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We present a prediction framework to estimate the remaining useful life (RUL) of equipment based on the generative adversarial
imputation net (GAIN) and multiscale deep convolutional neural network and long short-term memory (MSDCNN-LSTM).'e
method we proposed addresses the problem of missing data caused by sensor failures in engineering applications. First, a binary
matrix is used to adjust the proportion of “0” to simulate the number of missing data in the engineering environment. 'en, the
GAIN model is used to impute the missing data and approximate the true sample distribution. Finally, the MSDCNN-LSTM
model is used for RUL prediction. Experiments are carried out on the commercial modular aero-propulsion system simulation (C-
MAPSS) dataset to validate the proposed method. 'e prediction results show that the proposed method outperforms other
methods when packet loss occurs, showing significant improvements in the root mean square error (RMSE) and the score
function value.

1. Introduction

Prognosis and HealthManagement (PHM) aims to monitor,
predict, andmanage the health of the system throughmodels
and algorithms and is widely used in aviation, military
equipment, industrial manufacturing, and other fields [1].
As one of the important research issues of PHM, remaining
useful life prediction (RUL) can provide strategy support for
establishing the best maintenance management for equip-
ment. 'e data-driven method for RUL prediction is de-
veloped to analyze the equipment operation data through
modeling to determine the remaining available time of
equipment. 'erefore, the quality of the data is directly
related to the accuracy of the RUL prediction [2].

Precision equipment and multisensor fusion are widely
used in the industrial field, and obtaining complete moni-
toring data is crucial to predicting the remaining useful life
(RUL) of equipment. In engineering applications, various
factors, such as failure of data storage, sensor damage, and
mechanical failure, may lead to missing information during

equipment information collection and storage [3]. Data
packet loss is especially detrimental in complex and harsh
working environments, such as aerospace and agricultural
production environments [4]. 'e high cost and difficulty of
obtaining equipment degradation data and the existence of
information intervals between samples make RUL predic-
tion challenging.

In 1987, Rubin [5] proposed that missing data mecha-
nisms fall into three categories: missing at random (MAR),
missing completely at random (MCAR), and missing not at
random (MNAR). Handling missing data appropriately is
particularly important to ensure the accuracy of missing data
imputation [6]. Scholars have conducted numerous studies,
and the methods can be roughly divided into three cate-
gories: ignoring data or deletion, imputation, and statistical
models.

Deleting the missing items in the dataset is the simplest
data processing method. Strike et al. [7] simulated three
types of mechanisms for dealing with missing data and used
different techniques for processing missing data, such as
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listwise deletion, mean imputation, and eight types of hot-
deck imputation. A detailed simulation study was carried
out, and it was concluded that simple deletion was a suitable
choice when the missing data volume was small. 'e im-
putation method fills in missing values. 'e most probable
value is typically used for imputation, which causes less
information loss than incomplete samples obtained by de-
leting all missing values. Commonly used methods include
mean imputation, median imputation, mode imputation,
and maximum likelihood estimation. Inspired by machine
learning, prediction models were used to estimate missing
values from the available information in the dataset [8].
Troyanskaya et al. [9] used the k-nearest neighbor (KNN) to
estimate missing values in gene microarray data. 'e im-
putation effect was better than the imputation method based
on singular value decomposition (SVD). Duan et al. [10]
used a deep learning model with a denoising stacked
autoencoder (DSAE) to estimate missing values in traffic
data.'ismethod proved effective for traffic data imputation
and analysis. A statistical model was used to impute the
missing values based on the linear or nonlinear relationship
between the missing data and the observed data. Ni et al. [11]
proposed an advanced calculation method based on a
Bayesian network to learn from the raw data. A Markov
chain Monte Carlo method was used for sampling based on
the probability distribution learned by the Bayesian network.
It imputes the missing data multiple times and makes sta-
tistical inferences about the results. Li et al. [12] proposed a
systematic calculation method of traffic flow data based on
probabilistic principal component analysis and historical
data to estimate missing flow data. A statistical model was
used to impute the missing values based on the prior
knowledge of the data model, providing excellent results.
However, the statistical model has shortcomings due to the
incomplete dataset and incomplete prior knowledge. Ma-
chine learning has substantial application potential for data
imputation. 'is study focuses on exploiting the use of
existing data and machine learning algorithms to impute
missing values.

