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Spinal cord injury (SCI) is an existing incurable disease that brings great pain and life obstacles to patients. Spinal cord electrical
stimulation is an effective means to alleviate spinal cord injury. However, its complicated mechanism of action is still unclear. This
article aims to summarize several different spinal cord electrical stimulation methods, analyze the stimulation effect, and briefly
describe the current understanding of its origin and mechanism of action. In recent years, several application cases of the electrical
stimulation system of stimulation methods have confirmed its positive effects in spinal cord injury diseases and provided new
perspectives for the improvement of spinal cord injury. Finally, the possible development direction and corresponding challenges

of spinal cord electrical stimulation in the future are proposed.

1. Introduction

1.1. Spinal Cord Injury. Spinal cord injury (SCI) is a trans-
verse injury of the spinal cord caused by various pathogenic
factors (trauma, tumor, inflammation, etc.). The spinal cord is
part of the central nervous system and consists of a large
bundle of nerves that allow the brain to communicate with the
rest of the body (through the peripheral nerves). Once SCI
occurs, it will lead to spinal cord nerve dysfunction below the
injury level, such as sensory and autonomic dysfunction,
impaired motor function, and sphincter and autonomic nerve
dysfunction [1]. This brings great life pressure and psycho-
logical burden to patients and their families. Traumatic SCI
has the characteristics of acute onset, serious condition, high
disability-fatality rate, and so on. The treatment of traumatic
SCI is also a worldwide problem [2-4], and the incidence of
SCl is increasing year by year [5]. The high incidence of SCI is
mostly caused by traffic accidents, falls, violence, and other
factors [6]. After SCI, how to restore nerve function to enable
paraplegic patients to obtain motor ability is still a difficult
problem in life science.

There are surgical treatment [7], drug therapy [8],
physical rehabilitation [9], and other treatment methods for
patients with SCI. Surgical treatment is generally concen-
trated in the acute stage of spinal cord injury, but the in-
fluence of the timing of surgical decompression is still
discussed, and there are a large number of changes in clinical
practice [10]. Drug therapy generally plays a role in reducing
inflammation but does not play a significant role in the
improvement of motor function [8]. As a common treat-
ment, physical rehabilitation has been used in patients with
spinal cord injury and achieved certain results. However, the
individual specificity of physical rehabilitation treatment is
strong, and the universality needs to be improved [9]. In
addition, there are new treatments such as biomaterials or
stem cell transplantation [11, 12]. But the pathophysiological
mechanism of spinal cord injury is complex, changeable, and
multi-inducing, and the mechanisms are still unclear [13],
which brings great obstacles to the treatment of spinal cord
injury.

So far, great efforts have been made to solve this problem
in various fields around the world. SCI is no longer a single
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medical problem, but a life science difficulty to be overcome
in biomedical, mechanical and electronic, computer, in-
formation, and other fields. Engineering methods that
combine multiple fields are used to treat spinal cord injuries,
such as electrical stimulation techniques.

1.2. Electrical Stimulation Technique. Electric current can
cause responses in excitable cells, including neurons, and
can be used to produce sensory or motor feedback. Through
this principle, the researchers invented the electrical stim-
ulation technology and carried out the initial clinical ap-
plication. The spinal cord has become an attractive
stimulation target, because it retains motor and sensory
pathways below the injury level [14, 15]. The existing
methods of spinal cord electrical stimulation include epi-
dural electrical stimulation, transcutaneous stimulation, and
intraspinal electrical stimulation. Its effectiveness can be
verified by several examples, including hand grip [16],
walking [17, 18], protecting spinal motor neurons [19], and
bladder management [20].

