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Inspired by the application of CycleGAN networks to the image style conversion problem Zhu et al. (2017), this paper proposes an
end-to-end network, DefogNet, for solving the single-image dehazing problem, treating the image dehazing problem as a style
conversion problem from a fogged image to a nonfogged image, without the need to estimate a priori information from an
atmospheric scattering model. DefogNet improves on CycleGAN by adding a cross-layer connection structure in the generator to
enhance the network’s multiscale feature extraction capability. )e loss function was redesigned to add detail perception loss and
color perception loss to improve the quality of texture information recovery and produce better fog-free images. In this paper, the
novel Defog-SN algorithm is presented. )is algorithm adds a spectral normalization layer to the discriminator’s convolution
layer to make the discriminant network conform to a 1-Lipschitz continuum and further improve the model’s stability. In this
study, the experimental process is completed based on the O-HAZE, I-HAZE, and RESIDE datasets. )e dehazing results show
that the method outperforms traditional methods in terms of PSNR and SSIM on synthetic datasets and Avegrad and Entropy on
naturalistic images.

1. Introduction

Images collected under fog, haze, and other weather con-
ditions often suffer from low contrast, unclear scenes, and
large color errors, which are prone to adversely affect the
application of computer vision algorithms such as target
detection and semantic segmentation. )erefore, the
method of dehazing a single-image directly without using
any a priori information is of great significance to the field of
computer vision. At present, the standard dehazing methods
can be divided into three according to different principles:
firstly, image enhancement techniques. )ese methods focus
mainly on the contrast of the image itself and other in-
formation. Secondly, image restoration methods are based
on the typical physics models; these methods are primarily
through a priori knowledge and physics models to complete
the dehazing operation. )irdly, neural network-based
dehazing methods mainly use neural networks to complete

the haze feature extraction, thereby completing the dehazing
process.

Image enhancement-based dehazing methods focus
mainly on the haze image contrast, edge gradient, and other
information. )e most common dehazing methods include
wavelet transform [1], Retinex method [2], and histogram
equalization [3]. Jobson et al. [4] proposed a defogging
method for the Retinex image enhancement algorithm. Tan
[5] proposed a dehazing method that maximizes the local
contrast of the image. Moreover, the result obtained using
dehazing has excessive saturation and loses much detailed
information. Kim [6] proposed a subblock partial overlap
method based on the idea of local equilibrium; nevertheless,
there is a blocking artifact in this method’s results. Zui-
derveld [7] proposed a contrast limited adaptive histogram
equalization (CLAHE) method to address this problem by
adaptively limiting the images’ contrast. )e information,
such as the contrast of the haze image, reflects the severity of
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the haze to a certain extent. Still, the method for this kind of
intuitive information cannot investigate the haze image
formation mechanism. )us, it often loses detailed infor-
mation in the process of dehazing. )is limitation makes it
difficult for this technique to achieve an acceptable defog-
ging effect.

)e physical model-based image recovery methods study
the foggy images from the imaging mechanism. )e
dehazing operation is accomplished through a combination
of a priori knowledge and the proposed physical model,
albeit the priori information must be estimated. )e most
common methods include dehazing algorithms based on
image depth information [8], dehazing algorithms based on
atmospheric light polarization [9], and dehazing methods
based on various types of a priori information [10–13].
Mccartney first proposed the atmospheric physics model in
1975 [14]. Oakley and Satherley [15] proposed a transmis-
sion valuation method for image pixels around this theo-
retical model; however, it requires information such as the
depth of field of the image, which is not very practical.
According to the polarization properties of atmospheric
light, Schechner et al. [16] estimated the depth of field in-
formation for dehazing by setting the polaroid glass. Nar-
asimhan and Nayar [17] proposed a multiscale dehazing
algorithm and collected images of the same location at
different times for comparison and dehazing. Tarel and
Hautiere [18] estimated the atmospheric scattering function
by using median filtering, but this method produces a Halo
effect when the scene is transformed. Fattal [19] estimated
the transmittance by using independent component anal-
ysis, but again, this method is not suitable for dense foggy
weather. He et al. [10] introduced the dark-channel prior
method, which is ideal for defogging and easy to implement;
however, some areas with intense light, such as the sky, may
cause significant interference to this method.)e emergence
of dark channels provides new ideas for image defogging. To
solve the problems encounted in the dark-channel a priori
method, many image defogging methods based on the dark-
channel a priori theory have subsequently been produced
[20–22].

