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In this paper, a mathematical model for large deformation of a cantilever beam subjected to tip-concentrated load is presented.
+e model is governed by nonlinear differential equations. Large deformation of a cantilever beam has number of applications is
structural engineering. Since finding an exact solution to such nonlinear models is difficult task, this paper focuses on developing
soft computing technique based on artificial neural networks (ANNs), generalized normal distribution optimization (GNDO)
algorithm, and sequential quadratic programming (SQP).+e strength of ANNmodeling for governing the equation of cantilever
beam is exploited by the global search ability of GNDO and further explored by the local search mechanism of SQP. Design
scheme is evaluated for different cases depending on variations in dimensionless end-point load (ρ). Furthermore, to validate the
effectiveness and convergence of algorithm proposed technique, the results of the differential transformation method (DTM) and
exact solutions are compared.+e statistical analysis of performance indicators in terms of mean, median, and standard deviations
further establishes the worth of ANN-GNDO-SQP algorithm.

1. Introduction

Mechanical systems, which involve nonlinearity due to large
deflection of compliant mechanism, continue to be an in-
teresting problem. Since large deformation phenomena
occur often in various geotechnical practices [1]. +erefore,
this topic is of practical interest and has been widely studied
bymany researchers. In past decades, a number of numerical
methods have been developed to solve large deformation
problems. +e large deflection of cantilever beams was
studied by Wang [2]. +ey developed nonlinear differential
equations for postbuckling loads on the basis of Eringen’s
nonlocal constitutive relation. Shooting method was used to
obtain postbuckling load and the buckled shape of the beam.
Framework of arbitrary Lagrangian–Eulerian (ALE) is
commonly used approach to study large deformation in geo-
technical engineering [3]. Based on ALE three different
approaches named as the efficient ALE approach (EALE)
[4, 5], interpolation technique by small strain (RITSS) [6, 7]
and the Abaqus built-in coupled Eulerian–Lagrangian (CEL)

method [8]. Modified Chebyshev’s polynomial is used by
Schmidt and Dadeppo [9] to study large deflection of beam.
Large deformation of a spring-hinged beam was investigated
by Nageswara Rao [10, 11] subjected to a tip rotational
concentrated and distributed load.

Ludwick’s large deformation was studied by Lee [12] to
made cantilever beams with a combined loading effect of a
focused load at the tip and a uniformly dispersed load over
the beam length. Phungpaigram and Chucheepsakul [13, 14]
used elliptic integrals to calculate exact solutions for large
deflection in elastic beams with variations in arc length and
inclined force. Dado and Al-Sadder [15, 16] investigated the
behaviour of large deformation of prismatic and non-
prismatic cantilever beams under various type of loadings.
Wang [17, 18] used homotopy perturbation method (HPM)
to obtain analytical solution for large deformation of beam
under point load with free tip. References [19, 20] studied the
longitudinal vibration analysis for microbars based on strain
gradient elasticity theory. Feasibility of Adomian decom-
position method for such complex nonlinear problems was
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studied by Tolou and Herder [21]. Mutyalarao [22] studied
large deflections of a uniform cantilever beam with con-
centrated load at tip and having normal inclination to the
deflected axis of the beam. All these recently introduced
techniques have their own grains and limitations in terms of
accuracy, robustness, convergence, and applicability, but
they are based on well-established deterministic procedures.
Complex nonlinear differential equation of large deforma-
tion of beams subjected to a concentrated load is of great
interest in scientific and engineering field. +e quest of
finding analytical solution for the problem motivates the
author to develop a soft computing technique based on feed
forward artificial neural networks (ANNs).

Stochastic solvers based on computational intelligence
methods using artificial neural networks (ANNs) are
considered to be fundamental in pattern recognition and
machine learning. In general, neural networks are widely
used to solve fractional differential equations, integro-
differential equations (IDEs), partial differential equations
(PDEs), and ordinary differential equations (ODEs). In
ANN modeling, the optimization procedure is carried by
using combination of global and local search algorithms.
Some recent application of stochastic algorithm are
multiphase flow through porous media for imbibition
phenomena [23], eye model [24], wire coating dynamics
[25, 26], optimal design and temperature distribution of
heat fin [27, 28], beam-column design [29], and hybrid
feature analysis for diabetic retinopathy classification
using fundus images [30].

