
Research Article
A Single-Valued Extended Hesitant Fuzzy Score-Based
Technique for Probabilistic Hesitant Fuzzy Multiple
Criteria Decision-Making

Bahram Farhadinia and Atefeh Taghavi

Department of Mathematics, Quchan University of Technology, Quchan, Iran

Correspondence should be addressed to Bahram Farhadinia; bfarhadinia@qiet.ac.ir

Received 19 June 2021; Revised 10 August 2021; Accepted 30 August 2021; Published 20 September 2021

Academic Editor: Ning Cai

Copyright © 2021 Bahram Farhadinia and Atefeh Taghavi.)is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

)e probabilistic hesitant fuzzy set (PHFS) is a worthwhile extension of the hesitant fuzzy set (HFS) which allows people to
improve their quantitative assessment with the corresponding probability. Recently, in order to address the issue of difficulty in
aggregating decision makers’ opinions, a probability splitting algorithm has been developed that drives an efficient probabilistic-
unification process of PHFSs. Adopting such a unification process allows decision makers to disregard the probability part in
developing fruitful theories of comparison of PHFSs. By keeping this feature in mind, we try to introduce a class of score functions
for the notion of the single-valued extended hesitant fuzzy set (SVEHFS) as a novel deformation of PHFS. Interestingly, a SVEHFS
not only belongs to a less dimensional space compared to that of PHFSs but also the proposed SVEHFS-based score functions
satisfy a number of interesting properties. Eventually, some case studies of multiple criteria decision-making (MCDM) techniques
under the PHFS environment are provided to demonstrate the effectiveness of proposed SVEHFS-based score functions.

1. Introduction

Hesitant fuzzy set (HFS) as an extension of the fuzzy set [1]
was introduced for reflecting the hesitancy of decision
makers in providing their preferences over alternatives such
that the membership degree of an element in HFS is rep-
resented by a set of values in [0, 1]. )e concept of HFS is a
field that still keeps attracting a significant amount of at-
tention from researchers, and by owing to this concept, the
other extensions of HFSs have been proposed in the liter-
ature [2–6] to overcome a number of corresponding
challenges.

From diverse extensions of HFS, the concept of the
extended hesitant fuzzy set (EHFS) is introduced first by Zhu
and Xu [7] in terms of a function that returns a finite set of
membership value-groups. )en, Farhadinia and Herrera-
Viedma [8] re-visited and revised the notion of EHFS as the
Cartesian product of “n” HFSs in which each “n”-tuple-
formed element of EHFS is referred to as the opinion of
some decision makers simultaneously.

Another interesting generalization of HFSs occurs when
we are required to provide experts’ evaluations based on two
cases: whether experts have the same weight or whether each
value in a hesitant fuzzy element (HFE) gets the same
probability distribution?)ese cases are covered by defining
the concept of the probabilistic hesitant fuzzy set (PHFS)
which was first developed by Zhu and Xu [9] to incorporate
distribution information with the membership degrees in-
cluded in hesitant fuzzy elements (HFEs). Furthermore, the
PHFS concept has a great potential for handling multiple
criteria decision-making (MCDM) processes in which both
qualitative and quantitative criteria are to be considered
[10–14].

Nowadays, among a large number of studies of PHFS
notion, we may refer to the contribution of Zhang and Wu
[15] in which two PHFS aggregation operators are developed
by taking Archimedean t-norm and t-conorm into account.
Following that work, Li and Wang [16] proposed the
Hausdorff distance measure of PHFSs to extend a QUAL-
Itative FLEXible multiple (QUALIFLEX) technique for

Hindawi
Complexity
Volume 2021, Article ID 2454738, 19 pages
https://doi.org/10.1155/2021/2454738

mailto:bfarhadinia@qiet.ac.ir
https://orcid.org/0000-0003-2580-8789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2454738


evaluating green suppliers. Yue et al. [17] developed the
application of probabilistic hesitant fuzzy elements (PHFEs)
in MCDM problems by proposing a set of probabilistic
hesitant fuzzy aggregation operators. Following that, Zeng
et al. [18] introduced the uncertain probabilistic-ordered
weighted averaging distance operator in order to unify the
framework between the probability and the ordered
weighted averaging operator. Ding et al. [19] dealt with the
situation in which the weight information is incomplete, and
then, they concentrated on the class of PHFE-based multiple
attribute group decision-making.

In a completely updated study, Farhadinia [20] pointed
out that there exist two kinds of normalization processes in
dealing with PHFS decision-making problems, namely, the
probabilistic normalization and cardinal normalization. We
need to mention that, among the contributions considering
different types of probabilistic-unification processes, the
most eminent works are those of Zhang et al. [21], Farha-
dinia and Xu [22], Farhadinia and Herrera-Viedma [23], Li
andWang [24], Wu et al. [25], and Lin et al. [26]. Except Lin
et al.’s [26] probabilistic-unification process, Farhadinia [20]
demonstrated that the other probabilistic-unification pro-
cesses considered in the later-mentioned contributions are
not reasonable from a mathematical point of view. It can be
seen that the probabilistic-unification processes of Lin et al.
[26] and Farhadinia [20] give rise to the same result with this
difference that the process of Lin et al. compromises the
unification of probabilities and HFE parts simultaneously,
and that of Farhadinia unifies firstly the probabilities part,
and then, it does the corresponding HFE part.