In recent years, CNN-based image defogging methods
have become the focus of research. )ese methods mainly
use neural networks to learn haze image features. Cai et al.
[23] proposed the end-to-end DehazeNet system, using a
convolutional neural network to extract the haze features to
optimize transmittance estimation. A multiscale depth haze-
removal network (MSCNN) was proposed by Ren et al. [24]
to directly study and estimate the relationship between
transmittance and foggy image, solving the shortcomings of
artificial features. Zhang et al. [25] improved the edge and
detailed information of the image by constructing a pyramid
densely connected dehazing network that jointly optimizes
the transmittance and atmospheric light values. Goodfellow
et al. [26] proposed a new-framework generative adversarial
network (GAN), for estimating generative models according
to the fixed-point theorem through the adversarial process.
GANs [26] can make the distribution produced by the
generator as close as possible to the distribution of real data.
GANs [26] provided a theoretical basis for new methods of

neural network dehazing. Many approaches to optimize the
GANs algorithm have been proposed.)eDCGANmodel of
Radford et al. [27] introduced CNNs into the structure of
GANs [26]. )is model completes the feature extraction
operation through CNNs and obtains a higher stability when
generating high-quality samples. Conditional GAN (cGAN)
proposed by Mirza and Osindero [28] adds conditional
information y to the GANs [26]; this improves the stability of
the model and enhances the generator’s expression capa-
bilities. Isola et al. [29] proposed the pix2pix algorithm to use
cGAN [28] to learn the mapping from input to output to
complete various image conversion tasks. )ese methods
have authenticity requirements for the foggy image and its
corresponding nonfog image, the data requirements are
high, and the acquisition is difficult.

Based on GAN [26], Zhu et al. [30] proposed CycleGAN
consisting of two unidirectional GANs. CycleGAN [30]
suggests using cycle-consistent loss, which is mainly used to
transform image styles and effectively overcomes the lack of
constraint in the generated images. Albeit the CycleGAN
[30] model suffers from noise and loss of texture details
when completing the generation task for images with dif-
ferent texture complexity. )e DefogNet network proposed
in this paper mainly adds detail perception loss and color
perception loss to CycleGAN [30]. It fully optimizes the
CycleGAN [30] structure using cross-layer connections and
the Defog-SN algorithm. Finally, it builds an end-to-end
network without considering a priori information and
without pairwise datasets.

)e main contributions of this paper include the
following:

Incomplete feature extraction, inefficient demist pro-
cessing, and the need for a complex physical model are
common issues of using an a priori physical model. To
address this, we add the design of cross-layer con-
nections in the generator, enhance the multiscale
feature extraction capability of the model with feature
pyramids, and obtain higher quality texture details of
the generated images. By doing these modifications, we
omit the manual design of the a priori model. Con-
sequently, our approach requires neither fuzzy and real
image samples nor any atmospheric scattering model
parameters in the training and testing phases.

)is study designed unique loss functions: detail per-
ception loss and color perception loss to optimize
DefogNet for single-image dehazing and to address the
color shifts and high contrast resulting from the
defogging operation.

We introduce spectral normalization in the discrimi-
native network and propose the Defog-SN algorithm,
which has strong generalization ability and effectively
solves the problem of insufficient diversity of generated
samples and improves the quality of defogged images
enhancing the overall stability of the network as well as
the convergence speed.

)e rest of this paper is organized as follows: Section 2
mainly describes the methods proposed in this paper.
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Section 3 draws relevant experimental conclusions and
analyzes them in depth. Section 4 concludes the article.

2. Proposed Method

2.1. Structure of DefogNet. )is paper presents a DefogNet-
based single-image dehazing method that improves on the
CycleGAN [30] network architecture. CycleGAN [30] adds
cycle-consistent loss; the central role of cycle consistency
loss is to extract the combination of high-level and low-level
features in the VGG16 architecture [31], which creates
constraints on the generator and preserves the original
image structure. CycleGAN [30] can accurately calculate the
L1 paradigm of the original image and the loop-through
images to perform the task of unpaired image-to-image
conversion. Still, the loss between the original image and the
loop-through image does not allow the complete texture
information to be recovered.