In the present study, a novel soft computing technique is
applied to find analytical series solution for large defor-
mation of cantilever beam subjected to point load by using
ANN models optimized globally with generalized normal
distribution optimization (GNDO) algorithm hybrid with
sequential quadratic programming (SQP) for rapid local
convergence. +e prominent features of the present study
are given as follows.

(i) Mathematical model for large deformation of
cantilever beam under end point load is formulated
and analyzed to study the influence of variations in
dimensionless end point load (ρ).

(ii) A novel soft computing paradigm is developed to
model series solutions based on artificial neural
networks with the generalized normal distribution
optimization algorithm and the sequential quadratic
programming. Our approach is named as ANN-
GNDO-SQP algorithm.

(iii) To validate the efficiency of the proposed technique,
four cases of large deformation cantilever beam are
considered.+e statistical results are compared with
differential transformation method (DTM) and
analytical solutions.

(iv) Statistical analysis of absolute errors (AE), fitness
evaluation (Fit), mean absolute deviation (MAD),
+eil’s inequality coefficient (TIC), root mean
square error (RMSE), Nash–Sutcliffe efficiency
(NSE), and error in Nash–Sutcliffe efficiency

(ENSE) are presented in terms of minimum, mean,
median, and standard deviation.

(v) Provision of continuous solutions, computational
complexity, convergence, and easy execution of the
proposed methodology show the robustness and
correctness of the ANN-GNDO-SQP algorithm.

2. Problem Formulation

Consider a cantilever beam with a large deformation due to
end point load as shown is Figure 1. By Euler–Bernoulli
beam theory, the curvature (κ) of the beam can be given as

κ �
dθ
ds

�
M

EI
, (1)

where θ represents the slope or rotation of a beam, s is the
natural distance from the fixed end, E is Young’s modulus,
M is bending moment, I is moment of inertia, and EI is the
bending stiffness of cantilever beam. From Figure 1,
moment (M) for the deflected beam under end point load
is given as

M � F L − δh − x( , (2)

where concentrated load at end point is denoted by F, δh is
the horizontal deflection, and L is the distance of deflected
beam from fixed point. Hence, bending equation of uniform
cross sectional beam for large deformation is written as

dθ
ds

�
F

EI
L − δh − x( , θ(0) � 0, θ′(L) � 0. (3)

If F � 0, then concentrated force is a dead force such as
gravity, and if F � 1, then the concentrated force is per-
pendicular to the deflected beam at the end [31] (Figure 1).

Differentiation of (1) with respect to s is given as

d2θ
ds

2 �
dM/ds

EI
, (4)

considering a dimensionless parameter ξ � s/L. Differenti-
ating (2) with respect to s and substituting cos(θ) � dx/ds in
(4) will result in governing second-order differential
equation for large deformation of continuer beam with end
point load as

d2θ
dξ2

+ ρ cos θ � 0, (5)

with boundary conditions

at ξ � 0, θ � 0, (6)

at ξ � 1,
dθ
dξ

� 0, (7)

where ρ � FL2/EI, and it represents the dimensionless load at
end point. Angle of rotation of the beam at free end is
denoted by θtip(1) � 1. Furthermore, dimensionless hori-
zontal displacement (δh) of the free end is given by
[17, 32, 33] as

2 Complexity



L − δh

L
�

����������

2EI sin θtip 

FL2



�

�������
2 sin θtip

ρ



, (8)

then, the dimensionless horizontal displacement of the free
tip is

δh

L
� 1 −

1
�ρ√

�������
2 sin θtip


. (9)

For large deformation equation (5) along with boundary
conditions, (6) and (7) are given as

d2θ
dξ2

+ ρ � 0,

at ξ � 0, θ � 0,

at ξ � 1,
dθ
dξ

� 0.

(10)

+e analytical solution for the problem is given as

θ(ξ) �
ρ
2

(2 − ξ)ξ, (11)

at the tip ξ � 1.

θ(ξ) �
ρ
2
. (12)

3. Proposed Methodology

+e proposed soft computing paradigm for calculating
approximate solutions for mathematical model of large
deformation of cantilever beam consists of two parts. In the
first part, an unsupervised ANNs model is constructed in
terms of input, hidden, and output layers for governing
differential equation. In the second part, neurons in ANN
structure are trained or tuned by hybridizing generalized
normal distribution optimization (GNDO) algorithm and
sequential quadratic programming (SQP).

