label of root node is 1 and it is at level 0.
For any vertex J, the children of [ are tagged with 2/ and 2/ + 1
[28]. In a hypertree, extra edges are horizontal, where in the
same level k, 1 <k <t, any two vertices are attached by an
edge (see Figure 1). Consider the hypertree A7 (3) in
Figure 1 (see [28]) as an illustration to deduce distinct to-
pological indices and their respective entropies. To dem-
onstrate our main findings, we form a partition of edges of
the hypertree BT (t) for t levels established on eccen-
tricity of end vertices in Tables 3 and 4 representing the edge
partition of AT (1).

The quantitative structure activity relationship research
of dendrimers could then be assisted by the distinct topo-
logical indices and their respective entropies acquired in this
study for hypertrees [29]. In addition, current development
of topological indices examined in [30] has substantial
consequences in complex networks of material and mo-
lecular systems in which larger atoms and many other huge
elements are presented [31]. For such systems, the relativistic
consequences are very significant.

3.1. Eccentricity-Based Entropies of € B (t). In this seg-
ment, we measure the eccentricity-based entropies of the
complete hypertree € BT (t).

3.1.1. The Fourth Geometric Arithmetic Eccentric Entropy.
Now, using Tables 1 and 3, the fourth geometric arithmetic
eccentric index is calculated in [28] as follows:

B 2 2
GA (g@g):1+zf+tizk+z \/(t +k +2tk—t—k) '
4 & 2(t+k) -1

(2)
We computed ENTg,, as follows:
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i=1 ImeE; (6 BT

2+/e (Do (m) }10 [ZVQ(I)Q(M)]
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3.1.2. The First Zagreb Eccentric Entropy. The first Zagreb
eccentric index by using Tables 1 and 3 is calculated in [28]
as follows:

MM, (ERBT) = (12t — 14) x 2" — 6t + 16. (4)

We computed ENT),,, as follows:
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TaBLE 1: Eccentricity-based topological indices along with their respective edge weight y (Im) of the edge Im.

Eccentricity-based topological indices Edge weight vy (Im) of the edge Im Entropies

The fourth geometric arithmetic eccentricity index [20] (2+Jo(Do(m) /(o (D) + o (m))) The fourth geomet;ct:é;t}l:metlc eccentricity
The first Zagreb eccentric index [20] o) +o(m) The first Zagreb eccentric entropy
The second Zagreb eccentric index [20] o(l)-o(m) The second Zagreb eccentric entropy
Eccentric atom bond connectivity index [21] A (o (D) +o(m) —2)/(o(I) x o(m)) Eccentric atom bond connectivity entropy

TABLE 2: Degree-based topological indices along with their respective edge weight y (Im) of the edge Im.

Degree-based topological indices Edge weight y (Im) of the edge Im Entropies
The hyper Zagreb index [22] [+ gJ(m)]2 The hyper Zagreb entropy [23-25]
The forgotten index [26] (p(l))2 + (gJ(m))2 The forgotten entropy [23-25]

The atom bond connectivity index [27] A (D) + p(m) —2)/ (p () x p(m))) The atom bond connectivity entropy [19, 23, 24]

1 level O

P— 2 L= S

level 2

15 level 3

—_—

FIGURE 1: An illustration of the hypertree €BJ (t) for t = 3 levels [28].

TaBLE 3: Edge partition of AT (t) for t-levels.

(o(D),0(m)) Number of repetition Range of ¢ and k
(t,t) 3 t>3

(t+k—-1,t+k) 2k t>3, 1<k<t-1
(t+kt+k) 2k t>3,1<k<t-1

TaBLE 4: Edge partition of €8T (t) with t-levels.