DefogNet is an improved version of CycleGAN [30],
the structure of which is shown in Figure 1. In this paper,
we propose the Defog-SN algorithm and add cross-layer
connections to the generator, which optimizes the overall
performance of the network and improves the quality of
dehazed images. DefogNet redesigns the loss function and
introduces detail perception loss and color perception loss
biased on cycle-consistent loss. It then uses this function
to calculate the total loss of the model. In this way, it
preserves the initial information more completely in
image reconstruction, effectively optimizing the dehazing
function.

DefogNet consists of two generators, G and F, and two
discriminators, DX and DY. )e two generative adversarial
networks compete with each other as well as constraints. By
training simultaneously, they learn the foggy features while
keeping the image background structure almost unchanged
and use unpaired datasets without manual labeling. )is
unsupervised approach dramatically simplifies the work in
the data preparation stage.

In this paper, the foggy image dataset and the clear image
dataset are used to train the model.)e foggy image data and
clear image data are defined as domain X and domain Y.
)ere is no correspondence between the images in domain X
and domain Y. After inputting the image in X into the
generating model G, G will generate a new image YG. Hence,
YG and the image in Y serve as the input to the discrimi-
nating model DX, which determines when the input image is
from the real clear data Y or the pseudoimage generated by
the generator G. )e result is fed back to G and used to
strengthen G. Under the guidance of DX, YG continuously
reduces the gap between YG and the image in the clear data
set Y.

Similarly, generator F acts to reduce YG and Y to foggy
images and YG and Y are fed into the 2nd generating model F
to generate a new image XF, which is designed tomake XF as
similar as possible to the image in X through a loss function
to ensure that the learned mapping is meaningful. )is
model’s cyclic structure allows the two GANs to generate
increasingly realistic images, i.e., images in the fogged
dataset X to complete the dehazing.

2.2. Cross-Layer Connection Structure on Generator. To
properly train the sample distribution and effectively opti-
mize the quality of the final generated image, the network
structure was chosen was an encoder-transition-decoder.
)e role of the first part of the encoder layer is to complete
the feature extraction process. )e second part of the
transition layer is to combine the image’s different features
through the residual network and reorganize the features.
)e third part of the decoder layer is to reconstruct the
image.

When comparing the fogged image and the defogged
image, it is found that the fogged image and the defogged
image should have the same background, similar spatial
structure, and details of the object. So, we need to preserve
some of the input image structure, share some of the in-
formation between the input and output, and send this
information directly to the decoding layer without going
through the transformation layer. Based on this, our ap-
proach improves the generator structure and designs a codec
network with a cross-layer connection structure to break the
bottleneck of information loss during the codec process and
discards the method of merely connecting all channels of the
symmetric layer, as shown in Figure 2. )e output of each
convolution layer in the encoder will be directly inputted to
the corresponding decoder simultaneously with the inverse
convolution result of the output of the next convolution
layer. )is structure keeps the feature map’s size consistent,
effectively reducing the difference between the output and
the original input; otherwise, the features of the original
image will not be retained in the output, and the output will
deviate from the background contour of the original image.

In this paper, the batch normalization layer is removed
for each unit in the transformation layer, and the SeLU
activation function [32] is used to automatically normalize
the sample distribution to a mean of zero and a standard
deviation of one. )e relevant formula is

selu(x) � λ
x, x> 0,

αe
x

− α, x≤ 0.
􏼨 (1)

)e structure can ensure the high consistency between
the defogged image and the original banded fog image
except for haze and improve the multiscale fusion feature
extraction capability of the network for haze.