Most of the early electrical stimulation techniques set the
stimulation parameters through the stimulation system and
did not form a complete closed-loop control. However, with
the development of science and technology, such as brain-
computer interface technology, electrical stimulation tech-
nology is gradually improved. As shown in Figure 1,
Depending on the recording method, neuroscientists dis-
tinguish between electroencephalogram (EEG), electrocor-
ticogram (ECoG), and local field potential (LFP). High-
frequency collection of single nerve cell discharges peak
potential spike [21]. Researchers can collect EEG as control
signals to extract the characteristic information contained in
the signals. By means of machine learning, the feature in-
formation is classified, and the mapping relationship be-
tween the feature information and the action is established
and transformed into stimulus signals. After that, when this
type of signal is collected again, the receptor can be stim-
ulated to produce the corresponding action, and finally the
motor function can be restored. This technique has also been
applied to solve the problem of SCI, and a breakthrough has
been achieved [22]. The purpose of this paper is to sum-
marize the different methods of spinal cord electrical
stimulation used to restore motor function, analyze their
advantages and disadvantages, and briefly introduce the
potential future of this technique.

2. Key Components of Electrical
Stimulation System

2.1. Electrical Stimulator. The electrical stimulator is used to
generate different stimulating currents, which are connected
to the electrode to achieve the purpose of transmitting the
current. In general, electrical stimulators can connect one or
more channels, each consisting of a pair of electrodes (anode
and cathode), and each channel is independent of each
other. The electrical stimulator can set different pulse pa-
rameters (amplitude, pulse width) and the stimulation se-
quence of each channel, resulting in different stimulation
strategies.
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2.2. Electrodes. The electrode is used to make direct contact
with the stimulated target to transmit electric current.
According to its placement position, it can be divided into
the implantable electrode and nonimplantable electrode.
Implantable electrodes are generally flaky (mostly epidural
electrical stimulation) or needle (mostly intraspinal electrical
stimulation), which need to be surgically implanted in the
body. It can be closer to the stimulus position but also
requires a smaller stimulus current, which is generally less
than 25mA. Nonimplantable electrodes are generally at-
tached to the skin above the spinal cord, do not require
surgical participation, are very suitable for temporary use,
and can adjust the stimulation position to produce the
desired effect (movement). Because the electrode and the
stimulation position are separated from the skin, it generally
requires a large current and will be controlled within the
120 mA, as shown in Table 1.

In addition to the electrode position and current, the key
factors affecting the effect of electrical stimulation are fre-
quency, pulse width, and so on. The stimulation frequency is
the rate of pulse transmission, which affects the speed of
muscle contraction. Exceeding 40 Hz will cause tetanic
contraction of muscles, and spinal cord electrical stimulation
is generally used at 20-25 Hz. Current amplitude and pulse
width will affect the stimulation effect at the same time, and
there is an inverse correlation between them, and they work
together to produce enough energy to produce a response. In
order to achieve the comfort of stimulating effect, the
current amplitude is generally controlled within 100 mA
[23].

2.3. Sensors. There may be sensors as auxiliary devices to
obtain better stimulation effects for different stimulation
strategies. For example, stimulus strategies based on inertial
sensors are more smoothly controlled [24], trigger algorithm
based on inertial sensor to assist paraplegic patients to swim
[25], using EMG signal electrical stimulation feedback
control [26], and so on. The prediction of motor behavior
based on sensor information [27, 28] and physical reha-
bilitation training can help patients return to normal life to
the greatest extent.

2.4. Control Systems. It is difficult to control the pulse fre-
quency, amplitude, pulse width, and other stimulation pa-
rameters for the electrical stimulation system. It is also the
most important part of the stimulation system. While
producing a stimulating effect, ensure the safety, comfort,
and individual differences of the system. These parameters
will affect the stimulation effect and ultimately affect the
patient’s rehabilitation progress. Appropriate stimulation
parameters will improve the efficiency of stimulation, and
unreasonable parameters are likely to hinder the patient’s
recovery.

The research on electrical stimulation control system
focuses on (1) open-loop and closed-loop control, (2)
control algorithm technology research, or (3) feedback in-
formation to the stimulator control unit through biological
signals or sensors [29, 30]. The control objects are mainly
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FiGure 1: Electrical stimulation technology based on brain-computer interface.
TaBLE 1: Different stimulation electrodes are compared.