(g (), g (m)) Number of repetition Kinds of edges
(2,2) -1 E,
(2,4) 2 E,
(4,2) 2! E,

(4,4) e E,
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w

ENTp, (6RBT) = log(MM,) -

Y e +e(m)logle() + o (m)],
i=1 ImeE; (6BT)
6t log[2t]

ENT CRBT) =log((12t — 14) x 2" — 6t + 16) —
i, ) = log( ) ) ((12¢ - 14) x 2 — 6t + 16)

28 2k + 2t - Dlog[ Y} (2K +2t - 1)] ) Y2 2k = 2t)log[ i) (2K +21)]
((12¢ - 14) x 2' - 6t +16) ((12¢ - 14) x 2" - 6t +16)

(5)

6t log[2t]

= log((12t — 14) x 2" - 6t + 16)—((12t_ 14)x 2~ 6t + 16)

((8t—10)2" - 8t + 12)log[3t* — 4t + 1] ((4t —4)2" — 4t + 4)log[(3/2) (t - 1)]
- (12— 14) x 2" — 6t + 16) - (12t - 14)x2" —6t +16)

MM, (BBT) = (127 - 28t +22) x 2" = 3¢* + 16t — 22.
3.1.3. 'The Second Zagreb Eccentric Entropy. The second

Zagreb eccentric index by using Tables 1 and 3 is calculated (6)

n [28] as follows: We computed ENT),,,, as follows:

3

ENT . (§BT) =log(MM,) - (MM Z Y e +o(m)loglo() + o (m)],
i=1 lmeE; (68T
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ENT 0, (GBT (1) = log((12£* — 28t +22) x 2' = 3t” + 16t - 22) - (2 280+ 22) <2~ 3+ 16 - 22)

L2+ + 2tk =t — k) )log[ L (£ + K + 2tk — £ —k))]
((12t2 — 28t + 22) x 2" =3t + 16t — 22)

2" (¢ + k) log[ X0 (£ + k)]
(126 — 28t + 22) x 2" — 3% + 16t - 22)

(7)

3t210g[t2]

_ 2_ t_ 2 _ _
—log((IZt 28t+22)><2 3t% + 16t 22) ((12t2_28t+22)th_3t2+l6t_22)

(887 =20 + 16)2" — 4¢> + 12t - 16)log[(7/3)¢* — 4t> + (5/3)t ]
- (126 - 28t +22) x 2" = 3¢ + 16t - 22)

((48* — 8t +6)2" — 2¢* + 4t — 6)log[(7/3)" — (5/2)t* + (1/6)¢ ]
(1267 - 28t +22) x 2" - 3¢* + 16t - 22) '

3.1.4. Eccentric Atom Bond Connectivity Entropy. The ec-
centric atom bond connectivity index by using Tables 1 and 3
is calculated in [28] as follows:

3v2t-2 S & , 2t +2k -3 22 +k) -2
_ S O kNe\LTR)— & 8
ABC(6RBT) p +k§12 (t+k—1)(t+k)+k§12 g . (8)
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We computed ENT 43¢ as follows:

ENT 50 (BT ) = log(ABC;) —

: [ }@(l)+9(m)—2]10 [ I@(l)+9(m)—2]

1
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i=1 ImeE, (6BT)
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((3\@— 2y + T2 @+ 2k = 3)/(F + K 20k - 0 k) + T2 (VTR -2/ (¢4 )

2@t 2k = 3)/(¢ K+ 2tk — £ - K)log| BT\ 2t + 2k = 3)/(£ 4 K 4 2tk -t~ k) |

( ((3\2E=2)/t) + Y1 k”\/ (2t +2k - 3)/(F + K +2tk -t — k) + X525 (V2 + k) - 2/( t+k))>

Yo 2 (V2 (t+ k) =2/ (t+ k)log[ X)) (V2(t +K) =2/ (t + k)]

((3\@— 0+ T2 @+ 2k = 3N 4 1+ 2tk =t - K) + T2 (VR FR -2/ (4 0))

(9)

3.2. Degree-Based Entropies of € BT (t). In this segment,  3.2.1. The Hyper Zagreb Entropy. Now, using Tables 1 and 4,
we measure the degree-based entropies of the hypertree  the hyper Zagreb index is calculated in [28] as follows:

o
GBI (t). HM (EBT) = 104 x 2' — 248.