We propose an RUL prediction framework based on data
imputation to deal with missing sensor data in engineering
applications. First, the missing data are simulated using
various missing sample rates. 'en, the generative adversarial
imputation net (GAIN) model is used to impute the missing
values and fill in the dataset. Finally, the proposed multiscale
deep convolutional neural network and long short-term
memory (MSDCNN-LSTM) prediction model is used to
obtain the RUL value of the equipment.'e proposedmethod
is well suited for predicting the RUL of equipment if the
sensor data are affected by data packet loss in engineering
applications. 'e performance of the proposed method is
demonstrated using the commercial modular aero-pro-
pulsion system simulation (C-MAPSS) dataset.

2. Related Work

In recent years, deep learning has powerful function map-
ping capabilities and data processing capabilities. To extract
the complex characteristics inside the spectrum and predict

the nicotine volume in tobacco, Jiang et al. [13] proposed a
one-dimensional fully convolutional network (1D-FCN)
model. Hu et al. [14] presented a deep neural network-based
visual analysis approach to process videos to detect different
augmentative and alternative communication users in
practice sessions.

Deep learning has also been widely used in data-
driven RUL prediction methods. Babu et al. [15] first tried
to use convolutional neural network (CNN) to predict the
RUL of the engine, which improved the ability to auto-
matically extract multidimensional features. 'en, Li
et al. [16] improved the prediction accuracy by using the
deep CNN (DCNN) structure and time window data
processing. In order to make the CNN model learn more
detailed features, Li et al. [17] proposed an algorithm of
MSDCNN, that is, the DCNN with different convolution
kernel sizes. In order to extract the time correlation
features of condition monitoring data, Kong et al. [17]
proposed a hybrid algorithm of CNN and long short-term
memory (LSTM) to learn spatial and temporal features.
Huang et al. [18] developed a novel deep convolutional
neural network-bootstrap-based integrated prognostic
approach for the remaining useful life (RUL) prediction
of rolling bearing. Hu et al. [19] applied the long short-
term memory (LSTM) model for RUL prediction of
turbine engines and studied a parameter optimization
method with Bayesian theory.

In this article, we use the RUL prediction model of
MSDCNN-LSTM proposed by Liu et al. [20] to learn more
detailed features in a high-dimensional space and predict
RUL of aircraft engines.'e hybrid MSDCNN-LSTMmodel
consists of an MSDCNN submodel and an LSTM submodel.
Among the MSDCNN-LSTM model, the MSDCNN is used
to extract high-dimensional features from the input data by
time window processing, and the LSTM performs time-
series learning on the input data at the same time. 'en, the
feature map of MSDCNN and LSTM are added and flatten.
Finally, the output is sent to a dense layer that represents the
RUL output value. 'e structure chart of MSCNN-LSTM is
shown in Figure 1.

3. Proposed Method

3.1. Missing Data Imputation Method Based on GAIN. In
2014, Lan Goodfellow et al. [21] first proposed the generative
adversarial net (GAN), which generates data in an adver-
sarial manner with generators and discriminators. 'e
method attracted the attention of researchers and was
verified theoretically and practical in engineering applica-
tions. 'e GAN has wide applicability in image, text, and
audio processing and other fields.

We used the GAIN model [22] to generate time-series
data with a similar distribution as the original for missing
data imputation. 'e basic structure of the model is shown
in Figure 2.

'e generator is used to observe each part of the real
data, and the missing data are imputed according to the
observations. 'e vector X in the missing data imputation is
expressed as follows:
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X � G( X, M, (1 − M)⊙Z), (1)

where X represents a small sample with missing data, M

represents a binary matrix with the same size as X, Z

represents noise, and ⊙ represents the multiplication of the
corresponding elements.

Finally, the generator outputs a complete vector X after
imputation as follows:

X � M⊙ X +(1 − M)X. (2)

Since some of the output of the generator is real and
some is generated, the difference between the GAIN and the
GAN is that the discriminator of GAIN does not determine
the authenticity of the entire vector but detects the real and
generated parts, i.e., it predicts the value of m in M. 'e
model trains D by maximizing the probability of correctly
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Figure 1: 'e structure chart of MSCNN-LSTM.
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predicting M and trains G by minimizing the probability of
correctly predicting M. 'e objective function is expressed
as

min
G

max
D

V(G, D) � EX,M
M

Tlog D( X) +(1 − M)
Tlog(1 − D( X)) .

(3)

'e discriminator distinguishes the source of each part
of the input data, and the obtained discriminant matrix is
represented by M. 'e cross-entropy loss function is used to
evaluate each element in M:

L D(m, m) � 
d

i�1
milog mi(  + 1 − mi( log 1 − mi( ⎡⎣ ⎤⎦.