Electrode Current (mA) Advantage Disadvantage
Implantable electrode <25 High specificity, can be used for a long time Need surgery, may have inflammation
i\lfé)crilrl:é);zntable <120 No surgery required Not portable, prone to high current discomfort

focused on stimulation frequency, stimulation amplitude,
etc. [15]. Researchers have verified through experiments that
closed-loop control may be more practical [31-33], as shown
in Figure 2.

3. Types of Spinal Stimulation

Spinal cord electrical stimulation technology first appeared in
the treatment of clinical cases in the 1970s. Initially, this
technology was used to delay muscle atrophy and anti-in-
flammatory symptoms caused by muscle waste in patients
with hemiplegia. It can also promote the speed of physical
recovery [34-36]. Spinal cord electrical stimulation is a rel-
atively new application for the recovery of motor function.
Researchers use this technique to treat paraplegia, paralysis, or
functional disorders caused by SCI or stroke [37-39].

Researchers have identified several effective forms of
electrical stimulation, which can be divided into (1) epidural
electrical stimulation, which places electrodes on the dural
surface of the spinal cord, (2) transcutaneous electrical
stimulation, where the electrode was placed on the skin
above the vertebra, and (3) intraspinal electric stimulation,
where the electrode was inserted into the spinal cord, as
shown in Figure 3. Different stimulation methods require
different stimulation parameters, and their mechanism of
action will be different [40]. The current view is that epidural
and transcutaneous electrical stimulation mainly stimulate
the baseline excitability of the spinal cord and reactivate the
intact circuit retained after SCI [41]. By activating the motor
cistern and the neural network in the spinal cord, the
electrical stimulation in the spinal cord can obtain the co-
ordinated movement of the whole limb [42].
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FIGURE 3: Types of spinal stimulation. (a) Epidural electrical stimulation; (b) transcutaneous electrical stimulation; (c) intraspinal electric

stimulation.

3.1. Epidural Electrical Stimulation. The electrode is placed
in the spinal cord epidural, through different current pa-
rameters to stimulate the electrode contact position, so as to
achieve the effect of treatment or adjuvant therapy, and this
technique is called epidural electrical stimulation. In the
study of spinal cord function and its ecological environment,
it is found that the functional modules of spinal cord can
produce complex motor behavior without brain input
[43, 44]. In fact, most of our daily actions escape our
conscious attention. It also shows that it is possible to di-
rectly stimulate the downstream of the SCI plane beyond the
SCI plane to cause the target movement of the moving
organs.

The researchers applied epidural electrical stimulation to
several animal models of SCI to verify the effectiveness of
this technique [45-48]. It is undoubtedly a good choice to
use small rodent models to verify this point of view. Gad
et al. pointed out that, after complete resection of the middle
thoracic spinal cord, adult rats can use spinal cord epidural
stimulation to step on an electrically driven treadmill. At the
same time, the effect of the combination of subthreshold
stimulation intensity and spontaneous load proprioception
to promote the walking and standing of hind limbs in
paralyzed rats was studied [49]. Alam et al. used epidural
electrical stimulation with different stimulation parameters
(including different stimulation frequencies and single and
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double stimulation electrodes) to train the forelimb grasping
ability of rats with SCI. They found that cervical epidural
stimulation increased the grip success rate compared with
the nonstimulation condition, and bipolar stimulation (C6—
C8+ and C6+ C8-) produced a larger spinal motor evoked
potential and led to a higher success rate of arrival and
mastery [50]. Studies in rats have found that epidural
electrical stimulation of the lumbar spinal cord can repro-
duce the natural activation of synergistic muscle groups that
produce motor function. Creating a suitable calculation
model may be able to break through the complex mechanism
of electrical stimulation. Capogrosso et al. designed a
computational model and conducted in vivo experiments to
study the types of fibers, neurons, and circuits that respond
to EES recruitment. As shown in Figure 4, the model can
predict the motor response induced by EES of various in-
tensities and positions and provides a mechanical frame-
work for the design of spinal nerve prosthesis system to
improve standing and walking after nervous system diseases
[51].