Keeping the latter-mentioned applications of PHFS
notion in mind, the subject of PHFS ranking technique has
received significant attention in the recent years. Up to now,
a variety of PHFE comparison techniques have been pro-
posed as the combination of hesitancy degree and its cor-
responding probability. Taking these two notions into
account, there have been considerable contributions done in
the past on the PHFE comparison techniques which were
developed by employing the score and deviation values of
each PHFE [14, 19, 21]. For instance, Lin et al. [26] put
forward two types of probabilistic hesitant fuzzy aggregation
operators for specifying the ranking results of alternatives in
decision-making problems. Jiang and Ma [27] proposed a
PHFE comparison technique using the arithmetic- and
geometric-mean scores. Song et al. [28] presented a possi-
bility degree formula for ranking PHFEs in the case where
different PHFEs have common or intersecting values. )is
comparison technique is able to realize the optimal sorting
under the hesitant fuzzy environment, and of course, it can
reduce effectively the complexity of computation. Krish-
ankumar et al. [29] suggested a ranking technique which
extends a well-known VIKOR approach to the PHFS con-
text. Wu et al. [30] supplied an enhanced satisfaction degree
function on the basis of probabilistic hesitant fuzzy cu-
mulative residual entropy for ranking the alternatives in-
volved in a MCDM. Last but not least, Farhadinia and Xu
[31] developed a thorough review of PHFS comparison
techniques in MCDM and introduced a kind of PHFE
ranking technique which is based on the multiplying and

exponential deformation formulas of each element of a
PHFE. )ey classified the PHFE measuring techniques in
brief into the three classes which were called the element-
based processes for comparing PHFEs, the one step-based
processes for comparing PHFEs, and the two step-based
processes for comparing PHFEs.

However, the main objective of this study is to develop a
class of score functions for capturing dependencies be-
tween PHFSs. Although the ranking of PHFSs has been
discussed thoroughly before, the novelty presented here lies
in the fact that the comparison is done inside the less
dimensional space, referred here to as the single-valued
EHFSs (SVEHFSs), and it has not yet been fully exploited.
)e notable characteristic of proposed SVEHFS-score
functions is that not only they are projected from a highly
dimensional space (i.e., the PHFS space) into a less di-
mensional space (i.e, the SVEHFS space) but also they offer
a wide variety of interesting properties. Moreover, the
proposed SVEHFS-based score functions proceed in less
steps, and it relieves the laborious duty of using complex
rules. Besides the latter advantages, we will demonstrate
that the proposed SVEHFS-score functions can be more
generalized to a wider class.

)e organization of this contribution is as follows. We
firstly review the process of unification of PHFSs in Section
2.)en, we demonstrate that how a unified PHFS is deduced
to a SVEHFS in Section 3. Section 4 is devoted to introducing
a new class of SVEHFS-based score functions for the unified
PHFSs which provides the decision makers with more
choices and flexibility. Subsequently, by re-encountering a
number of MCDM problems, we indicate that the superi-
ority of the proposed SVEHFS-score functions compare to
the existing ones for PHFSs in Section 5. Section 6 concludes
this contribution and provides some perspectives.

2. The Probabilistic-Unification
Process of PHFSs

In the following part, we are going to review a number of
basic notions which will be used frequently throughout this
contribution.

By taking the reference set of X into consideration, Torra
[1] introduced the notion of hesitant fuzzy set (HFS) in
terms of a function returning a finite subset of [0, 1] which is
generally denoted by

H � 〈x, h(x)〉: x ∈ X{ }, (1)

where h(x) ∈ [0, 1] is known as the hesitant fuzzy element
(HFE) and denotes the possible membership degree of x ∈ X

to the set H.
)ere is another way of representing HFS already de-

scribed in the form of

H � 〈x, ∪
Z∈h(x)

Z{ }〉, x ∈ X . (2)

In order to emphasis on the probability occurrence of
each possible value of HFE, Zhu [32] associated any element
of HFE with its probability value as follows:
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℘
H � 〈x,

℘
h(x)〉: x ∈ X  � 〈x, ∪

〈Z(x),℘(x)〉∈℘h(x)
〈Z(x),℘(x)〉 〉x ∈ X  (3)

where ℘h(x) stands for a probabilistic hesitant fuzzy ele-
ment (PHFE).

As can be observed, any PHFE ℘h(x) is a pair of possible
membership degree Z(x) and its probability distribution in
the form of ℘(x) ∈ [0, 1] such that  ℘h(x)(℘(x)) � 1 for any
x ∈ X.

It is obvious that if all the values of ℘(x) are equal for any
x ∈ X, then the PHFS ℘H is reduced to a typical HFS.

Keeping the probabilistic-normalization and the cardi-
nal-normalization procedures of PHFSs in mind, Farhadinia
[20] represented a probabilistic-unification type of PHFSs.
Anyway, it has been presented two PHFE probabilistic-
unification processes in earlier contributions, the one pro-
posed by Farhadinia [20] and the other given by Lin et al.
[26].)emain difference between these two processes is that
Lin et al. [26] performed the unification process simulta-
neously for both the HFE part and its corresponding
probability part, while Farhadinia [20] applied the unifi-
cation process to probability part at the beginning and then
partitioned the HFE part correspondingly. Regarding the
same outcome of both Farhadinia’s [20] and Lin et al.’s [26]
procedures, we only consider the former one in the
following.