(4)

'e loss function of the generator is defined as

LG(m, m) � 
d

i�1
1 − milog mi( ⎡⎣ ⎤⎦ + αMSE. (5)

3.2. RUL Prediction Framework Based on GAIN and
MSDCNN-LSTM. An RUL prediction framework that
combines the GAIN and MSDCNN-LSTM is designed; it
consists of three parts: preprocessing the missing data,
missing data imputation based on the GAIN model, and
RUL prediction based on the MSDCNN-LSTM model, as
shown in Figure 3.

First, data preprocessing is performed on the C-MAPSS
dataset. 'e method described in Section 1 is used to
construct sample data for the training set with different
missing data rates. Subsequently, the GAIN network is used
to impute the samples with different missing data rates, and
the generator and the discriminator generate data in an
adversarial manner to obtain a dataset close to the original
one. Finally, the generated samples are used as the input of
the MSDCNN-LSTM prediction model. 'e MSDCNN and
LSTM models process the data simultaneously. 'e multi-
scale structure of the MSDCNN substantially improves the
feature extraction capability. Convolution kernels of dif-
ferent sizes (F1, F2, and F3) are used to extract features from
the input data, and the feature maps are spliced together and
combined with the time series to obtain the prediction
results of the LSTM. Continuous iteration is used to evaluate
the trained model using two indicators (root mean square
error (RMSE) and the score function), and the test set data
are input to obtain the RUL prediction result.

'e RUL prediction process based on the combination of
GAIN and MSDCNN-LSTM is shown in Figure 4. First, the
missing data are generated using missing data rates of 0.1,
0.2, 0.3, 0.4, and 0.5. 'en, we use the GAIN network to
impute the missing values of the samples. During the
training of the GAIN network, we set the epoch to 1000
times, and the newly generated time-series dataset are
standardized and processed by a time window. After setting
the RUL labels of the training set and test set, the next stage is
model training and system prediction. 'e parallel
MSDCNN-LSTM hybrid model performs multiscale feature

extraction on the time-series training set, and the parameters
and weights in the model are updated using a minibatch of
512. When the early stopping conditions set by the system
are met, the model training ends early. If the early stopping
condition is not met, the minibatch training is continued
until the maximum epoch. After the model is trained, we
input the test set data to predict the RUL result of each
engine.

4. Experimental and Results

4.1. Experimental Dataset and Settings. 'e experiments are
conducted on a server computer configured with an Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz and an NVIDIA
GeForce TITAN XP. 'e C-MAPSS dataset is used to verify
the proposed method. 'e C-MAPSS dataset is divided into
four subsets (FD001, FD002, FD003, and FD004) according
to the operating conditions and failure modes. Each dataset
contains engine degradation data monitored by 21 sensors,
as listed in Table 1. Each subset is divided into a training set
and a test set. FD002 and FD004 have 6 operating condi-
tions, and FD003 and FD004 have 2 failure modes.

'e score function and the RMSE are used as evaluation
indicators. 'e formula of the score function is [23]

Score �


N

i�1
e

− di/13 − 1 , di < 0,



N

i�1
e

di/10 − 1 , di ≥ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

'e formula of the RMSE is

RMSE �

�������

1
N



N

i�1
d
2
i




, (7)

where di represents the difference between the predicted
value of RUL and the true value,
di � RULpre − RULact, i � 1, 2, . . . , N. When di is less than 0,
the predicted value is less than the true value, and the result
is referred to as an advanced prediction; otherwise, it is a
lagging prediction.

'e lower the value of the score function and RMSE, the
better the predictive ability of the model. 'e RMSE is a
symmetric function and provides the same result for an
advanced prediction and lagging prediction. However, the
score function is an asymmetric function and is more
sensitive to lagging prediction. Because lagging prediction
has more serious consequences, it results in stronger pen-
alties than advanced prediction. 'erefore, these indicators
comprehensively measure the performance of the algorithm.

4.2. Simulating theMissing Data Rate. It is assumed that the
original dataset is X, X � [Xi1, Xi2, . . . , Xij, . . . ,

Xim] ∈ Rm×n, i ∈ [1, n] and j ∈ [1, m], where m is the
number of sensors, n is the length of the time series, and xij is
the measured value of the jth sensor corresponding to the ith
period. Here, we define a binary matrix M,
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M � [Mi1, Mi2, . . . , Mij, . . . , Mim] ∈ Rm×n, i ∈ [1, n] and
j ∈ [1, m], which has the same size as the original data X and
consists of 0 and 1 values. 'e reconstructed missing data X

can be expressed as

X �
Xi,j, Mi,j � 1,

Nan, other,
 (8)

where M represents the observed component of X. A value
of 1 indicates the observed data, and a value of 0 represents
the missing data X. Datasets with different missing sample
rates can be created by changing 0 to another value.