There is a certain gap between the anatomical structure
of rodents and human beings. For rodents, spinal epidural
electrical stimulation has achieved a good stimulation effect.
However, in human testing, sometimes it does not work as
well as in rodents. Studies have shown that EES cannot block
proprioceptive input in rats but can block a large number of
proprioceptive inputs in human body, which may be caused
by different lengths of neural circuits [52], as shown in
Figure 5. The results of Friedli et al. reveal that the funda-
mental differences in the essential anatomical and functional
characteristics of the motor system between primates and
rodents may lead to significant interspecific differences in
the nature and degree of spinal cord repair mechanisms. It is
suggested that although rodents are still very important in
promoting regenerative therapy, the unique response of the
corticospinal tract of primates after injury once again em-
phasizes the importance of primate models [53].

Some research teams set out to improve the electrical
stimulation of primate models. Capogrosso et al. implanted a
wirelessly controlled spinal cord stimulation system in
rhesus monkeys with unilateral corticospinal tract lesions,
which linked the online neural decoding of leg stretching
and flexion movements to stimulation protocols that pro-
mote these movements. Without prior training for monkeys,
the brain-spine interface restores the load-bearing move-
ment of paralyzed legs on the treadmill and on the ground
[54]. They made an in-depth study of the stimulation
mechanism of the cervical spinal cord, showing that the
lateral electrodes produce segmented recruitment of mo-
toneurons in the upper limb and regulate the muscle re-
sponse during exercise [55]. In order to explore the location
of stimulation, Mesbah et al. carried out the research by
means of statistics, discussed the mechanism of motor
function recovery, and finally determined the exact position
of the electrode [56]. Barra et al. recorded the muscle activity
of rhesus monkeys during the hand-holding task and found
that the task involved a stereotyped spatiotemporal map of
motor neuron activation and characterized the specificity of
EES delivery to the cervical vertebra segment. Finally, the

team designed a stimulation scheme based on these results to
reproduce the natural activation of motor neurons, thereby
promoting the movement of the upper limb after injury [57].
This result also confirms the importance of spatiotemporal
stimulation strategies for epidural electrical stimulation.

After exploration, epidural electrical stimulation can be
systematically applied to human beings with SCI. As shown
in Figure 6, patients with SCI are programmed into regular
stimulation codes and sent to implantable pulse generators
by collecting brain motor intention signals. The pulse
generator connects a lamellar stimulation electrode attached
to the dura matter of the L1~S2 segment of the spinal cord.
By sending regular stimulation signals to the distributed
contacts of the electrode, the lower limbs can be stimulated
to make regular swinging movements.

In addition, there have been a number of cases to prove
that spinal epidural stimulation has the effect of motor
function recovery [59-63]. In 2011, Harkema et al. con-
firmed that a patient who has a complete motor injury but
felt incomplete injury regained motor control after 2 years of
complete paralysis by lumbosacral spinal cord epidural
stimulation [64]. The David study showed that, 5 and 10
years after SCI, two adult women (48 years old and 52 years
old, respectively) resumed a certain degree of voluntary
exercise immediately after the implantation of the epidural
spinal cord stimulation system, and there was no prescribed
or obvious preconditioning training after the implantation
of the stimulation system [65]. Possover stimulated the
lumbosacral nerve in patients with chronic spinal cord in-
jury for a long time. In the experiment, all patients with
incomplete spinal cord injury regained voluntary control of
previously paralyzed muscles [66]. The selection of appro-
priate stimulation strategy is very important to promote the
standing of whole body weight-bearing stand with inde-
pendent knee extension [67].