By the use of Farhadinia's [20] algorithm which is
seperated here as Algorithms 1 and 2, the initial partition of
each PHFE probabilities is to be refined such that all the
involved PHFEs have the same probability parts, while their
corresponding HFE part remains unchanged. To explain
Algorithm 1 and 2 briefly, we assume that ℘h1 � ∪ 〈Z1 ,℘1〉∈℘h1

〈Z1,℘1〉  � 〈Z1
1,℘11〉, . . . , 〈Z

l1
1 ,℘l11 〉 , ℘h2 � ∪ 〈Z2 ,℘2〉∈℘h2

〈Z2,℘2〉  � 〈Z1
2,℘12〉, . . . , 〈Z

l2
2 , ℘l22 〉}, ..., and

℘hm � ∪ 〈Zm,℘m〉∈℘hm
〈Zm,℘m〉  � 〈Z1

m,℘1m〉, . . . , 〈Zlm
m ,℘lmm 〉 

indicate m arbitrary PHFEs whose probabilities can be
separated in the forms of ℘11,℘21, . . . ,℘l11 

℘12,℘22, . . . ,℘l22 ,..., and ℘1m,℘2m, . . . ,℘lmm , respectively. In
this regard, the first phase of the PHFE probabilistic-uni-
fication process takes the following steps:

By setting i ≔ i + 1, we return to Step 1.
Farhadinia [20] indicated that the following results are

the inherent advantages of the above-described algorithm.

Lemma 1 (see [20]). If 
∗
: ( ℘11,℘21, . . . ,℘l11 , ℘12,℘22, . . . ,

℘l22 }, . . . , ℘1m,℘2m, . . . ,℘lmm )⟶ ℘1∗,℘2∗, . . . ,℘l∗∗  where
l∗ ≥max l1, l2, . . . , lm , then the aggregation operator 

∗ is
idempotent, commutative, and associative.

Corollary 1 (see [20]). Let ℘ _h1 � ∪ 〈 _Z1 , _℘1〉∈℘h1
〈 _Z1, _℘1〉  and

℘ _h2 � ∪ 〈 _Z2 , _℘2〉∈℘h2
〈 _Z2, _℘2〉  be two unified PHFEs. &en,

their corresponding probabilities sets are compatible
(isomorphic).

To gain a more clear understanding of Farhadinia’s [20]
PHFE probabilistic-unification algorithm, we take the fol-
lowing three arbitrary PHFEs:

℘
h1 � 〈0.3, 0.2〉, 〈0.6, 0.5〉, 〈0.8, 0.3〉{ },

℘
h2 � 〈0.4, 0.5〉, 〈0.7, 0.5〉{ },

℘
h3 � 〈0.2, 0.1〉, 〈0.5, 0.7〉, 〈0.9, 0.2〉{ }.

(4)

It is apparent from illustrative Figures 1–3 that the
unified forms are obtained in the forms of

℘ _h1 � 〈0.3, 0.1〉, 〈0.3, 0.1〉, 〈0.6, 0.3〉, 〈0.6, 0.2〉, 〈0.8, 0.1〉, 〈0.8, 0.2〉{ },

℘ _h2 � 〈0.4, 0.1〉, 〈0.4, 0.1〉, 〈0.4, 0.3〉, 〈0.7, 0.2〉, 〈0.7, 0.1〉, 〈0.7, 0.2〉{ },

℘ _h3 � 〈0.2, 0.1〉, 〈0.5, 0.1〉, 〈0.5, 0.3〉, 〈0.5, 0.2〉, 〈0.5, 0.1〉, 〈0.9, 0.2〉{ }.

(5)

By the use of the above illustrative example, we find that
the PHFE probabilistic-unification algorithm enables us to
gain a set of PHFEs whose probabilities are in the form of a
fixed vector.

3. Reducing Unified PHFEs to SVEHFEs

We can summarise the outcome of the previous section as
follows: the PHFE probabilistic-unification algorithm leads
to the set of HFE and probability pairs whose second part is a
fixed vector.

As mentioned before, the purpose of this contribution is
to propose a class of score functions for PHFSs with less
involved factors. )is fact would help us greatly reduce the
model construction effort without losing the generality for
different PHFSs; meanwhile, their probability part is com-
mon. Such an effort will result in defining a fundamental
concept, called here as the single-valued extended hesitant
fuzzy set (SVEHFS).

In the sequel, we shall present some preliminaries which
will be useful for the establishment of the desired results.
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Initial step: consider the input probability sets as

℘11,℘
2
1, . . . ,℘l11 ;

℘12,℘
2
2, . . . ,℘l22 ;

⋮
℘1m,℘2m, . . . ,℘lmm .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

We now let i � 1.
Step 1: compute ℘i∗ � min ℘i1,℘i2, . . . ,℘im .

Step 2: calculate the new probabilities:

℘i1 ≔ max ℘i1 − ℘i∗, 0 ;

℘i2 ≔ max ℘i2 − ℘i∗, 0 ;

⋮
℘im ≔ max ℘im − ℘i∗, 0 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Now, if ℘i1 � ℘i2 � · · · � ℘im � 0, then STOP, and return ℘∗ � ℘1∗,℘2∗, . . . ,℘l∗∗  in which l∗ ≥max l1, l2, . . . , lm . Else, go to the
next step.
Step 3: Define ℘i+1j ≔

℘i+1j , if ℘ij � 0;

℘ij, if ℘ij � 0;
, for j � 1, 2, . . . , m.

