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With the help of Banach’s fixed-point approach and the Leray–Schauder alternative theorem, we produced existence results for a
general class of fractional differential equations in this paper. *e proposed problem is more comprehensive and applicable to
real-life situations. As an example of how our problemmight be used, we have created a fractional-order COVID-19 model whose
solution is guaranteed by our results. We employed a numerical approach to solve the COVID-19 model, and the results were
compared for different fractional orders. Our numerical results for fractional orders follow the same pattern as the classical
example of order 1, indicating that our numerical scheme is accurate.

1. Introduction

In science and engineering, fractional-order operators have
lately been investigated for the modeling of dynamical
systems. *ere are operators based on singular kernels and
nonsingular kernels. It is tough to determine which op-
erator is the best at the moment, but researchers are
constantly analyzing various operators for new features and
uses. We have seen that in the vast majority of cases, re-
searchers must compare their findings to the traditional
results in terms of accuracy, stability, and simulations.
Atangana and Araz focused on the modeling and existence
results of the COVID-19 model [1, 2]. *e area of fractional
calculus is still open for the researchers to investigate
nonlinear models for their theoretical and computational
studies with the help of [6–9].

In order to highlight the literature for the existence
results and numerical simulations and their applications, we
present some examples. Recently, Ahmad et al. [3] discussed
a fractional-order COVID-19 model for the existence,
uniqueness, and comparative analysis with the existing

integer-order model. Babakhani and Daftardar-Gejji [4]
studied a boundary value problem of fractional order for the
existence of results and presented some applications of their
results. Tuan et al. [5] gave some theoretical and compu-
tational studies of a fractional-order COVID-19 model for
the existence and numerical simulations by the help of Haar
wavelets approach. Zhang et al. [10] investigated an im-
pulsive integrodifferential equation for the existence of re-
sults and applications.

Boundary value problems (BVPs) with lower-order
fractional derivatives and either constant or linear boundary
conditions are considered in the majority of these papers.
However, there are many cases where nonlinear circum-
stances at the boundary and differential equations are
possible. For example, in case of head flow problems, there
are possibilities to have some source or sink on both sides of
the boundary (at x � 0 and x � 1) which may be nonlinear
functions and a controller at x � ζ0(0< ζ0 < 1). Okuonghae
and Omame [11] studied a nonlinear system of hybrid
fractional differential equations (FDEs) for the existence and
applications of solutions. *e purpose of this paper is to
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investigate existence results for BVPs involving nonlinear
boundary conditions at both ends; that is, we study the
following class of two-point BVPs:
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where the fractional orders 0< ϑi ≤ 1 and 0≤ω∗∗i ≤ 1, the
functions u∗i : I⟶Re are fractional-order differentiable
functions for i � 1, 2, . . . , m, and fi: I × Re⟶
Re − 0{ } and hi: I × Re⟶Re(i � 1, 2, . . . , m) satisfy the
Caratheodory conditions. *e fractional-order derivatives
cDϑcDω ∗∗

i are in Caputo’s sense. To the best of our
knowledge, existence, uniqueness, and stability results had
never been studied for BVP (1). Such situation may have
importance in application point of view and also in theo-
retical development and can be studied in the work of Dhage
in [12–14] and the reference therein.
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for i � 1, 2, . . . , m.

Proof. Applying integral (Iϑi) to problem (1), we obtain
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for i � 1, 2, . . . , m. By the help of u∗i (0) � 0, we have C1 � 0
and hence, we obtain
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By the use of initial condition u∗i (1) � 0, for
i � 1, 2, . . . , m and (6), we have K1 � Iϑi+ω∗∗i fi(t, u∗i (t))|t�1.
Ultimately, we have the following solution:
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Kωi ,ϑi
(s, t) are Green’s functions defined in (3), for

i � 1, 2, . . . , m. □
Here, we introduce a Banach’s space B � fi(t):􏼈

fi(t) ∈ C([0, 1],R), for t ∈ [0, 1]}, with a norm
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‖fi‖ � maxt∈[0,1]fi(t), for i � 1, 2, . . . , m. Let us a define an
operator Ti: C([0, 1],R)⟶ C([0, 1],R), for i �

1, 2, . . . , m, such that

Tiu
∗
i (t) � I

ϑi+ω∗∗i fi t, u
∗
i (t)( 􏼁|t�1 − I

ϑi+ω∗∗i fi t, u
∗
i (t)( 􏼁

�
1

Γ ϑi + ω∗∗i( 􏼁
􏽚
1

0
(1 − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁ds −

1
Γ ϑi + ω∗∗i( 􏼁

􏽚
t

0
(t − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁ds

� 􏽚
1

0
Kωi ,ϑi

(t, s)fi s, u
∗
i (s)( 􏼁ds,

(8)

where Kωi ,ϑi
(s, t) are Green’s functions defined in (3), for

i � 1, 2, . . . , m. *en, the solutions of fractional-order sys-
tem (1) are the fixed points of the operatorTi defined in (8).