The Wagner team used an implantable pulse generator
with real-time triggering to provide a series of spatially
selective stimuli to the spinal cord in a certain time sequence.
Within a week, this stimulation reestablished adaptive
control of paralyzed muscles during ground walking. The
exercise ability was improved during the rehabilitation
period. A few months later, the participants regained vol-
untary control of previously paralyzed muscles without
stimulation [58]. It is also shown that this kind of stimu-
lation can produce long-term therapeutic effect.

Different stimulation parameters can produce different
stimulation effects, and the influencing factors are complex
and changeable, which brings difficulty to the control.
Wenger et al. [46] developed a mechanical framework to
optimize neural regulation in real time to achieve leg height
simulation control during electrical stimulation. As shown
in Figure 7, a parallel loop with a combination of robust
feedback correction (PI controller) and predictive feedfor-
ward model is integrated by establishing a technical platform
of embedded control strategy. The step height (k) is col-
lected as the input, and the linear relationship between the
EES frequency and the step height is refined and iterated.
The controller combines the error (e;) and the predicted
value based on the current reference (r;) to adjust the current
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FIGURE 4: Characteristics of the computational model [51]. (a) Anatomically real spinal cord model, with different colors for gray matter and
white matter, cerebrospinal fluid, and epidural fat. (b) The finite element structure of the spinal cord and the meshing of tetrahedral
elements, as well as the cross-sectional schematic diagrams of the spine segments L2 (A) and S1 (B). (c) Modeling of afferent and efferent
nerves, and establishing real geometric models of afferent and efferent fibers, @ motor neurons and interneurons. The membrane potential
was calculated by the Hodgkin-Huxley equation. The afferent fiber enters the spinal cord below the spine segment S1 and travels lon-
gitudinally before bending in the gray matter of its target segment. Interneurons are located in layers I to III and VII, and the efferent axons
expand to the dorsal side or pass through the midline of the spinal cord, respectively.

frequency (f;) to the stimulus frequency (f,,,) in real time,
so as to keep the step height within the set range of
parameters.

3.2. Transcutaneous Stimulation. Transcutaneous stimula-
tion refers to an electrode placed on the skin above the spinal
cord, which penetrates the skin to the spinal cord to produce
movement or grip [68]. To some extent, spinal transcuta-
neous stimulation increased the recovery of motor function
in patients with SCI similar to epidural stimulation [69, 70].

Studies have shown that surface spinal stimulation,
similar to epidural stimulation, can be used to enhance
muscle recruitment without adversely affecting residual
motion control in incomplete SCI [71]. The researchers
performed percutaneous electrical stimulation of the spine
in 15 SCI patients of different severity to restore their in-
dependent posture and found high levels of leg muscle
activity during the standing weight shift achieved by spinal
stimulation, depending on the muscle load. This suggests

that transcutaneous stimulation can be used to regulate the
lumbar spinal cord neural network to promote self-standing
after chronic movement and complete paralysis [72]. Spinal
cord stimulation and drugs can enhance the motor state of
the subjects when they step into the exoskeleton. In addition,
stimulation improved the coordination pattern of lower
limb muscles, resulting in more continuous, smooth step-
ping movement of the exoskeleton [73]. This method can
rejoin and train the spinal cord motor network of individuals
with long-term complete motor paralysis. In some special
cases, command selective activation of gastrocnemius and
soleus was also observed [74].