⎧⎨

⎩

ALGORITHM 1: Phase 1 of Farhadinia’s [20] algorithm.

Initial step: we assume that ℘∗ � ℘1∗,℘2∗, . . . ,℘l∗∗  is to be the output of Phase 1 of Farhadinia’s [20] algorithm

Step 1: calculate the re-formatted probabilities as follows:

℘11 � 

k1

k�1
℘k∗,

℘21 � 

k2

k�k1+1
℘k∗,

⋮

℘l11 � 

l1

k�kl1+1
℘k∗.

Step 2: we re-arrange the HFE part of the first PHFE in the form of

〈Z
1
1,℘

1
∗〉, . . . , 〈Z

1
1,℘

k1
∗ 〉,

〈Z
2
1,℘

k1+1
∗ 〉, . . . , 〈Z

2
1,℘

k2
∗ 〉,

⋮
〈Z

l1
1 ,℘

kl1+1
∗ 〉, . . . , 〈Z

l1
1 ,℘kl∗
∗ 〉.

In summary, the unified form of the PHFE ℘h1 will be ℘ _h1 � 〈 _Z
1
1, _℘11〉, . . . , 〈 _Z

k1
1 , _℘k11 〉, 〈 _Z

k1+1
1 , _℘k1+1

1 〉,

. . . , 〈 _Z
k2
1 , _℘k21 〉,⋮〈 _Z

kl1+1
1 , _℘

kl1+1
1 〉, . . . , 〈 _Z

l∗

1 , _℘l
∗

1 〉.

Step 3: in a similar manner as described above, we re-format the other PHFEs ℘h2,..., and ℘hm to ℘ _h2,..., and ℘ _hm.

ALGORITHM 2: Phase 2 of Farhadinia’s [20] algorithm.

1
1 = 0.2 2

1 = 0.5 3
1 = 0.3

2
2 = 0.5

2
3 = 0.7 3

3 = 0.2

℘ ℘ ℘

℘℘

℘ ℘ ℘

℘℘℘℘℘℘

1
2 = 0.5

1
3 = 0.1

1
* = 0.1 2

* = 0.1 3
* = 0.3 4

* = 0.2 5
* = 0.1 6

* = 0.2

Figure 1: Stage 1 of the unification process.
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In a recent work, Zhu and Xu [7] introduced the notion
of extended HFS (EHFS) in terms of a function which
returns a finite set of membership value-groups. )en,
Farhadinia and Herrera-Viedma [8] indicated that each
element of an EHFS, known as the extended hesitant fuzzy

element (EHFE), is indeed a set of n-tuples which dem-
onstrates the opinion of n number of decision makers. )ey
introduced an extended hesitant fuzzy set (EHFS) on the
reference set X in the form of

H � 〈x, h(x)〉|x ∈ X{ } � 〈x, ∪
c1(x),...,cm(x)( )∈h(x)

c1(x), . . . , cm(x)(  〉|x ∈ X
⎧⎨

⎩

⎫⎬

⎭, (6)

where

h � ∪
c1 ,...,cm( )∈h

c1, . . . , cm(  , (7)

which stands for an extended HFE (EHFE).

For instance, if we suppose that X � x1, x2  is the
reference set and h1(x) � (0.6, 0.3, 0.3), (0.5, 0.2, 0.2){ } and
h2(x) � (0.3, 0.2, 0.1){ } are two EHFEs on X, then the EHFS
H is characterized by

H � 〈x1,h1(x)〉, 〈x2,h2(x)〉  � 〈x1, (0.6, 0.3, 0.3), (0.5, 0.2, 0.2){ }〉, 〈x2, (0.3, 0.2, 0.1){ }〉 . (8)

3
℘1

3
1,⟨ ⟩ ⟨0.8,0.3⟩ =

2
℘1

2
1,⟨ ⟩ ⟨0.6,0.5⟩ =

1
℘1

1
1,⟨ ⟩ ⟨0.3,0.2⟩ =

1
℘2

1
2,⟨ ⟩ ⟨0.4,0.5⟩ =

2
℘2

2
2,⟨ ⟩ ⟨0.7,0.5⟩ =

3
℘3

3
3,⟨ ⟩ ⟨0.9,0.2⟩ =

2
℘3

2
3,⟨ ⟩ ⟨0.5,0.7⟩ =

1
℘3

1
3,⟨ ⟩ ⟨0.2,0.1⟩ =

1
℘*

1
*,⟨ ⟩

2
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5
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Figure 2: Stage 2 of the unification process.