We computed ENTyy, as follows:

ENTyy (6BT) = log (HM) - Z Y e+ pm)log(lpD) +m)]),

(HM) i=1 ImcE, (BT)

2%og[16]  36(2+2 )log[36] (27 - 2" - 320)log[64]

ENTiuy (G5 (1)) = log(104 2" - 248) - (104x2" - 248) (104 x 2" —248) (104 x 2" - 248)

F(GBT) =76 x 2" —120.
3.2.2. The Forgotten Entropy. Now, using Tables 1 and 4, the

forgotten index is calculated in [28] as follows: We computed ENT}, as follows:

4
ENT (65F) = log(F) - Z Y [e®) +(m)) |log] (0 () + (9 (m))’],
=1 lmeE,; (6RBT)

2"log 8] (40 +2")log[20]  (2"° - 2"** - 160)log[64]

— t_ — - -
ENT; (689) = log(76 x 2° - 120) (76 x 2" —120) (76 x 2" - 120) (76 x 2" — 120)

3v2 36 5v3
3.2.3. The Atom Bond Connectivity Entropy. Now, using ABC(€RT) :(T +T) ﬁ(l T4
Tables 1 and 4, the atom bond connectivity index is cal-

culated in [28] as follows: We computed ENT 45 as follows:

)

(10)

(11)

(12)

(13)

(14)
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ENT 5o (BT ) = log(ABC) (ABO)
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i=1 ImeE;(6RBT)

oM +pm 2] T o) +p(m) -2
0 bl
\ o) xp(m)

81\ o) xp(m)

ENT j3c (6BT) = log(( 1

(2t+1 t 1

Mﬁf)z% \/5(1—5\5

5)log (V6 /4]

((3v2/4) + (3v/6 /8))2" + V2(1 — (5V/3 /4))

))_ (2" +27 " +2)log[1/V2] (15)

((3v2/4) + (36 /8))2 + V2(1 — (53 /4))

4. Corona Product of Complete Hypertree and a
Path 635 (t)o P,

Let ?1 = (n,,m,) and ?2 = (n,,m,) be two graphs, then
corona product of these graphs is outlined as the graph
acquired by picking one copy of €, and n, copies of €, and
afterwards associating the ith vertex of &, with an edge to
each vertex in the ith copy of &,. It develops from the
description of the corona product of two graphs that

| §10§2| =n,(n, +1)and |E§1@§2| =my +n, (m, +n,) (see

details in [28, 32]). It is noted that corona product of two
graphs is no commutative. We demonstrate the corona
product of hypertree €87 (t) and path P, for t = 3 and
n = 3 in Figure 2.

Consider the corona product of complete hypertree and
path €87 (3) ® P, in Figure 2 as an illustration to deduce

[5]GA, (68T (o P,) =(2' +n)+(n-

+(n+2) sz“

We computed ENT,, as follows:

ENTg,, (6$BT ()0 P,) =log(GA,) - Gay A4) Z

i=l ImeE, (BT ()0 P,)

1)(2”1 - 2) +

\/(t+k) +(t+k)

different topological indices and their respective entropies.
To describe our main findings, we form a partition of edges
of the corona product of hypertree and path €87 (t)o P,
for t,n > 2 established on eccentricity of end vertices in seven
sets shown in Tables 5 and 6 representing the edge partition
of BT (t)oP,. Also, if Im € &y, then p(I) and p(m)
denote the degrees of vertex [ and m, respectively.

4.1. Eccentricity-Based Entropies of €8I (t)©P,. In this
segment, we measure the eccentricity-based entropies of the
corona product of hypertree and a path €8T (t)0 P,

4.1.1. The Fourth Geometric Arithmetic Eccentric Entropy.
Now, using Tables 1 and 5, the fourth geometric arithmetic
eccentric index is as follows:

2Vt +3t+2
——+nxX
2t+ 3

2t+1\/4t2 +2t

4t + 1
(16)

2(t+k)+1

[2\/9(1')9(111') ]10 [2\/9(1')9(171—) ]

o(l) +o(m) o(l) +o(m)

ENTg, (68T (1)02,) = log(GA,) - Z

-1 \/(t2+k2+2tk+t+k) [t—l \/(t2+k2+2tk+t+k)] (17)
0g

2(t+k+1) 2(t+k+1)

k=1

nx 2142 4 2t [2\/4152 + 2t:| (D (E+2) log[zx/(t +1)(t+2) ]