3.1. Construction of ANN Model. Feedforward artificial
neural networks (ANNs) are used to model series solu-
tions for governing equation of large deformation of

cantilever beam with end point loading. Neural network
model for (5)–(7) are formulated using continuous
mapping approach for the solution θ(ξ) and its respective
derivatives in terms of input, hidden, and output layer are
given as follows:

θ(ξ) � 
k

i�1
ϕif ωiξ + βi( , (13)

θ′(ξ) � 
k

i�1
ϕif′ ωiξ + βi( , (14)

θ″(ξ) � 
k

i�1
ϕif″ ωiξ + βi( , (15)

where ϕ � [ϕ1,ϕ2, ϕ3, . . . , ϕm], ω � [ω1,ω2,ω3, . . . ,ωm], and
β � [β1, β2, β3, . . . , βm] are real-valued vectors and are
bounded, f is the activation function, and i represents the
number of neurons in ANN structure. In the hidden layer,
(13)–(15) used log sigmoid as an activation function, and
then, the updated form of solution and its derivatives is given
as

θ(ξ) � 
k

i�1
ϕiωi

1

1 + e
− ωiξ+βi( )

 ,

θ′(ξ) � 
k

i�1
ϕiωi

e
− ωiξ+βi( )

1 + e
− ωiξ+βi( ) 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

θ″(ξ) � 
k

i�1
ϕiω

2
i

2e
− ωiξ+βi( )

1 + e
− ωiξ+βi( ) 

3 −
e

− ωiξ+βi( )

1 + e
− ωiξ+βi( ) 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(16)

3.2. Formulation of Fitness Function. Fitness function or
objective function for mathematical model of large defor-
mation in cantilever beam is developed as a sum of twomean
square error (MSE):

Fixed End Free End

S
U
P
P
O
R
T

Y-
ax

is

X-axis

δh

L – δh

δv
Fs

θ

θtip

Figure 1: Large deformation of a cantilever beam under end point loading.
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MinimizeE � E1 + E2, (17)

where E1 and E2 are MSE of (5) and (6) and (7), respectively,
which are defined as

E1 �
1
N



N

m�1

d2θ
dξ2

+ ρ 

2

,

E2 �
1
2

(θ(0) − 0)
2

+
dθ(1)

dξ
− 0 

2

⎛⎝ ⎞⎠.

(18)

For the approximate solution of (5), fitness function
equation (17) is optimized by training neurons in such a way
that MSEs, E1 and E2, should approach to zero, and con-
sequently, the approximate solution by proposed method
will converge to exact solution.

3.3. Training of Neurons. Methodologies adopted for
training of unknown neurons in ANNs structure for opti-
mization of fitness function equation (17) are presented,
which is based on hybridization of unsupervised and su-
pervised learning of GNDO and SQP, respectively. +e
working mechanism of the proposed algorithm is provided
in Figure 2.

3.4. Generalized Normal Distribution Optimization.
Generalized normal distribution optimization (GNDO) al-
gorithm is a novel metaheuristic technique presented by
Zhang et al. [34], inspired by generalized normal distribu-
tion theory. GNDO algorithm is widely used for parameter
extraction of model, unlike other metaheuristic algorithms;
GNDO is easy to implement, and it only requires the es-
sential population size and termination criteria. GNDOhas a
simple structure, where the position of each individual is
updated by using normal distribution curve. +e working
strategy of GNDO algorithm is subdivided into two phases,
exploitation and exploration.

3.4.1. Exploitation. Exploitation is a process of finding
best solution around the search space consisting of the
current positions of all individuals. Initially, model for
optimization by generalized distribution model is given
as

v
t
i � μi + δi × η, i � 1, 2, 3, . . . , N, (19)

where vt
i , μi, δi, and η, are trial vector, generalized mean

position, generalized standard variance, and penalty
factor, respectively. Moreover, η, δi, and μi are formu-
lated as

η �

��������
− log ζ1( 


× cos 2πζ2( , if a≤ b,

��������
− log ζ1( 


× cos 2πζ2 + π( , otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

δi �

�������������������������������
1
3

x
t
i − μ 

2
+ x

t
Best − μ 

2
+(M − μ)

2
 



,

μi �
1
3

xt
i + xt

Best + M ,

M �


N
i�1 x

t
i

N
,

(20)

where M is the mean position, xt
Best is the current best so

far, and a, b, ζ1, and ζ2 are the random numbers between 0
and 1. Furthermore, η, δi, and μi are discussed in the ex-
ploration phase.