Also, with the help of (3), Green’s functions Kωi
(s, t)> 0

for the following cases. For t≤ s, we have Kωi
(s, t) �
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Lemma 2. Let fi ∈ C � C([0, 1] × Re,Re) be continuous
functions for all i � 1, 2, . . . , m and there exist some positive
constants λi ∈Re, for u∗l , u∗j ∈ C and t ∈ [0, k], such that
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for all i � 1, 2, . . . , m and βi � λi(1 + kϑi+ω∗∗i )(λiηi + ℘)/
Γ(ϑi + ω∗∗i + 1)< 1, for i � 1, 2, . . . , m. :en, the system of
fractional order (1) has a unique solution.
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With the help of (8) and (10), for i � 1, 2, . . . , m, we
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*is implies TiSηi
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for i � 1, 2, . . . , m. Ultimately, the operator is a contraction
and by Banach’s fixed-point theorem, the system of frac-
tional order (1) has a unique solution. □

Theorem 1. Assume that the fi ∈ C([0, k] × Re,Re), for
i � 1, 2, . . . , m. :en, fractional-order system (1) has a so-
lution provided that the assumptions of Lemma 2 are satisfied.
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By the help of (14), we have
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for i � 1, 2, . . . , m. Hence, by (15), we have that the set A is
bounded. *erefore, by Leray–Schauder alternative theo-
rem, operator Ti has at least one fixed point which is the
solution of fractional-order system (1). □

3. Hyers–Ulam Stability

In this section, we are presenting the Hyers–Ulam stability
analysis for hybrid fractional differential equation (8).

Definition 1. Fractional integral system (8) is said to be
Hyers–Ulam stable, if there exists a constant ζ > 0, such that
for a given φ> 0 and for each solution u∗i of the inequality
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Theorem 2. Assume that fi ∈ C([[0, k] × Re,Re), for
i � 1, 2, . . . , m. :en, fractional-order system (1) is
Hyers–Ulam stable provided that the assumptions of Lemma
2 are satisfied.

Proof. Let u∗i ∈ C satisfy the inequality (16) and u∗i ∈ C be a
solution of BVP (1) satisfying integral system (8). By the help
of (16) and (17), consider the following norm:
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Hyers–Ulam stable which implies the stability of fractional-
order system (1). □

4. Application

In this section, we give a specific example of fractional-order
system (1) which is a fractional-order extension of the
COVID-19 model given in [15]:
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1 − β∗

SI2/1 + kI2
2 − δ∗S, f2 � α∗SI1/1 + mI2

1 − (c∗1 + δ∗)E1,
f3 � β∗SI2/1 + kI2

2 − (c∗2 + δ∗)E2, f4 � c∗1E1 − (μ∗1 +

δ∗)I1, f5 � c∗2E2 − (μ∗2 + δ∗)I2, and f6 � μ∗1I1 + μ∗2
I2 − δ∗R.

Fractional-order model (21) has six compartments.
S(t) represents the susceptible class, E1(t) and E2(t)

are latent individuals, I1(t) and I2(t) are infected
individuals, and R(t) is the recovered class. *e pa-
rameters include the following: Λ is the recruitment
rate, 1/δ is the average life of the population, α is the
infection rate of strain 1, β is the infection rate of strain
2, 1/μ1 is the average infection period for strain 1,
1/μ2 is the average infection period for strain 2, 1/c1
is the average latency rate for strain 1, 1/c2 is the av-
erage latency rate for strain 2, m is the psychological
effect of strain 1, and k is the psychological effect of
strain 2.

*e existence of solution of (21) is ensured by *eorem
1.*e stability of (21) is also ensured by*eorem 2. Now, we
give the numerical scheme for the simulation of (21) as
follows. By applying the fractional-order Riemann–Liouville
integral operator for the equispace intervals of [0, k], we get
the following form:
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Figure 1: Joint solution of (21) for order 1.0.
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Figure 2: Joint solution of (21) for order 0.99.
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Figure 3: Joint solution of (21) for order 0.98.
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Figure 4: Comparison of S(t) for orders 1.0, 0.99, and 0.98.
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Figure 5: Comparison of E1(t) for orders 1.0, 0.99, and 0.98.

E2 at order 1.0
E2 at order 0.99
E2 at order 0.98

0

0.5

1

1.5

2

2.5

3

3.5

4

Co
m

pa
ris

on
 o

f l
at

en
t-2

 cl
as

s f
or

 o
rd

er
s

1.
0,

 0
.9

9,
 an

d 
0.