(GA,) (4t +1)

4.1.2. The First Zagreb Eccentric Entropy. The first Zagreb
eccentric index by using Tables 1 and 5 is calculated in [28]
as follows:

4t + 1

(GA,) (2t +3) 2t +3

M, (GBI (t)0 P,) = (16nt + 4t — 2n— 8) x 2 — dnt
+9n — 4t + 6.
(18)
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FIGURE 2: Depiction of corona product of complete hypertree and path €87 (3) © P;[28].

TaBLE 5: Edge partition of €ABJ (t) © P, grounded on eccentricity of end vertices of every edge, n>2.

(o), p(m)) Frequency Range of ¢t and k
(t+1,t+1) 3 t>2
(t+kt+k+1) (2 +n)2k l<k<t-1,t>2
(2t,2t + 1) 2t xn 1<k<t-1,t>2
(t+1,t+2) n 1<k<t-1,t>2
(t+k+1,t+k+1) (n—1)2k 1<k<t, t>2
(t+k+1,t+k+1) 2k 1<k<t-1,t>2
(t+2,t+2) (n-1) t>2

TaBLE 6: Edge partition of BT (t)o P, for t,n>2.

(p (D), p(m)) Frequency Types of edges
(n+2,n+2) 21 E,
(n+2,n+4) 2+2! E,
(n+4,n+4) (21 - 1)+zj.;2121+1 E,
(n+2,2) 2021 +1) E,
(n+2,3) (n-2)(2t+1) E.
(n+4,2) z;;‘lzf“ Eq
(n+4,3) (n- 2)2;;‘121‘ E,
(2,3) 2027 Eq
(3,3) (n-3)(2"-1) E,
We computed ENT),,, as follows:
7
ENTypp, (82T (5)02,) = log (MM, ) - W Y Y e+ elmllogle() +(m)],
1

ENT .y, (BBT ()0 P,) = log((16nt + 4t — 2n - 8) x 2 — 4nt + 9n — 4t +6) —

=1 ImeE; (687 ()0 P,)

6(t + Dlog[2t + 2]

(MM,)
(n+2) ; 5 a2t
(MMI)((4t_3)2 +2—4t)log[3t —2t—1] —m(4t+1)log[4t+1]
n(2t+3) (n_ 1) . 5
O log[2t+3]—m(8tx2 —at)log[(t+1)* +2t(t+1) —t — 1]
t
wlog[%2 —t-2]- (=D 5 1 a)log[2t + 41,

(MM,) (MM,)

(19)
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4.1.3. The Second Zagreb Eccentric Entropy. The second
Zagreb eccentric index by using Tables 1 and 5 is calculated
in [28] as follows:
MM, (6BT ()0 P,) =(16nt* — dnt + 4t* + 8n — 16t +7)2'(-2nt> + Int - 2t* — 2n + 6t - 9). (20)
We computed ENT),, as follows:
7
ENT, (BT (t) 0 P,) = log(MM,) (MM Z Y lo (1) x o (m)]log[o (1) x o (m)],
2/ i=l lmeE, (68T (e P,)
3(t+1)° 2 nx 2t 2 2
ENT CRBT (t)oP,) =log(MM,) - ——log| (t+1)°| - 2t° + t)log |4t” + 2t
MMZ( () n) Og( 2) (MMZ) Og[( + ) ] (MMZ)( + )Og[ + ]
2+n 2 ¢ 2 7t3 4t 2 (7’1 - 1) 2 2
S IviTA) [(4¢* — 6t +4)2" -2t +2t—4]log[?—?—t - (MMZ)(t+2) log[ (t +2)°]
2
n(t”+3t+2 -1 9, 13
—Qlog[t +3t] ) [(8¢% +4)2" —2¢” - ]log[ Pt = t]
(MM,) Mz) 2 2
1 5 b o 1, 11
~ VIAE) (48 - 4t +3)2" -2t ]log[ 4 2t -t 1].
(21)
4.1.4. Eccentric Atom Bond Connectivity Entropy. The ec-
centric atom bond connectivity index by using Tables 1 and 5
is calculated in [28] as follows:
3 2t +2k -1 4t -1 2t+1
ABC;(6RBT (t)o P,) = \/_+(2+ )ZZ 2+ +nx2 3 +nx 27+
ey \l(t +k +2tk+t+k) 4t° + 2t t°+3t+2
(22)
2k +2t O pV2k+ 2t V2t +2
+(n—1)z PR o S N U Rt
t+k+1 & t+k+1 t+2