1
℘1

1
1,⟨ ⟩ ⟨ ⟩ = 0.3,0.2

2 2
1

℘
1,⟨ ⟩ ⟨ ⟩ = 0.4,0.5

1
℘3

1
3,⟨ ⟩ ⟨ ⟩ = 0.2,0.1

1
℘3

1
*,⟨ ⟩ ⟨ ⟩ = 0.2,0.1

2
℘3

2
*,⟨ ⟩ ⟨ ⟩ = 0.5,0.1

2
℘3

3
*,⟨ ⟩ ⟨ ⟩ = 0.5,0.3

2
℘3

4
*,⟨ ⟩ ⟨ ⟩ = 0.5,0.2

2
℘3

5
*,⟨ ⟩ ⟨ ⟩ = 0.5,0.1

2
℘3

6
*,⟨ ⟩ ⟨ ⟩ = 0.9,0.2

1
℘2

1
*,⟨ ⟩ ⟨ ⟩ = 0.4,0.1

1
℘2

2
*,⟨ ⟩ ⟨ ⟩ = 0.4,0.1

1
℘3

3
*,⟨ ⟩ ⟨ ⟩ = 0.4,0.3

2
℘2

4
*,⟨ ⟩ ⟨ ⟩ = 0.7,0.2

2
℘2

5
*,⟨ ⟩ ⟨ ⟩ = 0.7,0.1

2
℘2

6
*,⟨ ⟩ ⟨ ⟩ = 0.7,0.2

1
℘1

1
*,⟨ ⟩ ⟨ ⟩ = 0.3,0.1

1
℘1

2
*,⟨ ⟩ ⟨ ⟩ = 0.3,0.1

2
℘1

3
*,⟨ ⟩ ⟨ ⟩ = 0.6,0.3

2
℘1

4
*,⟨ ⟩ ⟨ ⟩ = 0.6,0.2

3
℘1

5
*,⟨ ⟩ ⟨ ⟩ = 0.8,0.1

3
℘1

6
*,⟨ ⟩ ⟨ ⟩ = 0.8,0.2

2
℘3

2
3,⟨ ⟩ ⟨ ⟩ = 0.5,0.7

3
℘3

3
3,⟨ ⟩ ⟨ ⟩ = 0.9,0.2

2
℘2

2
2,⟨ ⟩ ⟨ ⟩ = 0.7,0.5

2
℘1

2
1,⟨ ⟩ ⟨ ⟩ = 0.6,0.5 3

℘1
3
1,⟨ ⟩ ⟨ ⟩ = 0.8,0.3

Figure 3: Combining both Stages 1 and 2 of the unification process.
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Keeping the concept of EHFS in mind, we are now able
to derive the concept of the single-valued extended hesitant
fuzzy set (SVEHFS) as follows:

Definition 1. Let H � 〈x, ∪ (c1(x),...,cm(x))∈h(x) (c1(x), . . . ,

cm(x))}〉| x ∈ X} be an extended hesitant fuzzy set (EHFS)
on the reference set X. A single-valued extended hesitant
fuzzy set (SVEHFS) is interpreted as the reduced form of H
being characterized by

_H � 〈x, c1(x), . . . , cm(x)(  〉|x ∈ X , (9)

where, for a fixed x ∈ X,

h(x) � c1(x), . . . , cm(x)(  , (10)

which stands for a single-valued extended hesitant fuzzy
element (SVEHFE).

To give a more specific example, let us consider again the
above example of EHFS, but in the form of SVEHFS,
suppose that X � x1, x2  is the reference set and h1(x) �

(0.6, 0.3, 0.3){ } and h2(x) � (0.3, 0.2, 0.1){ } are two
SVEHFEs on X. )en, the SVEHFS _H is characterized by

_H � 〈x1,h1(x)〉, 〈x2,h2(x)〉  � 〈x1, (0.6, 0.3, 0.3){ }〉, 〈x2, (0.3, 0.2, 0.1){ }〉 . (11)

Now, we turn back to the beginning expression in this
section where it was stated that all of the pairs involved in a
unified PHFE correspond to a fixed vector as their proba-
bility part.

If we put aside the probability part of the unified PHFEs,
then it gives rise to forming the corresponding SVEHFEs.

For more explanation, we suppose that ℘h1 �

〈Z1
1,℘11〉, 〈Z2

1,℘21〉, 〈Z3
1,℘31〉, ℘h2 � 〈Z1

2,℘12〉, 〈Z2
2,℘22〉}, and

℘h3 � 〈Z1
3,℘13〉, 〈Z2

3,℘23〉, 〈Z3
3,℘33〉  are three arbitrary

PHFEs. )en, their unified forms can be derived as follows:

℘ _h1 � 〈Z1
1,℘

1
∗〉, 〈Z

1
1,℘

2
∗〉, 〈Z

2
1,℘

3
∗〉, 〈Z

2
1,℘

4
∗〉, 〈Z

3
1,℘

5
∗〉, 〈Z

3
1,℘

6
∗〉 ,

℘ _h2 � 〈Z1
2,℘

1
∗〉, 〈Z

1
2,℘

2
∗〉, 〈Z

1
2,℘

3
∗〉, 〈Z

2
2,℘

4
∗〉, 〈Z

2
2,℘

5
∗〉, 〈Z

2
2,℘

6
∗〉 ,

℘ _h3 � 〈Z1
3,℘

1
∗〉, 〈Z

2
3,℘

2
∗〉, 〈Z

2
3,℘

3
∗〉, 〈Z

2
3,℘

4
∗〉, 〈Z

2
3,℘

5
∗〉, 〈Z

3
3,℘

6
∗〉 .

(12)

If we put all the same probability part (℘1∗,℘2∗, . . . ,℘6∗) of
the later unified PHFEs ℘ _h1, ℘ _h2, and ℘ _h3 aside, then the
corresponding SVEHFEs are given as follows:

_h1 ≔ h1 � Z
1
1, Z

1
1, Z

2
1, Z

2
1, Z

3
1, Z

3
1  ,

_h2 ≔ h2 � Z
1
2, Z

1
2, Z

1
2, Z

2
2, Z

2
2, Z

2
2  ,

_h3 ≔ h3 � Z
1
3, Z

2
3, Z

2
3, Z

2
3, Z

2
3, Z

3
3  .