98

5 10 15 20 25 30 35 40 450
Time t (days)

Figure 6: Comparison of I1(t) for orders 1.0, 0.99, and 0.98.
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Figure 7: Comparison of E2(t) for orders 1.0, 0.99, and 0.98.
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Figure 8: Comparison of R(t) for orders 1.0, 0.99, and 0.98.
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Sn+1 � S0 +
h
ϑ1

Γ ϑ1 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ1 − (n − k)
ϑ1􏼐 􏼑 Λ∗ −

α∗SnI1n

1 + mI
2
1n

−
β∗SnI2n

1 + kI
2
2n

− δ∗Sn
⎛⎝ ⎞⎠,

ε1n
� ε0 +

h
ϑ2

Γ ϑ2 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ2 − (n − k)
ϑ2􏼐 􏼑

α∗SnI1n

1 + mI
2
1n

− c
∗
1 + δ∗( 􏼁Ε1n

⎛⎝ ⎞⎠,

ε2n
� ε20 +

h
ϑ3

Γ ϑ3 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ3 − (n − k)
ϑ3􏼐 􏼑

β∗SnI2n

1 + kI
2
2n

− c
∗
2 + δ∗( 􏼁Ε2n

⎛⎝ ⎞⎠,

I1n
� I10 +

h
ϑ4

Γ ϑ4 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ4 − (n − k)
ϑ4􏼐 􏼑 c
∗
1Ε1n

− μ∗1 + δ∗( 􏼁I1n
􏼐 􏼑,

I2n
� I20 +

h
ϑ5

Γ ϑ5 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ5 − (n − k)
ϑ5􏼐 􏼑 c
∗
2Ε2n

− μ∗2 + δ∗( 􏼁I2n
􏼐 􏼑,

Rn � R0 +
h
ϑ6

Γ ϑ6 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ6 − (n − k)
ϑ6􏼐 􏼑 μ∗1I1n

+ μ∗2I2n
− δ∗Rn􏼐 􏼑.

(22)

5. Computational Results

Here, we test the numerical scheme given in (22) for the
numerical results of fractional-order COVID-19 model
(21), considering the parametric values, and ϑi �

1.0, 0.99, and 0.98, for i � 1, 2, . . . , 6, and the initial values
S(0)� 10,E1(0) � 5,E2(0)�4,I1(0) � 1,I2(0) � 1, and
R(0) � 0.

In Figure 1, we have given the numerical solution of
COVID-19 model (21) for the order 1.0. Also, Figures 2 and
3 are the solutions for the fractional orders 0.99 and 0.98,
respectively. *ese graphs show that the fractional-order
solutions of model (21) are similar in behavior as to the

solution of the classical model of the order 1.0. *is shows
the accuracy of our scheme given in (22).

In Figure 4, we have given a comparative study of the
susceptible class which has a decrease in the early 5 days
and later on a slight increase and then a stability is ob-
served for the orders 1.0, 0.99, and 0.98. In Figure 5, we
have given a comparative study of the E1(t) for the orders
1.0, 0.99, and 0.98. We have observed that the behavior of
the fractional-order results are similar to the classical
integer order and in this class, there is a slight increase
and then there is a rapid decrease up to 10 days.
*is decrease is converted into the infected class, and
we observe a rapid increase in the I1(t) class and then
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Figure 9: Comparison of I2(t) for orders 1.0, 0.99, and 0.98.
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there is a gradual decrease of up to 14 days as given in
Figure 6.

In Figure 7, we have given a comparative study of the
E2(t) for the orders 1.0, 0.99, and 0.98. We have observed
that the behavior of the fractional-order results are similar to
the classical integer order and in this class, there is a rapid
decrease of up to 10 days. *is decrease is converted into the
infected class, and we observed a rapid increase in the R(t)

class and then there is a gradual decrease of up to 20 days as
given in Figure 8. In Figure 9, we have presented a com-
putational analysis of I2 class.

All the numerical computations are for the comparative
study of COVID-19 model (21) and we have noticed the be-
havior of the joint solution as well as the individual comparison
of the compartments for the orders 1.0, 0.99, and 0.98.

6. Conclusion

In this article, we have considered a very important class of
fractional-order system of sequential differential equations
(1), for the existence and stability results based on the
classical fixed-point approach, and have observed that under
certain necessary assumptions, suggested problem (1) has a
unique solution as well as Hyers–Ulam stability. Such
problems are widely applicable in the real-world situations.
In the example section, we have given a COVID-19 model as
a particular case of system (1). *e existence of solution of
(21) is ensured by *eorem 1. *e Hyers–Ulam stability of
(21) is guaranteed by*eorem 2. For the numerical solution
of example (21), we obtained numerical scheme (22) and the
scheme was tested with the real data given in the literature
[15]. All the computational results ensured that the nu-
merical simulations for fractional-order system (21) are of
the same behavior as to the classical case for the order 1.
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