3.4.2. Exploration. Exploration refers to the searching of
population space to get best solution. Exploration of
GNDO is based on three randomly selected individuals as
follows:

vt
i � xt

i + β × ζ3


 × v1 
√√√√√√√√√√√√

Local information sharing

+(1 − β) × ζ4


 × v2 
√√√√√√√√√√√√√√√√
Global information sharing

,
(21)

where v1 and v2 are the trail vectors, β is the adjustment
parameter, and ζ3 and ζ4 are the random numbers between 0
and 1, which are subjected to the standard normal distri-
bution. Trail vectors are computed as follows:

v1 �
xt

i − xt
p1, if f xt

i <f xt
p1 ,

xt
pl − xt

i , otherwise,

⎧⎪⎨

⎪⎩

v2 �
xt

p2 − xt
p3, if f xt

p2 <f xt
p3 ,

xt
p3 − xt

p2, otherwise,

⎧⎪⎨

⎪⎩

(22)

where p1, p2, and p3 are integers. It is worth mentioning
that GNDO algorithm is inspired by the relationship be-
tween normal distribution law and traditional teaching
phenomena, search process of metaheuristics, and group
teaching phenomena, respectively. GNDO has been applied
to study the parameter extraction of photovoltaic models
[34].

3.5. Sequential Quadratic Programming. +e best perfor-
mance (weights) obtained by GNDO algorithm is refined
by the process of hybridization with efficient local search
technique known as sequential quadratic programming
using MATLAB toolbox setting. SQP is one of the pow-
erful methods for numerical solution of constrained
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nonlinear optimization problems. It was developed in
1963 and further refined in 1970 [35]. SQP has been
applied to a number of problems, which proves its power,
accuracy, and efficiency. Nocedal and Wright [35] discuss
SQP in detail and also give a mathematical formulation for
various large-scale numerical optimization problems.
Some recent applications of SQP are numerical solution
for transient heat conduction problem [36], profile error
evaluation of free-form surface [37], nonlinear model
predictive control [38], OPF problem in DC grids [39],
Bagley–Torvik systems arising in fluid mechanics [40],
and optimal design of heating system in rapid thermal
cycling blow mold [41].

3.6. Hybrid ANN-GNDO-SQP Algorithm. Necessary details
of the procedural steps for proposed algorithm are given as
follows.

Step 1. Initialization of GNDO: Initial weights are
created randomly from population space with number
of entries equal to number of neurons in ANN
structure. Mathematical formulation is given as

C � [(ϕ,ω, β)]
T

�

ϕ1 ω1 β1
ϕ2 ω2 β2
⋮ ⋮ ⋮

ϕm ωm βm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

Model Large Deformation Analysis of Cantilever Beam Under point Load

Mathematical model

d2θ/dξ2 + ρ = 0, θ (0) = 0, θ′ (1) = 0,

Cases
I II III IV

ρ = 2.0ρ = 1.5ρ = 1.0ρ = 0.5

Optimization Network
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GNDO

Initialization of 
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Calculate the fitness value 
using Eq (21) to obtain xBest 
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α є (0,1)
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Update the current best 
position by performing 
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(28) –Eq (30).
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Figure 2: Graphical overview of the model, cases studies, and flow chart of the ANN-GNDO-SQP algorithm.
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where ϕ, ω, and β are the real values of unknown
neurons in ANN model. Parameter setting for GNDO
algorithm is given in Table 1.
Step 2. Fitness evaluation: Objective function equation
(17) is evaluated to calculate the fitness value for the
problem using the weights generated in the previous
step.
Step 3. Criteria for termination: Execution of GNDO is
stopped when any of the following criteria is satisfied.

Objective value ie ε⟶ 10− 15

Function tolerance ie ′Fun′TOL⟶ 10− 15

Predefined number of iterations is achieved

If stopping criteria are fulfilled, then go to step V
otherwise continue.
Step 4. Storage: Store the global best weight corre-
sponding to minimum fitness value and time taken for
the execution.
Step 5. Hybridization: Global best weights obtained by
GNDO for minimization of (21) are considered as an
initial guess for SQP to start the procedure.