(13)

Before ending this section, we are required to discuss
about the issue of distance measures for SVEHFEs. Gen-
erally, an unified-PHFE distance measure is constructed
using the different part of hesitancy and probability parts.
)is is while the probability part of PHFEs is released in
defining the concept of SVEHFEs. )erefore, the probability
difference part may not make sense in developing distance
measures for SVEHFEs, and only the hesitancy difference
part is kept instead.

Now, if we assume that the weight of element xi ∈ X is to
be denoted by wi, satisfying wi ∈ [0, 1] and 

N
i�1 wi � 1, then

a series of weighted distance measures for SVEHFSs _H1 �

〈x, _h1(x) � (c1
1(x), . . . , c1m(x)) 〉: x ∈ X  and _H2 � 〈x,{

_h2(x) � (c2
1(x), . . . , c2

m(x)) 〉: x ∈ X} will be developed as
the following:

(1) )e single-valued extended hesitant weighted dis-
tance measure:

d1 _H1,
_H2  � 

N

i�1
wi

1
m



m

j�1
c
1
j xi(  − c

2
j xi( 

λ


⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

, λ> 0.

(14)

(2) )e single-valued extended hesitant weighted
Hausdorff distance measure:

d2 _H1,
_H2  � 

N

i�1
wi max

1≤j≤m
c
1
j xi(  − c

2
j xi( 




λ

 ⎡⎣ ⎤⎦

1/λ

, λ> 0.

(15)

(3) )e single-valued extended hesitant weighted hybrid
distance measure:

d3 _H1,
_H2  � 

N

i�1
wi ×

1
2

1
m



m

j�1
c
1
j xi(  − c

2
j xi( 




λ

+ max
1≤j≤m

c
1
j xi(  − c

2
j xi( 

λ


 ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

, λ> 0. (16)
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(4) )e generalized single-valued extended hesitant
weighted hybrid distance measure:

dg
_H1,

_H2  � 
N

i�1
wi × α

1
m



m

j�1
c
1
j xi(  − c

2
j xi( 




λ

⎛⎝ ⎞⎠ + β max
1≤j≤m

c
1
j xi(  − c

2
j xi( 




λ

  ⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

, λ> 0, (17)

where 0≤ α, β≤ 1, and α + β � 1.

Needless to say that all the abovementioned distance
measures d1(., .), d2(., .), and d3(., .) can be derived from the
generalized form of dg(., .).

Theorem 1. Let _H1 � 〈x, _h1(x) � (c1
1(x), . . . , c1

m

(x))}〉: x ∈ X} and _H2 � 〈x, _h2(x) � (c2
1(x), . . . ,

c2m(x))}〉: x ∈ X} be two SVEHFSs. &en, the weighted dis-
tance measures for SVEHFSs given by (21)–(24) satisfy the
following properties:

(1) 0≤ d( _H1,
_H2)≤ 1

(2) d( _H1,
_H2) � 0 if and only if _H1 � _H2

(3) d( _H1,
_H2) � d( _H2,

_H1)

(4) d( _H1,
_H2)≤ d( _H1,

_H3) if _H1 ≤H
_H2 ≤H

_H3 implying
that _h1(x)≤ h

_h2(x)≤ h
_h3(x) for any x ∈ X, that is,

c1
j(x)≤ c2

j(x)≤ c3
j(x) for any j � 1, 2, . . . , m

Proof. We only prove the above assertions for the distance
measure dg(., .) given by (17), and the others can be deduced
easily. □

Axiom 1. Keeping equation (17) in mind, we easily deduce
that 0≤ |c1

j(xi) − c2
j(xi)|≤ 1 for any 0≤ c1

j(xi)≤ 1 and
0≤ c2

j(xi)≤ 1 in which i � 1, 2, . . . , N and j � 1, 2, . . . , m.
)ese easily give rise to

0≤
1
m



m

j�1
c
1
j xi(  − c

2
j xi( 




λ
≤ 1, and 0≤ max

1≤j≤m
c
1
j xi(  − c

2
j xi( 




λ

 ≤ 1, (18)

for any λ> 0. Now, by taking wi ∈ [0, 1] and 
N
i�1 wi � 1, and

moreover, 0≤ α, β≤ 1 and α + β � 1, we result in
0≤ dg( _H1,

_H2)≤ 1.

Axiom 2. Let

dg
_H1,

_H2  � 

N

i�1
wi × α

1
m



m

j�1
c
1
j xi(  − c

2
j xi( 




λ

⎛⎝ ⎞⎠ + β max
1≤j≤m

c
1
j xi(  − c

2
j xi( 




λ

  ⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

� 0. (19)

)is implies that

1
m



m

j�1
c
1
j xi(  − c

2
j xi( 




λ

� 0, and max
1≤j≤m

c
1
j xi(  − c

2
j xi( 




λ

  � 0, (20)

in which both of them lead to |c1
j(xi) − c2

j(xi)| � 0, that is,
c1

j(xi) � c2
j(xi) for any i � 1, 2, . . . , N and j � 1, 2, . . . , m.

)us, we conclude that _H1 � _H2.
)e inverse axiom will be easily proved in the same

manner.

Axiom 3. )e proof is immediate from definition of distance
measure dg(., .) given by (17).

Axiom 4. If _H1 ≤H
_H2 ≤H

_H3, then it implies that
_h1(xi)≤ h

_h2(xi)≤ h
_h3(xi) for any xi ∈ X, that is,

Complexity 7



c1
j(xi)≤ c2

j(xi)≤ c3
j(xi) for any j � (1, 2, . . . , m) and xi ∈ X.