2.3. Defog-SN Algorithm on Discriminator. CycleGAN [30]
consists of two unidirectional GANs, which have the dis-
advantages of unstable training and collapse-prone models
due to the discriminant network’s poor control perfor-
mance. In this paper, the Defog-SN algorithm is to solve this
problem.)is algorithm incorporates spectral normalization
[33] into the discriminant network by inserting a spectral
normalization layer into each convolutional layer to opti-
mize the quality of dehazed images. )e discriminator
mainly consists of 6 layers; the first four layers are used to
complete the input image’s feature extraction process and
then the last layer. )e last fully-connected layer outputs
Wasserstein distance. )e discriminator structure is shown
in Figure 3.
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)eGAN stability theorem states that if the discriminant
network can conform to a 1-Lipschitz continuum in terms of
the input, the output, and the control of the discriminant
network can be significantly optimized. )e stability of the
GAN training process can be further enhanced [34].
According to the Lipschitz theory of complex functions,

typical neural networks consist of multilayer structures,
which can be viewed as a more complicated complex
function. If the individual functions can satisfy the 1-Lip-
schitz continuum, then the composite functions that com-
bine these functions also satisfy the continuum. DefogNet’s
discriminant network’s activation functions are all Leaky
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ReLU [35] functions, which satisfy 1-Lipschitz continuity,
so, as long as each convolutional layer of the discriminant
network satisfies 1-Lipschitz continuity, the whole dis-
criminant network satisfies 1-Lipschitz continuity. )e
formula for the Lipschitz constraint is

f(x) − f x′( 􏼁
����

����2

x − x′
����

����2
≤ β, (2)

where β is a constant and the gradient of a function satisfying
the formula is always limited to a range less than or equal to
β. )e Defog-SN algorithm uses spectral normalization to
provide a global normal for the discriminant network. )e
maximum singularity value can have a decisive effect on the
Lipschitz continuity constant of the linear operator, thus
enabling the parameter matrix to use more features when
generating images, thus effectively enhancing the diversity of
samples and optimizing the quality of image defogging.

)e Defog-SN algorithm adds spectral normalization
after each convolutional layer to make each layer conform to
the 1-Lipschitz continuity.)e details of the algorithm are as
follows: for the convolutional layer t: hin ⟶ hout, A refers
to the matrix of convolutional layer parameters, and its
spectral parameter σ(A) is calculated by the following
equation [36]:

σ(A) � max
h≠0

‖Ah‖2

‖h‖2
� max

‖h‖2≤1
‖Ah‖, (3)

where σ(A) is equal to the maximum singularity of matrix A
and the Lipschitz continuity constant of the convolutional
layer t is equal to the spectral paradigm of its convolutional
layer parameter matrix. )e spectral paradigm σ(W) of the
convolutional layer parameter matrix, W, is calculated so
that the maximum singularity of the convolutional layer
parameter matrix WSN after completion of the normaliza-
tion process is equal to 1. In this way, the input and output
satisfy the 1-Lipschitz condition. )e formula for WSN is as
follows:

WSN �
W

σ(W)
. (4)

)e vector u is randomly initialized as the right sin-
gularity eigenvector of the parameter matrix W. )e fol-
lowing formula calculates the left singularity eigenvector v:

v �
W

T
u

����
����

W
T
u

����
����2

,

u �
‖Wv‖

‖Wv‖2
.

(5)

After iterations, it is possible to calculate the opening��
λ1

􏽰
of the maximum eigenvalue of WTW, i.e., the maxi-

mum singular value of the matrix W:
��

λ1
􏽱

� u
T
Wv. (6)

)e update of the convolutional layer parameter matrix
Wi is accomplished as follows:

W
i←W

i← α∇Wi W
i
SN W

i
􏼐 􏼑, X, Y􏼐 􏼑, (7)

where α is the learning rate.
We use deconvolution to simplify and speed up the

calculation of the spectral norm of convolution. Hanie et al.
[37] developed a method to calculate all singular values,
including the spectral norm; however, this method is only
suitable for convolution filters with step size 1 and 0 pad-
ding. In the training process, the standardization factor
depends on the step size and filling scheme of the control
convolution operation.