Step 6. Fitness evaluation: SQP starts the supervised
learning, update the weights, and evaluate the fitness
function until the following terminations conditions
are satisfied.
Objective value, i.e., ε⟶ 10− 15.
Predefined number of iterations is achieved.
Step 7. Storage: Store the best weight, minimum fitness
value, and time taken for the execution by SQP and the
total time by GNDO-SQP in seconds.

Repeat the procedure from steps I–VII for a sufficient
large number of independent runs to generate a large dataset
for reliable statistical analysis.

4. Performance Indices

In this section, the performance of design scheme for solving
mathematical model of large deformation of cantilever beam
is examined by incorporating performance indicators in
terms of mean absolute deviation (MAD), +eil’s inequality
coefficient (TIC), root mean square error (RMSE), and
Nash–Sutcliffe efficiency (NSE). Mathematical formulations
of these indicators are given as follows [23].

MAD �
1
N



N

m�1
θm(ξ) − θm(ξ)



,

TIC �

������������������������

(1/N) 
N
n�1 θm(ξ) − θm(ξ) 

2


������������������

(1/N) 
N
m�1 θm(ξ)( 

2


+

�����������������

(1/N) 
N
m�1

θm(ξ) 
2



 

,

RMSE �
1
N

������������������



N

m�1
θm(ξ) − θm(ξ) 

2




,

NSE � 1 −


N
m�1 θm(ξ) − θm(ξ) 

2


N
m�1 θm(ξ) − θm(ξ) 

2,
θm(ξ) �

1
N



N

m�1

θ(ξ),
⎧⎪⎨

⎪⎩

ENSE � (1 − NSE),

(24)

where θm is the analytical solution and θm represents the
approximate solution by proposed algorithm. N denotes the
grid points.

5. Numerical Simulation and Discussion

In this section, different cases of (5) are considered to study
the effect of variations in dimensionless end point load (ρ)

on large deflection of cantilever beam. +e following cases
are considered. Case I: ρ � 0.5, Case II: ρ � 1.0, Case III:
ρ � 1.5, and Case IV: ρ � 2.0. +e formulation of fitness
functions for each case is given as follows:

Minimize E �
1
N


N

m�1

d2θ
dξ2

+ 0.5 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 ,

(25)

Minimize E �
1
N



N

m�1

d2θ
dξ2

+ 1.0 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 ,

(26)

Minimize E �
1
N



N

m�1

d2θ
dξ2

+ 1.5 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 ,

(27)
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Minimize E �
1
N



N

m�1

d2θ
dξ2

+ 2.0 

2

+
1
2

(θ(0) − 0)
2

+ θ′(1) − 0 
2

 .

(28)

In this paper, the mathematical model of large deflected
cantilever beam under end point load is investigated by
developing soft computing technique. ANNs-based fitness
function is constructed to model approximate solutions,
which are further optimized by using hybridization of
GNDO and SQP algorithms. To briefly study the efficiency
and behaviour of proposed technique, it is executed for 100
times. Results obtained by ANN-GDDO-SQP algorithm are
compared with exact solution and differential transforma-
tion method [33]. Approximate solutions along with ab-
solute errors obtained by the proposed algorithm for
different cases of deflected cantilever beam are shown in
Figure 3. Figures 4(a) and 4(b) illustrate the influence of
variations in dimensionless end point load (ρ) on horizontal
distance (δh/L) and rotational angle (θtip) of the beam at the
tip or free end, respectively. Convergence of fitness values,
MAD, TIC, RMSE, and ENSE for each case of large deflected
cantilever beam during 100 independent runs is shown in
Figures 5 and 6. Figure 7 represents the boxplots analysis for
each case of deflected cantilever beam. +e graphical

illustration of mean absolute values, global values for fitness
function, and performance indicators for each case study are
presented in Figure 8.