)e latter inequalities give rise to |c1
j(xi) − c2

j(xi)|≤
|c1

j(xi) − c3
j(xi)| for any k � (1, 2, . . . , m) and xi ∈ X, and

therefore,

dg
_H1,

_H2  � 
N

i�1
wi × α

1
m



m

j�1
c
1
j xi(  − c

2
j xi( 




λ

⎛⎝ ⎞⎠ + β max
1≤j≤m

c
1
j xi(  − c

2
j xi( 




λ

  ⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

≤ 
N

i�1
wi × α

1
m



m

j�1
c
1
j xi(  − c

3
j xi( 




λ

⎛⎝ ⎞⎠ + β max
1≤j≤m

c
1
j xi(  − c

3
j xi( 




λ

  ⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

� dg
_H1, _H3 .

(21)

4. SVEHFS-Based Score Function for PHFSs

As will be shown later, the score function of SVEHFS is
fundamentally defined in accordance with the score function
of its SVEHFEs, and therefore, we only discuss the score
functions for SVEHFEs.

Now, we are in a position to introduce a class of
SVEHFE-score functions by the help of SVEHFE distance
measures given by (14)–(17).

Definition 2. Let _h � (c1, . . . , cm)  be a SVEHFE. )e score
function Sc(.) is defined as

Sc( _h) ≔ Sc c1, . . . , cm( (  � 1 − d c1, . . . , cm( , 1( , (22)

where d(., .) is a distant measure for SVEHFE and 1 stands
for the SVEHFE (1, . . . , 1).

As will be shown below, score function (22) satisfies the
fundamental properties, known as monotonicity, boundary
conditions, idempotency, and duality.

Property 1 (monotonicity). Let _h1 � (c1
1, . . . , c1

m)  and _h2 �

(c2
1, . . . , c2

m)  be two SVEHFEs such that _h1 ≤ h
_h2, that is,

c1
j ≤ c2

j for any j � 1, 2, . . . , m. )en, the score function Sc(.)

given by (22) satisfies

Sc _h1 ≤ Sc _h2 . (23)

Proof. From the fact that _h1 ≤ h
_h2 ≤ h1 and the monotonicity

property of any distance d(., .), we find that
d((c1

1, . . . , c1
m), 1)≥ d((c2

1, . . . , c2
m), 1) which easily implies

that

Sc _h1  � 1 − d c
1
1, . . . , c

1
m , 1 ≤ 1 − d c

2
1, . . . , c

2
m , 1  � Sc _h2 . (24)

□
Property 2 (boundary conditions). Let 1 � (1, 1, . . . , 1) and
0 � (0, 0, . . . , 0) be One-SVEHFE and Zero-SVEHFE, re-
spectively. )en, we conclude that the score function Sc(.)

given by (22) satisfies

Sc(1) � 1, and Sc(0) � 0. (25)

Proof. By keeping the axiom 0≤ d( _h1,
_h2)≤ 1 (for any

SVEHFEs _h1 and _h2) in mind, the proof is evident. □

Property 3 (idempotency). Let _h � (c1, . . . , cm)  �

(c, . . . , c) . If d((c, . . . , c), 1) � 1 − c, then the score
function Sc(.) given by (22) satisfies

Sc( _h) � c. (26)

Proof. )e proof is obvious. □

Definition 3. If Sc(.) stands for a score function of
SVEHFEs, then

D(Sc( _h)) � D Sc c1, . . . , cm(  ( (  ≔ 1 − Sc 1 − c1, . . . , 1 − cm(  ( , (27)

which defines the dual form of Sc(.).

Property 4 (duality). )e score function Sc(.) given by (22)
satisfies

D(D(Sc( _h))) � Sc( _h). (28)

Proof. Following from Definition 3, we get that
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D(D(Sc( _h))) � D 1 − Sc 1 − c1, . . . , 1 − cm(  ( ( 

≔ 1 − 1 − Sc 1 − 1 − c1( , . . . , 1 − 1 − cm( (  ( (  � Sc c1, . . . , cm(  ( .
(29)

□
Property 5 (generalization). Let Θ: [0, 1]⟶ [0, 1] be a
strictly monotone decreasing real function and d(., .) be a
distance measure between SVEHFEs. )en,

ScΘ(
_h) � Θ d c1, . . . , cm( , 1( ( , (30)

which defines a score function for SVEHFEs.

Proof. We show that ScΘ(.) satisfies two fundamental
properties, called above as monotonicity and boundary
conditions.

Monotonicity property: from the fact that _h1 ≤ h
_h2 ≤ h1

and the monotonicity property of any distance d(., .), we
find that d((c1

1, . . . , c1
m), 1)≥ d((c2

1, . . . , c2
m), 1). On the

contrary, the latter inequality and the strictly monotone
decreasing property of Θ give rise to

Θ d c
1
1, . . . , c

1
m , 1  ≤Θ d c

2
1, . . . , c

2
m , 1  , (31)

which implies that

ScΘ
_h1 ≤ ScΘ

_h2 . (32)

Boundary conditions’ property: consider theOne-SVEHFE
1 � (1, 1, . . . , 1) and the Zero-SVEHFE 0 � (0, 0, . . . , 0).
)en, by keeping the axiom 0≤ d( _h1,

_h2)≤ 1 (for any
SVEHFEs _h1 and _h2) in mind, we conclude easily that the score
function ScΘ(.) given by (30) satisfies

ScΘ(1) � 1, and ScΘ(0) � 0. (33)

By the help of Property 5, we will be able to develop
different formulas of score functions for SVEHFEs by taking
into account different strictly monotone decreasing func-
tionsΘ: [0, 1]⟶ [0, 1], for instance, (1)Θ1(x) � 1 − x; (2)
Θ2(x) � 1 − x/1 + x; (3) Θ3(x) � 1 − xex− 1; (4)
Θ4(x) � 1 − x2.