)is paper proposed an efficient method to calculate the
maximum singular value (i.e., the spectral norm) of a 6-layer
convolution layer with an arbitrary step size and filling
scheme. )e output feature map ψ of layer i in the neural
network can be expressed as a linear operation of input X:

ψi(X) � 􏽘
M

j�1
Fi,j ∗Xj, (8)

where M is the feature map of the input and Fi,j is a filter.
Here, we ignore the additional bias term. We vectorize X

and let Ti,j express the overall linear operation related to Fi,j:

ψi(X) � T1,1 · · · T1,M􏼂 􏼃X. (9)

)en, the convolution operation can be expressed as

ψ(X) �

T1,1 · · · T1,M

⋮ ⋱ ⋮

TN,1 · · · TN,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦X � WX. (10)

By convolution transposition, we can obtain the spectral
norm associated with W. By using WT effectively, we can
implement this matrix multiplication more efficiently,
without explicitly constructing W. )e correlation spectrum
norm σ(W) can be obtained by the power iteration method,
and appropriate step size and filling parameters are added in
convolution and convolution transposition operation. We
use the same value u repeatedly, and only update W once per
step. We use a wider range to restrict (W)≤ β:

WSN �
W

max(1, (σ(W)/β))
, (11)

which results in a faster training speed.
We now use Wasserstein distance as a criterion to

measure the generated distribution pg and the real distri-
bution pdata. Due to the introduction of 1-Lipschitz conti-
nuity, we need to restrict the variation range of network
parameters within a certain range; the change range of
parameters should not exceed a certain constant in each
update. )erefore, the Wasserstein distance between the real
data distribution pdata and the generated data distribution pg

can be expressed as follows:

Dw � Ex∼pdata
fw(x)􏼂 􏼃 − Ex∼pg

fw(x)􏼂 􏼃. (12)

)e smaller the Dw, the more likely the generated dis-
tribution pg is to be close to the true distribution pdata. Due
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to the introduction of spectral normalization, the function is
differentiable in all cases, allowing us to solve the problem of
gradient vanishing in the GAN model’s training process
[38]. )erefore, the objective function of the DefogNet
discriminator is as follows:

objD � min Ex∼pg
fw(x)􏼂 􏼃 − Ex∼pdata

fw(x)􏼂 􏼃􏼒 􏼓. (13)

Next, we enhance the Lipschitz constraint by gradient
penalty. Firstly, we use the random sampling method to

obtain the True sample Xdata, False sample Xg, and a random
number ϑ in the range of [0,1]. )en, we randomly inter-
polate the sample between Xdata and Xg:

􏽢X � ϑXdata +(1 − ϑ)Xg. (14)

)e distribution satisfied by 􏽢X is denoted as p􏽢X
, and the

improved objective function of the DefogNet is

obj(G,D)
� min

Ex∼pg
Dw(x)􏼂 􏼃 − Ex∼pdata

Dw(x)􏼂 􏼃+

E􏽢X∼p􏽢X
∇􏽢XDw( 􏽢X)

�����

�����2
− Dw(x) − Dw( 􏽢X)􏼐 􏼑

2
􏼔 􏼕

2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (15)

2.4. Loss Function of DefogNet. CycleGAN’s [30] loss
function consists of the generator and discriminator’s
adversarial loss function and a cycle-consistent loss function.
)e generated adversarial loss function consists of the
discriminator’s probability estimate of the true sample and
the discriminator’s probability estimate of the generated
sample:

min
G

max
D

V(D, G) � Ex∼Pdata(x)
[logD(x)]

+ Ez∼Pz(x)
[log(1 − D(G(z)))].

(16)

)e first step, for this stage, is to use the generator to
transform the real image in domain X into a false image in
domain Y. )en, use the generator to complete the recon-
struction process to obtain the reconstructed image YG,
preserving all the image’s original information. )en, this
and the real image Y are passed to the discriminator DX to
determine the authenticity, thereby obtaining a complete
one-way GAN. )e correlation loss function is

LGAN G, DY, X, Y( 􏼁 � Ey∼Pdata(y)
logDw(y)􏼂 􏼃

+ Ex∼Pdata(x)
log 1 − Dw fw(x)( 􏼁( 􏼁􏼂 􏼃,

LGAN F, DX, X, Y( 􏼁 � Ex∼Pdata(x)
logDw(x)􏼂 􏼃

+ Ey∼Pdata(y)
log 1 − Dw fw(y)( 􏼁( 􏼁􏼂 􏼃.

(17)

)e cycle-consistent loss function is introduced into the
network to learn the mapping of GX⟶Y and FY⟶X and can
convert X to Y and back again successfully, thus avoiding
that all images are mapped to the same image in Y:

LCCL � ‖ϕ(x) − ϕ(F(G(x)))‖
2
2 +‖ϕ(y) − ϕ(G(F(y)))‖

2
2.