It can be seen that the approximate solutions overlap
the exact solution with minimum errors that show the
accuracy of proposed technique. Table 2 dictates the
comparison of approximate solutions and analytical so-
lutions for different cases depending on variations in di-
mensionless point load at free end. Tables 3 and 4 show that
absolute errors in best solutions for case I-IV lie around
1.51E − 10 to 2.83E − 12, 1.36E − 10 to 5.72E − 13, 1.35E −

09 to 9.89E − 12 and 1.08E − 09 to 1.50E − 12 with standard
deviations 10− 9 to 10− 10, 10− 9 to 10− 11, 10− 8 to 10− 10 and
10− 8 to 10− 9, respectively. Table 5 dictates that mean or
global values of fitness function for each case study are
1.80E − 08, 5.18E − 08, 1.10E − 07, and 1.60E − 07. Also,
minimum values of MAD, TIC, RMSE, and ENSE lie
around 10− 6, 10− 7, 10− 6, and 10− 10 with standard devia-
tions around 1.80E − 05 to 4.94E − 06, 4.27E − 06 to
1.59E − 06, 1.50E − 05 to 4.13E − 06 and 2.35E − 08 to
7.74E − 09, respectively. Analyses based on the computa-
tional complexity of the design scheme for obtaining so-
lution to equations (25)–(28) are dictated in Table 6.
Weights in ANN structure for best solution of each case
obtained by proposed algorithm are presented in Table 7
and graphically shown in Figure 9.

Table 1: Setting of parameters for GNDO and SQP algorithm.

Method Parameters Settings Parameters Settings

GNDO
Initialization Random search Bounds (Lb, Ub) [− 1, 1]
Search agents 70 Max. iterations 2000

Function tolerance 10− 15 Fitness limit 10− 15

SQP
Initiation Global best of GNDO Bounds (Lb, Ub) [− 1, 1]

Max. iterations 1500 X-tolerance 10− 15

Function tolerance 10− 15 Fitness limit 10− 15
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Figure 3: (a) Comparison of approximate solutions obtained by ANN-GNDO-SQP algorithm with analytical solution for each case.
(b) Absolute errors in solutions of proposed algorithm for different cases.
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Figure 4: Comparison between the (a) dimensionless horizontal distance and (b) rotational angle of the beam obtained by analytical
method, DTM, and proposed algorithm for variations in dimensionless end-point load.
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Figure 5: (a) Convergence of fitness value. (b) Box plot analysis for each case during 100 independent runs of ANN-GNDO-SQP algorithm.
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Figure 6: Continued.
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Figure 6: Convergence analysis of (a) MAD, (b) TIC, (c) RMSE, and (d) ENSE during 100 independent runs for each case of large deflected
beam.
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Figure 7: (a–d) represents the boxplot analysis for each case of large deflected cantilever beam under end-point load during 100 in-
dependent executions. (a) MAD, (b) TIC, (c) RMSE, and (d) ENSE.

Complexity 9



Fit MAD TIC RMSE ENSE

10-4

10-5

10-6

10-7

10-8

Va
lu

es

Case I
Case II

Case III
Case IV

(a)

10-7

10-8

10-9

10-10

Case I
Case II

Case III
Case IV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n 
Ab

so
lu

te
 E

rr
or

s

ξ

(b)

Figure 8: (a) +e global values of fitness function and performance indicators obtained during multiple execution of ANN-GNDO-SQP
algorithm. (b) Mean absolute errors in the solutions of proposed algorithm for different cases of large deflected cantilever beam.

Table 2: Comparison of the approximate solution obtained by ANN-GNDO-SQP algorithm with analytical solution for different variations
is dimensionless end point load of large deflected cantilever beam.

ξ
ρ � 0.5 ρ � 1.0 ρ � 1.5 ρ � 2.0

Exact ANN-GNDO-SQP Exact ANN-GNDO-SQP Exact ANN-GNDO-SQP Exact ANN-GNDO-SQP
0.0 0 2.02E − 09 0 − 5.11E − 08 0 − 5.70E − 09 0 6.07E − 07
0.1 0.0475 0.04750000 0.0950 0.09500000 0.1425 0.14250000 0.1900 0.19000004
0.2 0.0900 0.09000000 0.1800 0.18000000 0.2700 0.27000000 0.3600 0.36000005
0.3 0.1275 0.12750000 0.2550 0.25500000 0.3825 0.38250000 0.5100 0.51000000
0.4 0.1600 0.16000000 0.3200 0.32000000 0.4800 0.48000000 0.6400 0.64000000
0.5 0.1875 0.18750000 0.3750 0.37500000 0.5625 0.56250000 0.7500 0.75000008
0.6 0.2100 0.21000000 0.4200 0.42000000 0.6300 0.63000364 0.8400 0.84000000
0.7 0.2275 0.22750000 0.4550 0.45500000 0.6825 0.68250000 0.9100 0.91000000
0.8 0.2400 0.24000188 0.4800 0.48000000 0.7200 0.72000000 0.9600 0.96000004
0.9 0.2475 0.24750207 0.4950 0.49500000 0.7425 0.74250001 0.9900 0.99000006
1.0 0.2500 0.25000192 0.5000 0.50000000 0.7500 0.75000000 1.0000 1.00000001