4.3. Data Imputation Simulation Results andAnalysis. In the
4 subsets of the C-MAPSS dataset, 7 sensor data with no
changes were eliminated. 'erefore, the sensor numbers
used in this experiment are 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15,
17, 20, and 21.'e RMSEwas used as an evaluation indicator
to evaluate the imputation effect of GAIN.

Table 2 lists the imputation accuracy of GAIN for dif-
ferent missing data rates (0.1, 0.2, 0.3, 0.4, and 0.5) on the
C-MAPSS dataset.

As the missing data rate increases, the RMSE values of
the four subdatasets FD001, FD002, FD003, and FD004
increase, and the accuracy decreases. In the case of a high
missing data rate, there is less sample information, and it is
difficult to fill in the missing sample data. 'e imputation
performance of GAIN is better for the FD002 and FD004
datasets with complex working conditions and a large
sample size than for the FD001 and FD003 datasets with
simple working conditions and a small sample size.
'erefore, the imputation performance is better for a larger
sample size, and the prediction accuracy decreases as the
missing data rate increases.

Figure 5 shows the visualization results of GAIN after
missing data imputation for a missing data rate of 0.5. 'e
horizontal axis represents the operating cycle of the first
engine, and the vertical axis is the result of the first sensor data
after maximum-minimum standardization. 'e middle black
rectangle represents the real data, and the red dots represent
the results of GAIN after imputation. Although the effect of
missing data is more serious when the missing data rate is
high, the data after imputation based on GAIN fluctuates in a
small range around the real data, and the overall distribution
is consistent with the real data distribution.

Table 3 shows the influence of the loss function on the
GAIN model performance. During data imputation, the loss
function is particularly important for training the generator
and discriminator models. After conducting experiments,
we found that the model performance was best when the

cross-entropy loss function and the mean square error loss
function were used.We use the FD001 dataset with a missing
data rate of 0.5 as an example to verify the impact of the loss
function on the model performance and compare the
simulation results obtained from different combinations of
loss functions. It can be seen from Table 3 that the com-
binations of the two loss functions and the adjustment of the
parameters z significantly affect the results. 'e optimal
RMSE value is obtained when the cross-entropy loss
function is used for the discriminator, and the cross-entropy
loss function + z mean square are used for the generator. In
the experiment, different combinations were used under the
same conditions to verify the effect of the parameter z in the
loss function. 'e results are listed in Table 4.

Adding the parameter z to the generator loss function
improves the imputation accuracy, but 1/z and (1 − z)

substantially increase the RMSE value. 'erefore, the model
provides the best performance when the coefficient of the
RMSE in the generator loss function is z.

Figure 6 shows the results of the GAIN imputation and
other methods. 'e GAIN imputation, mean imputation,
median imputation, andmode imputation are compared using
the FD001 dataset. 'e horizontal axis represents the missing
data rate, and the vertical axis represents the RMSE. As the
missing data rate increases, the RMSEs of the four methods
show an upward trend, and the imputation performance de-
creases.'e results for different missing data rates indicate that
the mean value imputation results are more stable than the
mode and median imputation methods. However, the GAIN
achieves the smallest RMSE values for the different missing
data rates, indicating that it outperforms the other methods.
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Figure 5: 'e result of GAIN imputation.

Table 1: C-MAPSS subdatasets.

Subdatasets FD001 FD002 FD003 FD004
Training engines 100 260 100 249
Test engines 100 259 100 248
Conditions 1 6 1 6
Failure modes 1 1 2 2

Table 2: 'e RMSE value of GAIN for different missing data rates.

Missing data rates FD001 FD002 FD003 FD004
0.1 0.1041 0.0217 0.0915 0.0210
0.2 0.1050 0.0223 0.0917 0.0200
0.3 0.1076 0.0257 0.0988 0.0231
0.4 0.1079 0.0419 0.0997 0.0525
0.5 0.1091 0.1011 0.1126 0.0569
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Figure 7 shows the RUL prediction results of all engine
units after GAIN imputation on the C-MAPSS dataset when
missing data rate is 0.1. 'e test engine is sorted by RUL
from small to large to better observe the changes in pre-
diction accuracy. 'e horizontal axis represents test engine
unit, and the vertical axis represents the RUL. In the figure,
the black dots represent the real RUL, and the red dots
represent the model prediction results. It can be seen from
Figure 7 that, at the initial stage of engine operation, the RUL
value is relatively large and the prediction error is relatively
large. When the engine runs for a long time or is about to
fail, the degradation information is more obvious, and the
predictive performance is significantly enhanced. 'e pro-
posed framework reflects a good forecasting effect.