(18)

)e CycleGAN [30] loss function is

LCYC � LGAN G, DY, X, Y( 􏼁 + LGAN F, DX, X, Y( 􏼁 + cLCCL,

(19)

where X and Y refer to the two data domains, and x and y are
the above data domains within the sample data, G refers to
the X to Ymapping function, F refers to the Y to Xmapping
function, DX and DY refer to the discriminator, and c is the
weight of the cycle-consistent loss.

)e least-squares loss method used by CycleGAN [30]
penalizes the outlier samples too much, which reduces the
diversity of the generated samples. A single loss function
does not guarantee that the model will successfully map a
single input Xi to the expected output Yi. )is study adds
color perception loss function and detail perception loss
function based on the original loss function to train the
network more optimally on unpaired images. )e loss is
mainly used to estimate the image’s differences after
dehazing and minimize the change to the original image.
Discriminator G:

Ldpl GX⟶Y( 􏼁 � Ey∼Pdata(y)
DX(F(y)) − 1􏼂 􏼃

2
+

1
2
Ey∼Pdata(y)

��������������

[F(y) − 1]
2

− y
2

􏽱

. (20)

Discriminator F:

Ldpl FY⟶X( 􏼁 � Ex∼Pdata(x)
DY(G(x)) − 1􏼂 􏼃

2
+
1
2

Ex∼Pdata(x)

��������������

[G(x) − 1]
2

− x
2

􏽱

. (21)
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We combine the equations to form the detail perception
loss.

Ldpl � Ldpl FX⟶Y( 􏼁 + Ldpl GY⟶X( 􏼁. (22)

Because the dehazing process must be completed for r, g,
b three types of channels to complete the operation, but need
tomaintain the image after the completion of defogging does
not produce large color differences. )erefore, it is necessary
to add the color perception Lcpl when generating the image:

Lcpl(I) � 􏽘
W

w�1
􏽘

H

h�1

cos−1 0.5[(r − g) +(r − b)]

(r − g)
2

+(r − b)(g − b)􏽨 􏽩
1/2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, b≤g,

2π − cos−1 0.5[(r − g) +(r − b)]

(r − g)
2

+(r − b)(g − b)􏽨 􏽩
1/2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, b>g.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

W and H are the width and height of the image.)e final
loss function is

Ldefog � Ldpl + Lcpl(I) + LCYC. (24)

3. Experiences and Results

In the experimental section, the method will be compared
with the results of several advanced methods for hazing,
including CycleGAN [30], providing qualitative and
quantitative analysis of the experimental results on both
synthetic and naturalistic datasets. )is experiment com-
pletes all training as well as testing procedures on Tensor-
Flow [39]. )e NVIDIA Tesla V100 GPU is used for model
training, optimized using the Adadelta algorithm [40] with a
good adaptive learning rate, a batch size of 1, and a learning
rate of 2∗ 10− 4.

3.1. Datasets. Experiments were conducted on the I-HAZE
[41], O-HAZE [42], and RESIDE [43] datasets. )e outdoor
dataset of RESIDE [43] contains 8970 clear images and
31,950 foggy images synthesized from clear images.
O-HAZE [42] is an outdoor scene database containing 45
pairs of realistic foggy images of outdoor scenes and the
corresponding nonfoggy images. I-HAZE [41] contains 35
pairs of real indoor scenes with fog and the corresponding
nonfog images. I-HAZE [41] andO-HAZE [42] are common
experimental data sets of dehazing scenes taken from
controllable scenes made by professional fogging machines,
which have similar lighting conditions. )is experiment
randomly selects 4900 foggy and nonfog images from
I-HAZE [41], O-HAZE [42], and RESIDE [43] for training
and validation. To facilitate the comparison with existing
advanced methods, PSNR and SSIM are used as evaluation
metrics in this paper to compare the synthetic target test set
containing 400 indoor images and 400 outdoor images.
AveGrad and Entropy are selected as evaluation metrics for
evaluating the method’s performance on natural and real-
istic images, and experiments are conducted on the RTTS
dataset in RESIDE [43]. )e photos needed to be resized to
256× 256 in size when imported to the network.

