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(e fractional calculus in the neuronal models provides the memory properties. In the fractional-order neuronal model, the
dynamics of the neuron depends on the derivative order, which can produce various types of memory-dependent dynamics. In
this paper, the behaviors of the coupled fractional-order FitzHugh–Nagumo neurons are investigated. (e effects of the coupling
strength and the derivative order are under consideration. It is revealed that the level of the synchronization is decreased by
decreasing the derivative order, and the chimera state emerges for stronger couplings. Furthermore, the patterns of the formed
chimeras rely on the order of the derivatives.

1. Introduction

Fractional-order models have attracted much attention
from scientists in different fields such as physics and
electronics [1–5]. Considering the fractional derivative, a
memory feature is added to the systems. (erefore, the
fractional-order model can provide a more precise de-
scription of the real phenomena than the integer-order
[6]. Furthermore, the fractional calculus has found wide
applications in controlling the integer-order systems [7].
(e fractional derivative also plays important role in
demonstrating different firing patterns of the neurons [8].
Consequently, several fractional neuron models have
been presented [9–11].

(e complicated interactions among the neurons cause
the neural system to act as a complex network [12]. (e
emergence of collective behaviors is an important

characteristic of complex networks [13]. Some examples of
collective behaviors are synchronization [14], chimera state
[15], and solitary state [16]. Synchronization is an important
phenomenon in many applications [17]. Many studies have
focused on the synchronization of chaotic systems [18–23].
Furthermore, synchronization manages many neural func-
tions and participates in many brain disorders [24]. In
special cases, synchrony and asynchrony are observed si-
multaneously in a specific region of the brain. For example,
the unihemispheric sleep, the neural bump state, and the
epileptic seizure disease can be mentioned [25]. (is par-
ticular condition is called the chimera state [26]. After the
foundation of chimera state in 2002 [27], it became the focus
of many researchers in a variety of dynamical systems such
as the mechanical [28], optical [29], and chemical [30] os-
cillators and neuronal models [25, 31, 32]. Furthermore,
these studies have represented the chimeras with different
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spatiotemporal patterns and properties, including the am-
plitude chimera [33] and traveling chimera [34].

In neuronal studies, the chimeras were under consid-
eration from different perspectives such as the neurons’
dynamics, network topology, and coupling scheme. Santos
et al. [35] investigated the chimera in 2D networks with
regular and fractal topologies and found the spiral chimeras
with multiple asynchronous cores. Wang et al. [36] reported
the existence of chimera state in the hyperchaotic neurons
with hyperchaotic dynamics. Blondeau Soh et al. [37] rep-
resented that shifting the neighbors in the coupling leads the
network towards the chimera state. Provata and Venetis [38]
studied a neuronal network with power-law coupling and
showed that the chimera exists in the weak couplings with
large exponents. Li et al. [39] considered two unidirec-
tionally coupled layers of neurons and showed different
collective behaviors in the master layer and the induced
imperfect chimera state in the slave layer.

Among the chimera studies in neuronal networks, a few
have considered the fractional models. Vázquez-Guerrero
et al. [40] showed that the network of fractional Hind-
marsh–Rose neurons is capable of representing chimera
state. (ey also presented a fractional adaptive controller to
obtain the synchronization. In another study, they designed
an observer to synchronize the chimera state in coupled
fractional neurons [41]. He [42] investigated the magnetic
Hindmarsh–Rose model with fractional derivative and
showed that analyzing the complexity of the network can
help in recognition of its dynamical behavior. In this paper,
we study the dynamical behaviors of a network of fractional-
order FitzHugh–Nagumo systems.(e effects of the order of
derivatives and the coupling strength on the chimera state
are under consideration.

2. The Model

Recently, the scientists have focused on proposing new
models for describing the neural behaviors with considering
different aspects of neurons [43, 44]. Here, we use the
FitzHugh–Nagumo (FHN) model with considering the
fractional derivative as follows [45]:

dq
u

dt
q � u −

u
3

3
− v + I,

dq
v

dt
q � 0.08(u + 0.7 − 0.8v),

(1)

where u and v are the membrane voltage and the recovery
variable and I is the external excitation current fixed at 0.5.
(e fractional derivative order is denoted by q, and dq/dtq is
the Caputo–Fabrizio (CF) fractional operator defined by

dq

dt
q u(t) �

1
Γ(1 − q)

􏽚
t

t0

_x(τ)

(t − τ)
q dτ, 0< q< 1, (2)

where Γ is the Gamma function. (e dynamics of the model
relies on the values of the derivative order. Figure 1(a)
represents the bifurcation of the model according to q. To
consider the spiking firing for the model, the range of

0.7< q< 1 is selected in all simulations. (e time series and
phase spaces of the model for q � 1, 0.9, 0.8 , and 0.7 are
shown in Figures 1(b)–1(e). It is observed that by decreasing
q, the amplitude of the oscillations decreases and the period
increases.