The latest study has found that the use of painless
transcutaneous electrical stimulation strategy to regulate the
physiological state of the spinal cord can promote stampede
in noninjured objects whose legs are in a gravity-neutral
position, and multipoint stimulation can more effectively
induce stepping movement [31]. Compared with the
stampede driven by the robot alone, 30 Hz percutaneous
spinal cord stimulation can increase the number of rhythmic
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muscles, enhance the activity of thigh muscles, and inhibit
cloning. This shows that the rhythmic movement pattern
produced by forced stampede is the response of spinal reflex
circuit to cyclic sensory feedback. Providing additional
stimulation and participation in spinal rhythm generation
networks, combined with treadmill training, may increase
rehabilitation outcome after severe SCI [75]. Similar to
epidural electrical stimulation, transcutaneous stimulation
also requires intensive treatment and physical exercise in the
process of spinal cord stimulation to maximize motor
function recovery [73]. After a long period of training, the
noninvasive percutaneous electrical stimulation of the spinal
network restores the movement and function of the hands
and arms. This method of stimulation may be more suitable
for patients with complete paralysis and long-term spinal
cord injury. In addition, muscle spasm was reduced com-
pared with invasive electrical stimulation, and the thera-
peutic effects of all six participants demonstrated long-term
neuroplastic-mediated functional recovery [76].
Transcutaneous stimulation is a noninvasive stimulation
that does not require surgery, so it is of sufficient interest to
many people. However, percutaneous muscle stimulation
has several practical limitations. Specifically, the skin has
higher resistance than nerve tissue [77]. Therefore, most of
them need higher current stimulation (>30mA) to have an

effect [78]. Sometimes, there is pain because of the location
and individual differences of the electrodes [79]. Electrode
placement and current intensity seem to be the key pa-
rameters to achieve selective response [80].

3.3. Intraspinal Electric Stimulation. The electrical stimula-
tion in the spinal cord is different from the epidural electrical
stimulation in that the electrode is implanted into the spinal
cord, and the nerve region in the spinal cord is directly
stimulated by the electrode power supply, because direct
stimulation of the spinal cord requires a lower threshold
current to induce movement than epidural stimulation, as
shown in Table 2 [81].

So far, there are few studies on spinal cord electrical
stimulation in humans, but the spinal cord stimulation
experiments in animals provide a good research basis.
Holinski used fine penetrating electrodes to stimulate the
enlarged ventral horn of the waist of 5 adult anesthetized
cats. The stimulation current of <100 yA activates the in-
herent motor network in the spinal cord, which can pro-
duce functional ground walking with bilateral
coordination. This suggests that ISES may be an effective
intervention for functional walking after SCI [82], as shown
in Figure 8.
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TaBLE 2: Comparison of stimulation current threshold of different stimulation modes of spinal cord [81].
) Threshold current (¢A) )
Motion type . . . . . o . Spine segment
Epidural electrical stimulation (EES) Intraspinal electric stimulation (ISES)
Hip flexion 250~320 88~110 T13
Hip extension 180~282 65~90 L2
Hip adduction 210~260 82~103 L1
Hip abduction 230~278 80~90 TLlf
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FiGure 8: Electrode and implant location [82].

Dalrymple used electrical stimulation in the spinal cord
and developed control strategies to achieve a cat model of
hemisection SCI for weight-bearing pedaling [83]. In ad-
dition, in a number of rodent experimental studies, intra-
spinal cord stimulation is used after specific exercise [84, 85].
There will be a lasting improvement in forelimb movement a
few weeks after the stimulation stops [85, 86]. These results
suggest the potential long-term effect of intraspinal stimu-
lation. Pairing intraspinal cord stimulation with rehabili-
tation physical training may have additional benefits, and a
specific study of the joint approach will be useful.

Different spinal cord stimulation methods may have
different mechanisms; the current view in this field is that
intraspinal cord stimulation may activate the motor cistern
and the inherent neural network in the spinal cord to
complete coordinated limb movement [87]. The epidural
electrical stimulation may increase the baseline excitability
of the spinal cord, so as to keep the nerve triggering
movement intact after SCI [41, 88].

4. Challenges and Prospects

Spinal cord electrical stimulation brings new treatment and
hopes to patients with SCI, which is very commendable.
With the improvement of technology, new stimulators,
electrodes, and other devices will be created, and new
stimulation strategies will also be proposed [55]. This will
further promote the development of electrical stimulation
technology and bring good news to patients. At present,
although the results of spinal electrical stimulation are ex-
pected to play an important role in enhancing motor

recovery, the potential for long-term and continuous im-
provement caused by this technique is likely to require
further improvement, such as the biocompatibility of im-
plants [89], noninvasive effectiveness [78, 79]. In addition, a
combination of treatments, such as exoskeletons [90, 91],
may be required, as well as medication [92], motor training
[58, 93].