Table 3: Maximum and minimum absolute errors obtained in ANN-GNDO-SQP solutions for different cases of large deflection of
cantilever beam.

ξ
ρ � 0.5 ρ � 1.0 ρ � 1.5 ρ � 2.0

Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE
0.0 1.07E − 08 2.16E − 10 2.54E − 08 9.14E − 11 1.28E − 07 1.30E − 10 1.24E − 07 2.18E − 09
0.1 1.03E − 08 1.67E − 10 2.18E − 08 1.36E − 10 1.06E − 07 6.97E − 10 1.46E − 07 1.48E − 09
0.2 1.02E − 08 1.82E − 10 2.46E − 08 3.53E − 11 1.27E − 07 9.89E − 12 1.41E − 07 1.72E − 09
0.3 2.23E − 10 6.59E − 12 1.20E − 09 5.38E − 12 7.64E− 09 4.03E− 10 2.14E − 09 8.42E − 11
0.4 4.76E − 09 7.30E − 11 8.77E − 09 5.44E − 11 4.32E− 08 3.40E− 10 8.23E − 08 6.09E − 10
0.5 9.86E − 09 1.73E − 10 2.25E − 08 8.30E − 11 1.20E− 07 1.10E− 11 1.75E− 07 1.58E− 09
0.6 3.79E − 09 8.09E − 11 1.11E − 08 4.73E − 11 6.36E− 08 5.62E− 10 7.28E− 08 8.51E− 10
0.7 5.26E − 10 2.83E − 12 3.14E − 10 5.72E − 13 1.06E− 09 4.32E− 10 8.63E − 09 1.50E − 12
0.8 1.02E − 08 1.53E − 10 2.09E − 08 1.46E − 10 1.14E− 07 9.45E− 11 2.06E − 07 1.08E − 09
0.9 8.53E − 09 1.56E − 10 2.22E − 08 2.44E − 10 1.28E− 07 1.35E− 09 1.93E − 07 1.22E − 09
1.0 1.04E − 08 1.51E − 10 2.07E − 08 2.99E − 10 1.20E− 07 4.76E− 10 2.30E − 07 1.24E − 09
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6. Conclusion

In this paper, we have analyzed the mathematical model of
large deflected beam under variational point load and the
free end. Furthermore, we present a new soft computing
technique to calculate approximate solution for different
cases depending on variations in end point load. We con-
clude our finding as follows.

(i) A new soft computing evolutionary algorithm is
developed in which the strength of artificial neural
networks are utilized to model an approximate
series solution and combined with hybridization of
generalized normal distribution optimization al-
gorithm and sequential quadratic programming.
+e proposed algorithm is named as ANN-GNDO-
SQP algorithm.
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Figure 9: Unknown neurons in ANN structure corresponding to best solutions for each case large deflected cantilever beam. (a) Case
I. (b) Case II. (c) Case III. (d) Case IV.
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(ii) ANNs-based fitness functions are constructed and
optimize with the ANN-GNDO-SQP algorithm to
obtain an overlapping solutions with minimum
absolute errors as shown in Figure 3.

(iii) It can be seen that increasing end-point load in-
creases the angle of deflection, horizontal distance,
and rotational angle of the cantilever beam.

(iv) Convergence graphs and boxplots of 100 inde-
pendent executions for fitness evaluation, MAD,

TIC, RMSE, and ENSE show the stability of pro-
posed algorithm.

(v) Extensive graphical and statistical analysis along
with complexity analysis of the proposed algorithm
for solving large deflected cantilever beam shows the
correctness and robustness of ANN-GNDO-SQP
algorithm.