We consider the network of fractional FHN neurons
with the following equations:

dq
ui

dt
q � ui −

u
3
i

3
− vi + I + d 􏽘

N

j�1
Gij buu uj − ui􏼐 􏼑 + buv vj − vi􏼐 􏼑􏽨 􏽩,

dq
vi

dt
q � 0.08 ui + 0.7 − 0.8vi( 􏼁 + d 􏽘

N

j�1
Gij bvu uj − ui􏼐 􏼑 + bvv vj − vi􏼐 􏼑􏽨 􏽩,

(3)

where d is the coupling strength and G is the Laplacian
matrix of connections.(e network has a ring structure with
nonlocal coupling as shown in Figure 2 (each neuron is
connected to its 40 nearest neighbors, and N � 100). (e
coupling between variables is through a rotational matrix as
follows [46]:

B �
buu buv

bvu bvv

􏼠 􏼡 �
cosϕ sinϕ

− sinϕ cos ϕ
􏼠 􏼡, (4)

with ϕ � (π/2) − 0.1 being the coupling phase.

3. Results

(e network is solved numerically by using the
Adam–Bashforth method based on the algorithm proposed
in [47] with random initial conditions. To identify different
behaviors, the strength of incoherence (SI) is used [48]. To
find this measure, at first, the variables are transformed into
new ones as xi � ui − ui+1, i � 1, . . . , N. (en, the network is
divided into M � N/n groups of n neurons, and the local
standard deviation is computed as follows:

σ(m) � 􏼪

�������������������

1
n

􏽘

mn

j�n(m− 1)+1
xi − 〈x〉􏼂 􏼃

2

􏽶
􏽴

􏼫
t

, m � 1, . . . , M,

(5)

where 〈x〉 � 1/N 􏽐
N
i�1 xi(t). Finally, the SI is computed by

sm � θ(δ − σ(m)),

SI � 1 −
􏽐

M
m�1 sm

M
,

(6)

where θ is the Heaviside function and δ is a threshold set at
0.23, here, and n � 4.(e value of SI determines the behavior
of the network by SI � 0, 0< SI< 1, and SI � 1 for syn-
chronization, chimera, and asynchronization, respectively.

(e network of equation (3) with integer-order (q � 1)
represents different dynamical behaviors with varying the
coupling strength (d). However, the dynamical changes
occur in very small coupling strengths. (e patterns of the
neurons by varying d values are demonstrated in Figure 3.
(e left panel represents the space-time plots, and the right
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panel represents the time snapshots of the neurons. By
increasing the coupling strength, the initial asynchronous
pattern of the neurons changes to the chimera state. For
d � 10− 7, a chimera state is created (shown in Figure 3(a)),
and it can be seen that there are synchronous and asyn-
chronous neurons in the network. With an increment in the

coupling strength, more neurons locate in the synchronous
group. (e behavior of the network for d � 1.7 × 10− 5 is
illustrated in Figure 3(b). In this case, most neurons are
synchronous, while a few oscillate differently. (is behavior
is called the solitary state [49, 50]. As the coupling becomes
stronger, different neurons are attracted to the synchronous
group and a complete synchronization is observed
(Figure 3(c)).

(e behavior of the neurons is considerably influenced
when the derivative of the network’s equations changes to
the fractional. To investigate this, the coupling strength is
considered to be fixed at d � 2 × 10− 5, where the integer-
order network shows the solitary state (similar to
Figure 3(b)) and the fractional order is changed. With de-
creasing the fractional order (q), firstly, the network syn-
chronization is enhanced. (is is shown in Figure 4(a) for
q � 0.9. However, more decrement of q disturbs the syn-
chronous behavior of the network. Figure 4(b) represents the
chimera state for q � 0.8 with a similar coupling strength
value. When q decreases to q � 0.7, the network becomes
completely asynchronous (Figure 4(c)). (e waveforms of
the neurons in each case are depicted in the right panel of
Figure 4.

For different fractional orders, the range of the coupling
strength for the appearance of different dynamical behaviors
is different. As the fractional order decreases, the chimera
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Figure 1: (a)(e bifurcation diagram of the model; inter spike intervals (ISI) versus the derivative order (q). (b–e)(e time series and phase
spaces of the model for different q values: (b) q � 1; (c) q � 0.9; (d) q � 0.8; (e) q � 0.7.