Table 5 shows the RUL prediction results with and
without GAIN imputation for a missing data rate of 0.1. It is
worth noting that the system automatically replaces missing
data with 0 to ensure the smooth execution of the RUL
prediction algorithm. 'erefore, when the missing data rate

is 0.1, the score function value cannot be obtained, and it
causes difficulties for the subsequent RUL prediction, such as
a substantial increase in the RMSE value. However, after the
missing data are imputed by GAIN, the prediction results are
significantly improved. 'e RMSE has increased by at least
80.16%, and the score function value has increased by at least
99.98%.

Table 6 shows the prediction results of the proposed
GAIN method for missing data rates of 0.1, 0.2, 0.3, 0.4, and
0.5. As the missing data rate increases, the prediction ac-
curacy of the 4 subdatasets decreases. 'e score function is
more affected than the RMSE. When the missing rate is less
than 0.4, the proposed RUL prediction framework based on
data imputation can show better performance. When the
missing data rate is higher than or equal to 0.4, too much
data information is lost, resulting in low prediction per-
formance. However, the prediction result of the proposed
framework is much better than using no missing data im-
putation for a missing data rate of 0.1.

Table 4: 'e influence of the parameters in the loss function on model performance.

D_loss G_loss RMSE
Cross entropy Cross entropy + z RMSE 0.1190
Cross entropy Cross entropy + z2 RMSE 0.1227
Cross entropy Cross entropy + 1/z RMSE 0.4900
Cross entropy Cross entropy + (1 − z) RMSE 0.5664
Cross entropy Cross entropy +RMSE 0.1245
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Figure 6: 'e results of different imputation methods for different missing data rates.

Table 3: 'e influence of the loss function on model performance.

D_loss G_loss RMSE
Cross entropy Cross entropy + z RMSE 0.1190
Cross entropy + z RMSE Cross entropy + z RMSE 0.1347
Cross entropy Cross entropy 0.5065
Cross entropy + z RMSE Cross entropy 0.4692
Cross entropy RMSE 0.1423
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Table 5: 'e results of the RUL prediction with and without data imputation for a missing data rate of 0.1.

Method
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score
GAIN imputation 14.48 274.62 18.73 2067.25 15.83 338.05 23.28 4750.18
No imputation 71.47 1620023.5 77.04 1815133.4 75.62 3656987.8 66.73 4859614.0
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Figure 7:'e results of RUL prediction after GAIN imputation whenmissing data rate is 0.1. (a) 100 test engine units on FD001. (b) 259 test
engine units on FD002. (c) 100 test engine units on FD003. (d) 248 test engine units on FD004.

Table 6: 'e results of the RUL prediction with data imputation for different missing data rates.

Missing rate
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score
0.1 14.48 274.62 18.73 2067.25 15.83 338.05 23.28 4750.18
0.2 15.74 361.07 23.62 3647.92 17.45 494.89 24.45 5744.81
0.3 18.17 506.06 23.74 3208.44 23.07 847.91 32.52 13376.09
0.4 19.61 521.18 43.19 36818.28 29.13 1531.91 32.07 42081.27
0.5 19.65 503.78 51.96 703764.25 26.44 1216.59 43.38 34483.86
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5. Conclusions

'is paper proposed a RUL prediction method based on the
combination of GAIN and MSDCNN-LSTM. Experiments
were carried out with a missing data rate of 0.1–0.5 to
simulate data packet loss in industrial production. In the
GAIN method, the generator interacts with the discrimi-
nator to impute the missing data and generate a sample
dataset that is close to reality.'is dataset is used as the input
of the MSDCNN-LSTM prediction model. A comparison of
the simulation results of GAIN and other methods indicated
that the GAIN imputation method outperformed the mean,
median, and mode imputation methods. 'e proposed
prediction framework was compared with no data impu-
tation when packet loss occurred and exhibited a significant
improvement. 'e RUL prediction framework showed
better prediction performance than other methods on the
C-MAPSS dataset for different missing data rates.
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