3.2. Validation of DefogNet Method. To verify the perfor-
mance of the generator’s improved cross-layer connection
structure, we compare the DefogNet model using different
generator structures under the same conditions and com-
pare the network using the DefogNet without a cross-layer
connection structure. )e experiment is set to 300∗103 it-
erations. )e network model is saved and output after every
5∗103 training iterations, and the PSNR index evaluation of
the model in the RESIDE data set is performed. )e results
show that the model using the cross-layer connection
structure has the highest PSNR evaluation index in the
experimental iterative-training process compared with the
original model. )e comparison results are shown in Fig-
ures 4 and 5.

For the neural network based on Gan, the network’s
convergence speed and stability are important indexes to
evaluate its performance. To verify the performance of
DefogNet, we train the model processed by Defog-SN to
compare with those without this processing and compare the
convergence speed of DefogNet’s discriminator and
CycleGAN’s discriminator. In the process of 300∗ 103 it-
erations, our method’s convergence speed is higher than that
of other methods, which also indicates the effectiveness of
Defog-SN in improving the network performance. )e
comparison results are shown in Figure 6.

Several models with different loss functions are trained
under the same conditions to verify the multi-loss function’s
performance. One-hundred images were randomly selected
from RESIDE [43] for the experiment. Defognet (NET-4) is
compared with different combination loss models in Table 1.
)e design of the performance verification model is shown
in Table 1. )e results show that the model using multiple
loss fusion has the highest PSNR evaluation index in the
300∗ 103 iterations training process compared with the
model using other loss functions.)e comparison results are
shown in Figures 7 and 8.

3.3. Results on SyntheticDatasets. For RESIDE [43], I-HAZE
[41], and O-HAZE [42] datasets, we choose PSNR and SSIM
as the quantitative evaluation indexes for the experimental
results. )e posttraining evaluation of this paper’s algorithm
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is compared with several advanced single-image dehazing
methods, as well as the original CycleGAN effect under the
same parameter setting environment, and the results are
shown in Table 2 and Figure 9. It can be seen that the
dehazing results produced by this algorithm have higher
PSNR and SSIM values (Figures 9).

According to the method proposed in this paper, the
PSNR and SSIM values of the results are compared with
those of CycleGAN and other methods. It can be found that
DefogNet’s structural optimization method is useful in
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Figure 4: )e convergence of PSNR values.
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Figure 5: )e convergence of SSIM values.
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Figure 6: )e gradient convergence of discriminator.

Table 1: Neural networks with different loss functions.

Models Loss function
Net-1 LCYC + Lcpl(I)

Net-2 Ldpl + LCYC
Net-3 Ldpl + Lcpl(I)

Net-4 Ldpl + LCYC + Lcpl(I)
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Figure 7: Comparison of PSNR values using different loss function
models.
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Figure 8: Comparison of SSIM values using different loss function
models.

8 Complexity



(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

Figure 9: Comparison of results on synthetic datasets: (a) Haze, (b) Cai [23], (c) He [10], (d) Zhang [25], (e) Ren [24], (f ) Zhu [30], (g) this
study, and (h) GT.
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Figure 10: Continued.
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substantially improving the performance of various aspects
of the original CycleGAN. Although He’s method [10] can
remove some haze, it produces artifacts and color distortion,
especially in the sky and light-colored areas. Cai’s method
[23] and Ren’s method [24] need to estimate the trans-
mittance, and due to inaccurate transmittance estimation,
the defogging results still contain more artifacts and haze
residue. Zhang’s method can generate clear images; how-
ever, compared with our algorithm’s dehazing images, there
are more unclear object outlines. )e overall image color is
darker, and the sky’s color in the images is slightly distorted.
Zhu’s method [30] effectively avoids artifacts but suffers
from color shifts and distortions. )ese methods have more
or less color distortion. Ourmethod has achieved high PSNR
and SSIM values and sound visual effects. It also indicates
that this article’s loss function has an improved impact on
color constraints. )is algorithm avoids estimating the
transmittance and atmospheric light values and produces
sharper dehazed images than other algorithms. Not only
does the method obtain higher quality evaluation scores, but
the defogging results also yield sharper image edge details
and less noise while avoiding color distortion problems
(Table 2).