We computed ENT ;g as follows:
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! —2 () +o(m) -2
BN (7 002 (000 - s 3 e e s

=1 ImeE,; (¢ BT ()0 P,)

3 V2t V2t 4.2 |ar-1 [ar-1
g = log(ABC.) - ] - - ]
ENT pc, (687 (1) © #,) = log (ABC;) (ABC;) [t - 1] Og[t + 1] (ABC;) \ar? v 2r o \aZ + 2

2+ §2k [ 2t +2k— 1 Zl 2t +2k—1
(ABCy) P \j(t2+k2+2tk+t+k) e \l(t + K +2tk+t+k)
n | 2t+1 {] 2+ 1 } (n-1) [Z k\/2k+2] Li\/2k+2t:|

T (@BC) \ a2 8| e 312 | (aBC,) t+k+1 <tk

k\/2k+2 ZI\/2k+2t (-1 \/2t+21 V2t +2
(ABC Z t+k+1 Zt+k+1| (ABCs) | t+2 |2 |

(23)

4.2.1. The Hyper Zagreb Entropy. Now, using Tables 1 and 6,

4.2. Degree-Based Entropies of € BT (t)© %,. In this seg-
the hyper Zagreb index is as follows:

ment, we measure the degree-based entropies of the corona
product of hypertree and path €B7 (t) 0 %,

HM (BT ()0 P,) = 2(n’ + 34n” + 1851 - 66)2' - n’ - 26n" — 199n + 32. (24)

We computed ENTyyy as follows:

ENTyy (657 ()0 2,) = log(HM) — (HM) > > [ (1) + () log([p (1) +p (m)]*),
=1 ImeE,; (¢ BT (Ho P,)

t—1

ENTyy (68T (t) 0 P,) = log(HM) — (?-IM) ( (2n + 4)2)log[ 2n+ 4)2] (HM) [(2n +6) ]log[ (2n+6) ]

t-2 5
(i;$) <(2 1) Z 2j+1>log[ (2n + 8)2] _ ('(11_;\2 (2t+1 + 2)10g[ (n+ 4)2]
st
2
_ (?1—-1'—1\/5[; (n- 2)(2’ + l)log[(n + 5)2] _ (?};'1\/6[; ( ot _ )log[(n +6) ]
( +7)2 t 25 22 ) 36(n-3), .
-y =20 =277 o D 0 ont
(25)

4.2.2. The Forgotten Entropy. Now, using Tables 1 and 6, the
forgotten index is as follows:

F(6BT ()0 P,) =(2n" + 180" + 114n - 4)2' —n’ - 18n" — 111n - 82. (26)
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We computed ENT}, as follows:

1 9
ENT; (637 ()0 2,) = log(F) = ). >
(F) 5 ImeE; (68 (o P,)

log (F) —2—(n+ 2)’log[2(n+2)*] -

ENT, (63T () o P,) = B

(F)

T

2(n+ 4) -

73 ((2“ -1) +J

t
_ (2 i 1) (n— 2)(;12 + 4n + 13)log[n2 +4n + 13]

I\
—

2/t >log[2 (n+4) ] +

Complexity

[ (1) + (g (m))*]log[ (0 (1) + ( (m))*],

2
(2 +2 ) (2n2 + 121+ 20)10g[2712 +12n+ 20]

t+1
(2 i ) (n2 +4n+ 8)log[n2 +4n+ 8]

(F)

t+1
- ( _ 4) (n2 +8n + 20)log[n2 +8n+ 20]