4.1. Challenge. The current spinal cord electrical stimulation
technology needs to be further explored: first of all, the
motor function repair of patients has not formed a complete
circuit. The patient passively receives the stimulation signal
or instruction to make the corresponding action, and it is
difficult to receive the feedback signal of the stimulated
muscle. Although Urbin et al. [94] try to collect the EMG of
the target muscle and the foot ground-reaction forces (GRF)
signals implanted in the body to build the somatosensory
afferent pathway, there is still a long way to go before the
recovery of sensory function. In addition, most of the
existing motor function reconstruction systems are carried
out in the laboratory environment, although some envi-
ronments approximately simulate the reality. However,
experiments conducted in a laboratory environment do not
take into account all the availability factors that weaken the
functional reconstruction system, including artificial factors,
nonbrain effects, and the mental state of the user. Therefore,
it is meaningful to add mental and psychological assessment
options in future research plans, and a professional training
team for the use of the functional reconstruction system
should be prepared to make patients quickly and skillfully
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operate the system and put it into practice as soon as
possible. Finally, for the realization of motor function, all
kinds of rehabilitation methods need an appropriate control
strategy [83, 95-97]. At present, human action recognition is
not accurate in dynamic situations. Using different algo-
rithm recognition signals to recognize human activities and
motion parameters accurately to guide or remotely guide
electrical stimulation is a challenge. In the later development
process, breakthroughs in signal processing will be an im-
portant development direction for electrical stimulation. It
will be a long-standing challenge to be able to process
stimulus signals efficiently and accurately, and to develop
stable and efficient stimulus algorithms. In-depth discussion
of the contraction mechanism and internal relationship of
each muscle in the muscle group after electrical stimulation
is indispensable for patients to achieve motor function. The
related research on the mechanism of electrical stimulation
should be more detailed and rich, which will be conducive to
the development of motor function rehabilitation technol-
ogy of electrical stimulation.

4.2. Future Direction

4.2.1. Electrical Stimulation Technology Based on BCIL
Spinal cord electrical stimulation technology based on brain-
computer interface will be an important development di-
rection in the future, and the collected EEG signals can be
used as control signals to guide stimulation strategies. A
research team has applied the collected EEG signals to spinal
cord electrical stimulation and made a breakthrough in the
treatment of paralyzed patients. As an example, researcher
Millan and others collected EEG signals from patients with
upper limb paralysis caused by stroke and decoded motor
consciousness signals. The research team combined motor
consciousness signals based on BCI with spinal cord elec-
trical stimulation to induce significant recovery of upper
limb motor function, and the effect was still significant in 6
to 12 months after treatment [98].

This shows that this treatment is effective and persistent,
but it is worth noting that the design of brain signal detection
and control signal is difficult. This also opens up new doors
and challenges for the research direction of spinal cord
electrical stimulation technology, such as the detection of
EEG signals [99], new control method [97], and inflam-
matory reaction of intrusive electrode [100, 101]. In addi-
tion, spinal cord electrical stimulation based on BCI requires
patients to have good enough motor imagination to generate
motor electrical signals; otherwise, it is a difficult problem to
control spinal cord electrical stimulation [102-104]. The
motor function recovery of FES technology based on BCI
has achieved some results, but the curative effect and repair
mechanism are not completely clear [98, 105, 106]. This
requires further research by researchers, and it may be a
good method to establish a good computational model to
explore the signal loop [51, 107].