81

100
1

2

21

Figure 2: (e ring structure of the N � 100 neurons with nonlocal
coupling. Each neuron is connected to its 40 nearest neighbors.(e
connections for i � 1 are illustrated.
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state is formed in higher coupling strengths. Figure 5(a) shows
the chimera state in q � 0.9 for d � 4.6 × 10− 6. In this case,
there are several groups containing a few synchronous
neurons. Forq � 0.8, the chimera is observed for d � 3 × 10− 5

and more neurons are involved in the synchronous cluster
(Figure 5(b)). When q decreases to q � 0.7, in some time
intervals, some neurons become synchronous. (erefore, the
chimera for this derivative is nonstationary. (e chimera for
q � 0.7 is shown in Figure 5(c). To illustrate the coherent and
incoherent clusters better, the local order parameter is
computed and shown in the right column of Figure 5. (is
parameter can be obtained as Lk � |1/2p􏽐|k− l|≤pexp
(jϕl)|, k � 1, . . . , N, where ϕl is the geometric phase of lth
oscillator calculated by ϕl � a tan(yl/xl). (e size of the

spatial window is denoted by p. When Lk � 1, the kth os-
cillator belongs to a coherent group.

Figure 6 represents the strength of incoherence of the
network for different fractional orders. For q � 1, the
network is in chimera state until d � 5 × 10− 5 and becomes
synchronous for larger coupling strengths (Figure 6(a)). A
similar pattern is observed for q � 0.95 (Figure 6(b)).
When q decreases to q � 0.9, the synchronization occurs
for very smaller coupling strengths (d � 2.2 × 10− 5). For
q � 0.85, the network’s dynamical behavior returns to the
q � 1 manner. With more decrement of q, a stronger
coupling is needed for the synchronization. Figure 6(e)
shows that q � 0.8 has the larger chimera region. For q �

0.7 and q � 0.75, a large asynchronization region is
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Figure 3: (e patterns of the network (left panel) and time snapshots (right panel) with integer-order derivative: (a) chimera state for
d � 10− 7 (SI � 0.74); (b) solitary state for d � 1.7 × 10− 5 (SI � 0.39); (c) synchronization for d � 5 × 10− 5 (SI � 0).
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observed. (e variation of SI according to q is illustrated in
Figure 7. It is observed that for low coupling strength, the
integer network is in a chimera state. (e chimera state is
preserved until q � 0.835 , and then all neurons become
asynchronous. For strong couplings, the integer-order

network is synchronous. With decreasing q, the syn-
chronization remains until q � 0.84. For q< 0.84, the
chimera state is formed. However, in the range
0.8< q< 0.823, the synchronization may appear in the
network determined by the initial conditions.
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Figure 4: Upper panel: the patterns of the network for d � 2 × 10− 5 and different derivative orders. (e integer-order network exhibits a
solitary state at this coupling. (a) Synchronization for q � 0.9 (SI � 0). (b) Chimera for q � 0.8 (SI � 0.8). (c) Asynchronization for q � 0.7
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Figure 5: (e chimera patterns in the fractional-order network. (e left and right columns show the spatiotemporal patterns and the
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4. Conclusion

In this paper, a network of coupled fractional-order Fitz-
Hugh–Nagumo neurons was studied. (e dynamical be-
havior of the network was investigated under the variation of
the coupling strength and the derivative order. (e bifur-
cation diagram of the fractional system with respect to the
derivative order revealed that the dynamics of the model is
dependent on the fractional order. Consequently, by
changing the value of the derivative order, various collective
behaviors of the neurons can be found. (e integer-order

neurons experience asynchronization, chimera, and syn-
chronization with increasing the coupling strength, re-
spectively. In the fractional-order network, decreasing the
derivative order for the constant coupling strength, resulted
in the lower synchrony level in the network. (erefore, the
fractional-order network has the same state transition;
however, it occurs in higher coupling strengths. (us, the
chimera or synchronous states appear for stronger cou-
plings. Furthermore, the pattern of the chimera was changed
with varying the derivative order. For q � 0.9, some small
synchronous clusters were formed, while in q � 0.8, a large
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cluster of synchronous neurons was observed. For lower q
values (q � 0.7), the position of the synchronous cluster was
time-dependent and the nonstationary chimera state
appeared.
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et al., “Synchronization of unidirectionally delay-coupled
chaotic oscillators with memory,” @e European Physical
Journal Special Topics, vol. 225, no. 13-14, pp. 2707–2715,
2016.
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