(F) (F)
(n—-2) 13 , 102
- 2" —2)(n® + 8n + 25)log[n” + 8n +25 27 -2)log[13
=2 (3 2)(o 2o 4 25] - 12 (2 2)ogl13)
- —(n-3)(2"" - 1)log[18].
(F) 5 (n-3)(2" = 1logl1s]
(27)
4.2.3. The Atom Bond Connectivity Entropy. Now, using
Tables 1 and 6, the atom bond connectivity index is as
follows:
1 V2n+2 2 V2n+6 1
F _ -1 t t—1 _ Lo
ABC(6BT (HoP,) =271 ———=+(2+2 )\ ——+(27 " +2'-5)—— +ﬁ(z 4)
(28)
" n+3 " n+5 2 41
+(n-2)(2" + 1)\/3n+6+(n 2)(2' -2) CEVIREL 3)(2* - 1).
We computed ENT .5 as follows:
R 1) +p(m) -2 () +p(m) -2
ENT 150 (68T (1) 0 P,) = log(ABC) — Z Z [ —————— log[\[—+—"—— |,
(ABC) i=1 ImeE, (88 (0 P,) (D) xp(m) () xp(m)
ENT 5 (6B (1) P,) = log (ABC) - 27! vamw2, [vame2] (2+2) (2 2
ABC n) =108 (ABC). n+2 n+2 (ABC)' n+410g n+4
(2“‘ +2t—5) \/214+61 V2n+6 (2t+3 2(” 3)( 2! 1)1 2
T (ABC) n+a nid | 2 (ABC) \/’ 3(ABC) Og[E]

(n-2)(2"+1)

(n-2)(2'-2) [n+5

’n+3 \/n+3 ~
3+ 68 \anve

(ABC)

(ABC)

ool s |

(29)

\j3(n+4)
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TaBLE 7: Comparison of degree-based entropies ENTyy, ENTy, and ENT - for @B T (1).
[t] ENTypy, ENT, ENT 5
[2] 2.1246 3.5842 1.9089
[3] 2.9512 4.0699 2.7883
(4] 3.7143 4.7145 3.5641
[5] 4.4418 5.3915 4.2964
[6] 5.1520 6.0782 5.0086
[7] 5.8536 6.7685 5.7111
8] 6.5509 7.4603 6.409
[9] 7.2462 8.1528 7.1044
[10] 7.9404 8.8456 7.7987
TaBLE 8: Comparison of degree-based entropies ENTyyy;, ENT, and ENT 5 for 6B (t) 0 2,,.
[n,t] ENTyy ENT, ENT e
[2,2] 3.2403 3.2263 3.3968
(3,3] 4.4033 4.1609 4.5576
[4,4] 5.3793 5.0322 5.5605
[5,5] 6.3577 6.0125 6.4837
[6,6] 7.2580 6.8099 7.3601
[7,7] 7.9193 7.6030 8.2058
(8,8] 8.7118 8.3501 9.0301
[9,9] 9.4911 9.0638 9.8386
[10,10] 10.2609 10.0376 10.6349

5. Physical Interpretation of Computed Results

In QSPR/QSAR deliberations, topological indices are uti-
lized to associate the biological functions of the frameworks
with their substantial properties like distortion, strain en-
ergy, stability, and melting point [33]. These assessments can
be executed by using degree-based indices because these
indices have clarity of decision and rapidity [34]. In this
section, we talked about some degree-based entropies. We
proposed a new approach to estimate the entropy by esti-
mating its topological indices. The forgotten and the hyper
Zagreb indices are employed to form the physico-chemical
characteristics such as density, volume, entropy, and
acentric factor of the underlying structure [35]. The degree-
based entropy can also be employed to structural chemistry,
social network, biology, ecological networks, and national
security. Entropy function is monotonic as in all situations.
It can be viewed from Tables 7 and 8. These numerical tables
show the behaviours of the computed results. The graphical
representation of these results is observed in Figures 3 and 4.