4.2.2. Electrical Stimulation and Drug Therapy. In some
cases, these pharmacological treatments can enhance the
effects of exercise training and epidural stimulation [108].
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This combination intervention may target the internal en-
vironment of the injured spinal cord to further increase its
excitability and enhance the effectiveness of therapeutic
electrical stimulation. It was found that chondroitinase gene
therapy could significantly enhance the upper limb function,
improve the forelimb performance and grip, increase the
spinal information transmission, and reduce the pathology
of the injured spine after spinal cord contusion in rats [109].
Chondroitinase transmitted by canine mucosal olfactory
ensheathing cells combined with rehabilitation can enhance
the recovery after SCI [110]. In addition, stem cell trans-
plantation has always been a hot topic in the treatment of
SCI and has an early positive effect [111]. Electrical stim-
ulation has a positive effect on stem cell transplantation, and
stem cell and neural progenitor cell therapy can also improve
hand stretching performance and hand function [112].
Based on these findings, it may be possible to use electrical
stimulation to direct stem cells to damaged parts of the body,
becoming an important treatment.

4.2.3. Development of Neuroprosthesis. Lagging science and
technology and production capacity hinder the development
of electrical stimulation system nerve prosthesis and cannot
achieve the desired goal, but with the development of
technology, there may be a big breakthrough. The compo-
sition or auxiliary devices of some electrical stimulation
systems will be improved, such as electrodes for transmitting
stimulus signals [113], stimulators for generating stimulus
pulses [114], sensors for transmitting control source signals
[25], and exoskeletons for sports training [115].

In addition, feedback control based on neural prosthesis
may promote the progress of electrical stimulation tech-
nology. Many researchers use the collected needle electrode
EMG for the detection and diagnosis of SCI related diseases,
including muscle activation evaluation [116], improved
EMG control [117, 118], evaluation of motor neuron loss
[119], muscle fatigue detection [120], prosthetic EMG
control [121], and other fields. The acquisition of surface
EMG is closely related to the placement of electrodes,
electrode materials, and the number of channels [122-125].
It can be used as a reference for the control of electrical
stimulation signal and the evaluation of rehabilitation effect
in exercise rehabilitation.

5. Summary

In summary, spinal cord injury brings tremendous physical
and psychological pressure to patients, causing inconve-
nience and even loss of life. Researchers have made great
efforts to improve the lives of patients with spinal cord injury
in their respective fields. This article first introduces the
different causes of spinal cord injury and various existing
treatment methods and briefly introduces the current un-
derstanding of its origin and mechanism of action. Most
importantly, this article provides a detailed review of the
treatment methods of spinal cord electrical stimulation.
Several different spinal cord electrical stimulation methods
and corresponding electrical stimulation systems were
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discussed, respectively, and the stimulation effects were
analyzed. Finally, this article analyzes the challenges and
future directions of the spinal cord electrical stimulation
system and gives possible potential research programs.
Whether it is advanced stimulation equipment or sophis-
ticated stimulation strategy, spinal cord electrical stimula-
tion technology provides practical help for people with
mobility difficulties. This technology helps patients achieve
things that were impossible before and even participate in
daily life, greatly reducing the burden of life and improving
self-confidence. Looking to the future, in order to solve the
multifaceted effects of SCI and restore the complete func-
tion, a combination of multiple treatments and long-term
treatment and training may be needed.

The latest treatment method combining cell transplan-
tation and electrical stimulation has brought new treatment
improvements and has made progress in animal models
[126]. The pathophysiological mechanism of spinal cord
injury is complicated. So far, the mechanism and process are
not fully understood [127]. It is worth noting that com-
prehensive treatments such as surgical biomaterials, stem
cell transplantation, drug therapy, and rehabilitation exer-
cises have been proven effective. And the functional
remodeling of neural circuits relies heavily on rehabilitation
exercises, such as electrical stimulation, physical training,
and brain-computer interfaces. In future research, we should
pay attention to the individual differences of patients. For
patients with incomplete injuries or no ruptures, more at-
tention may be paid to physical rehabilitation training, and
electrical stimulation systems are used for auxiliary treat-
ment. For patients with large-scale fracture injuries, surgery
or bioprosthetic transplantation may be required to help
establish new neural circuits, maximize the effect of reha-
bilitation, and ultimately promote the research of spinal cord
injury to have greater breakthroughs in treatment and re-
habilitation and more fields.
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