3.4. Results on Natural Realistic Images. At present, the
neural network used for the image dehazing problem is
challenging to achieve good results on natural real image
data sets. Because CNN tends to have overfitting problems, it
is more likely to solve the task for a specific scene or a
particular dataset. )is paper chose a cross-data set method

for experimental analysis in the training and testing stage
and selected an everyday, natural, image data set to compare
with other methods’ dehazing results. Since there is no
original image for comparison, the information entropy
(Entropy) and average gradient (AveGrad), which reflect the
image clarity, are used as the evaluation criteria for the
defogging results in this paper. )e dehazing results of this
method and other methods, such as CycleGAN [30], are
presented for comparison. Figure 10 shows the foggy images
of three real scenes and the corresponding dehazing results
generated by several algorithms.

From the data in Table 3, it follows that the gradient
value of the original foggy images is low, most of the edge
details of buildings or plants in the images were obscured by
the haze, and the images are not clear (i.e., the image in-
formation entropy value is low). In comparison, the gradient
and entropy values of He’s algorithm [10] and Zhang’s al-
gorithm [25] are relatively large. Still, the color of the sky
part of the image (i.e., the upper part of the image) is more
distorted in He’s algorithm. Due to the shortcomings of the
dark-channel prior algorithm, there is still haze residue and
dark color in the dehazed image. Although Cai’s algorithm
[23] and Ren’s algorithm [24] have relatively large Entropy
values, there is still haze residue in the image after dehazing,
which affects the detailed display of objects in the image.
Zhu’s algorithm [30] achieves a high-quality score, but it is
challenging to ensure precise object edges and details, and
the overall color of the image is not natural enough.
Compared with other algorithms, the gradient value and
information entropy of the algorithm in this paper were
larger than other algorithms. )e details in the image are

(g)

Figure 10: Comparison of results on natural, realistic images. (a) Haze, (b) Cai [23], (c) He [10], (d) Zhang [25], (e) Ren [24], (f ) Zhu [30],
and (g) Our study.

Table 2: Quantitative comparisons of image dehazing on the I-HAZE, O-HAZE, and RESIDE data sets.

Cai [23] He [10] Zhang [25] Ren [24] Zhu [30] Ours

First image PSNR 19.13 15.66 24.57 18.22 23.12 29.45
SSIM 0.79 0.84 0.88 0.85 0.89 0.95

Second image PSNR 20.86 19.45 25.10 20.43 25.72 27.95
SSIM 0.81 0.84 0.89 0.82 0.88 0.93

)ird image PSNR 21.96 18.66 23.18 19.77 22.28 28.31
SSIM 0.85 0.79 0.82 0.86 0.85 0.96

Fourth image PSNR 23.50 20.07 26.13 22.79 24.33 29.37
SSIM 0.79 0.80 0.87 0.83 0.86 0.91

Fifth image PSNR 22.48 21.09 23.64 22.17 23.94 26.95
SSIM 0.83 0.83 0.86 0.85 0.85 0.94
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retained, and the clarity is higher. )e overall color of the
dehazing result is more natural, which indicates that this
method can effectively solve the overfitting problem for
similar data.

4. Conclusion

)is paper proposes an effective new defogging method
DefogNet.)ismethod is optimized based on the CycleGAN
method, completely omits artificially extracting features. and
does not require scene prior information. It is a method with
a wide range of adaptations. )e optimized network ar-
chitecture and loss function in this study solve the problem
of difficult training sample collection encountered when
using deep learning methods for dehazing research, greatly
reducing the difficulty of obtaining training datasets, making
this method more practical and accurate with other deep
learning-based dehazing method. )is paper adds cross-
layer connections in the generator, which optimizes the high
and low-level fusion feature extraction capability of the
model, effectively avoiding overfitting and improving the
generated images’ quality. A unique loss function is designed
to add detail perception loss and color perception loss to
avoid the color differences and reconstruction loss in the
image caused by the dehazing operation, effectively im-
proving the restoration of the image’s details after dehazing.
)e Defog-SN algorithm is proposed to improve the
structure of the discriminator so that the entire discriminant
network satisfies the 1-Lipschitz continuum, thus enhancing
the stability of the model and avoiding the problem that the
GANs model is prone to collapse. Furthermore, experi-
mental results produced using natural image datasets
demonstrate the generality of the present defogging method
for images of different scenes.
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