Approximate solutions for cases I–IV are as follows:

θ(ξ)

− 2.9962626
1 + e

− (− 0.65813310t− 1.9949390)
+

− 2.8313012
1 + e

− (0.59715086t− 2.4652621)
,

+
− 2.8313010

1 + e
− (0.59715056− 2.4652635)

+
0.2424393

1 + e
(0.81624788t+0.9989734)

,

+
− 2.9962567

1 + e
− (− 0.65820220t− 1.9949300)

+
0.6959822

1 + e
− (0.58787992t+1.7968609)

,

+
0.6315080

1 + e
− (− 0.39080880t+2.1960290)

+
1.2045178

1 + e
(0.65966357t− 0.7020318)

,

+
− 2.8312966

1 + e
− (0.59714525t− 2.4652530)

+
− 2.9962649

1 + e
− (− 0.65808110t− 1.9949521)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(ξ)

1.48586354
1 + e

− (− 0.7044589t+2.44833643)
+

− 2.29465530
1 + e

− (− 0.9937027t− 1.48608260)
,

+
2.40794827

1 + e
− (− 1.1209820+3.41884685)

+
− 2.29465550

1 + e
(− 0.9937063t− 1.48608340)

,

+
− 2.29465580

1 + e
− (− 0.9937174t− 1.48607800)

+
− 1.48607800

1 + e
− (− 0.9937021t− 1.48608350)

,

+
2.40797982

1 + e
− (− 1.1206391t+3.41897235)

+
− 1.14915000

1 + e
(1.5518567t+1.25665993)

,

+
− 3.73471870

1 + e
− (0.2862061t+1.44003308)

+
− 2.29465600

1 + e
− (− 0.9936976t− 1.48608900)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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θ(ξ)

− 2.0618838
1 + e

− (− 0.2837740t+2.30806094)
+

1.4326512
1 + e

− (1.2909630t+0.41306818)
,

+
− 5.1431940

1 + e
− (− 0.9214788− 2.53963320)

+
− 5.1431899

1 + e
(− 0.9214561t− 2.53962473)

,

+
0.9891961

1 + e
− (0.5095847t+3.05528986)

+
0.9883707

1 + e
− (0.5164401t+3.07199558)

,

+
− 5.1431949

1 + e
− (− 0.9214901t− 2.53962702)

+
− 8.4468052

1 + e
(1.1202166t− 3.24654750)

,

+
0.9883813

1 + e
− (0.5164715t+3.07202476)

+
− 5.1431979

1 + e
− (− 0.9214801t− 2.53963468)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(ξ)

− 6.06573860
1 + e

− (0.86825787t− 2.33438240)
+

− 8.68057533
1 + e

− (− 0.61741762t− 1.96299418)
,

+
− 6.06575258

1 + e
− (0.86882569− 2.33421836)

+
− 8.68058082

1 + e
(− 0.61739784t− 1.96303574)

,

+
1.88766152

1 + e
− (− 1.93692688t+5.66526002)

+
− 8.68057978

1 + e
− (− 0.61743654t− 1.96298424)

,

+
− 8.68057609

1 + e
− (− 0.61744398t− 1.96300933)

+
2.29100504

1 + e
(− 0.70151323t+4.57057840)

,

+
2.29100362

1 + e
− (− 0.70152426t+4.57058216)

+
− 8.68057385

1 + e
− (− 0.61743850t− 1.96300282)

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Abbreviations

ANNs: Artificial neural networks
GNDO: Generalized normal distribution optimization
MAD: Mean absolute deviation
TIC: +eil’s inequality coefficient
NSE: Nash–Sutcliffe efficiency
ENSE: Error in Nash–Sutcliffe efficiency
SQP: Sequential quadratic programming
RMSE: Root mean square error
DTM: Differential transform method
L: Distance of deflected beam
F: Concentrated load
ϕn,ωn, βn: Unknown real valued neurons in ANNs
ρ: End-point load
κ: Curvature
θ: Rotation of beam
s: Distance from fix point
I: Inertia
M: Bending moment
EL: Bending stiffness
δh: Horizontal deflection of beam
ξ: Dimensionless parameter
vt

i : Trail vector
μi: Mean position
δi: Standard variance
vt

i : Trail vector
μi: Mean position
δi: Standard variance.
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