Numerous employment of complex networks stranded
on the entropy correlated with structural information were
issued. In [36, 37], many algorithms were recommended to
examine the structural complexity. However, the entropy
approach is reviewed to be the most substantial approach to
distinguish biological networks. Furthermore, eccentricity-
based indices have vigorous role due to having the potential
of computing pharmaceutical properties. Therefore, we have
listed mathematically some eccentricity-based entropies for
little considerations of parameters for ¥%J (t) and
CRBT (t)0P,. Also, we produce tables with the help of
Matlab for small estimations for eccentricity of €RBT (t)
and BT (t) ©P,. From Tables 9 and 10, we can note that
all the evaluation of entropy are in growing request as the

—

Values of Entropies
O W U ® oS

2] (31 4 [5) [6] (71 [8] [9] [10]
[t]
—eo— ENT_HM

ENT_F
—eo— ENT_ABC

FiGure 3: Comparison of entropies for hypertree €BT (t).

—
o O

Values of Entropies
(o)}

[2,2] [3,3] [4.4] [55] [66] [7.7] [8.8]
[n,t]

[9,9] [10,10]

-e— ENT_HM
ENT_F
—e— ENT_ABC

F1Gure 4: Comparison of entropies for corona product of hypertree
and a path €37 (t)0 %,
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TaBLE 9: Comparison of eccentricity-based entropies ENTg, , ENTp, ENTyy , and ENT g for €5 (1).

[t] ENTg,, ENTyy, ENTyy, ENT ypc.
(3] 2.6501 2.6731 2.4438 2.4468
[4] 3.1245 3.0546 2.8593 2.7632
(5] 3.6393 3.5072 3.3454 3.1550
(6] 4.1866 4.0074 3.8726 3.6051
(7] 4.7584 4.5401 4.4264 4.0983
(8] 5.3482 5.0959 4.9987 4.6234
[9] 5.9518 5.6689 5.5847 5.1722
(10] 6.5661 6.2552 6.1815 5.7392
(11] 7.1887 6.8520 6.7869 6.3204
[12] 7.8182 7.4574 7.3995 6.9129

TasLe 10: Comparison of eccentricity-based entropies ENT, , ENTyy, , ENTyp . and ENT 50 for €8T (1) © P,

(1, 1] ENTg,, ENTyp, ENTy, ENT g,
[2,2] 3.2173 3.0186 3.5377 3.2669
(3,3] 4.0058 3.528 4.7179 3.9725
[4,4] 4.7234 4.001 5.7649 4.6522
[5,5] 5.4110 4.4637 6.7267 5.3390
[6,6] 6.0790 4.9178 7.6328 6.0344
[7,7] 6.7318 5.3632 8.5012 6.7358
(8,8] 7.3716 5.8004 9.3427 7.4406
[9,9] 8.0004 6.2299 10.1644 8.1912
[10,10] 8.6197 6.6524 10.9709 8.8548

Values of Entropies
O = N Wk U1 NN 0O

(31 [4 5] [e] [71 [8] [9] [10] [11] [12]
[t]

ENT_GA4 —eo— ENT_MM2
—e— ENT_MMI1 —e— ENT_ABC5

FIGURE 5: Graphical comparison of eccentricity-based entropies for hypertree € BT (t).

—_
[\S}

Ju—
o O

Values of Entropies
o

4
2
[22] [33] [44] [55] [66] [77] [88] [9,9] [10,10]
[nt]
ENT_GA4 —e— ENT_MM2
—e— ENT_MMI1 —e— ENT_ABC5

FIGURE 6: Graphical comparison of eccentricity-based entropies for corona product of hypertree and a path €B7 (t) 0 %,
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values of parameters are expanded. The graphical repre-
sentation of computed findings is demonstrated in Figures 5
and 6 for certain measurements of nand¢.

6. Conclusion

In this paper, we have acquired some degree-based and
eccentricity-based indices for the depiction of the specific
graph theoretical system of biochemical concern. We have
acquired aforementioned topological indices for several t
level hypertrees and corona product of hypertrees and path.
We have also computed the respective entropies. These
entropies associate particular physico-chemical character-
istics like distortion, stability, melting points, and strain
energy of chemical compounds. The mathematical findings
for these graphs are helpful for the chemist to understand the
biochemical utilization of these structures.
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