From this property, the following SVEHFE-score
functions can be established:

ScΘ1(
_h) � 1 − d c1, . . . , cm( , 1( ;

ScΘ2(
_h) �

1 − d c1, . . . , cm( , 1( 

1 + d c1, . . . , cm( , 1( 
;

ScΘ3(
_h) � 1 − d c1, . . . , cm( , 1( e

d c1 ,...,cm( ),1( )− 1
;

ScΘ4(
_h) � 1 − d2 c1, . . . , cm( , 1( .

(34)

□

5. SVEHFS Score-Based Multiple
Criteria Decision-Making

)is section provides three practical case studies to dem-
onstrate that the proposed concept of SVEHFS is effective
enough in the field of score-based optimization methods.

Briefly speaking, the proposed SVEHFS score-based
decision-making procedure is composed of the following
three stages: the unification process of PHFSs, the reduction
process of PHFSs to SVEHFSs, and the selection procedure.
)e first two stages have been served in Sections 2 and 3.)e
last stage given in Section 4 describes the process of ranking
alternatives in accordance with their values of score function
and selecting the best one with the greatest value.

Now, in order for more systematically being understood,
we give following Algorithm 3 (see Figure 4).

5.1. Case Study I. In this portion, we adopt an optimization
problem which was originally solved in [33] by the use of a
probabilistic linguistic term set- (PLTS-) based algorithm.
Here, in order to have a better understanding of how the
proposed SVEHFS- (or PHFS-) based algorithm behaves
over the later-mentioned multiple criteria decision-making
problem, we transform PLTS information to PHFS (or
SVEHFS) data. )is is done by the help of)eorem 1 in [34]
in which the bijective transformation between PLTSs and
PHFSs is explained.

A company needs to plan the development of large
projects (strategy initiatives) for the next five years. To do
this end, the company invites five experts to form the board
of directors. Moreover, the company takes three possible
projects Ai(i � 1, 2, and 3) into consideration which should
be evaluated based on their importance. )ese projects
should be ranked in accordance with four criteria of the
benefit type which are suggested by the balanced scorecard
methodology as follows:

C1: financial perspective
C2: the customer satisfaction
C3: internal business process perspective
C4: learning and growth perspective

Now, by adopting Algorithm 3 and the assumption that
five experts apply the linguistic term set S � s0 � none, s1 �

verylow, s2 � low, s3 � medium, s4 � high, s5 � veryhigh,

s6 � perfect}, we are able to evaluate the projects Ai(i �

1, 2, and 3) by means of PLTSs in Step 1. )e corresponding
data is presented in Table 1.

To save more space, we only present the transformation
form of the probabilistic linguistic decision matrix into that
of PHFSs as explained above. Consequently, the result will be
that given in Table 2.

Now, by the help of Step 2 of Algorithm 3, we are in a
position to use the proposed unification process for the data
of Table 2 and draw those results being summarized in
Table 3.

In what follows, by the use of Step 3 of Algorithm 3, we
will derive the corresponding SVEHFEs, as shown in Table 4.

If we now consider the weight vector of criteria Ci(i �

1, 2, 3, 4) in the form of w � (0.138, 0.304, 0.416, 0.142)
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together with λ � 1 for distance measures d1(., .), d2(., .),
and d3(., .) given, respectively, by (14)–(16); then, following
Step 4 of Algorithm 3, the proposed SVEHFS-score function
Sc(.) gives rise to the priorities of projects listed in Table 5. In
addition to these results, the output of Pang et al.’s TOPSIS-
based and aggregation-based techniques [33] has been
presented in Table 5.

Generally, the TOPSIS-based and aggregation-based
techniques are chosen in accordance with the decision
makers’ need on one side, and on the other side, Pang et al.’s
TOPSIS- and aggregation-based techniques [33] impose the
extracondition of normalization by adding a number of
artificial linguistic terms with “zero” probability. By

imposing such artificial PLTS normalization process, the
underlying optimization procedure will cause the compu-
tational process with more complexity. In contrast, the
SVEHFS-score-based technique maintains the integrity and
authenticity of decision information as far as possible, which
results in much more reasonable decisions.

5.2.CaseStudy II. In this part of contribution, we implement
the proposed SVEHFS-score function for specifying the best
Chinese hospital from a collection of considered hospitals.
Such a problem was originally discussed by Song et al. [28],
and then, it was more investigated by some other researchers

Input: the probabilistic hesitant fuzzy decision matrix
Output: the ranking of alternatives and the best one
Step 1: build the probabilistic hesitant fuzzy decision matrix
Step 2: extract the unified form of PHFSs from the decision matrix
Step 3: reduced the probabilistic-unified PHFSs to so-called SVEHFSs
Step 4: find the best alternative(s) in accordance with their SVEHFS score values

ALGORITHM 3: Proposed SVEHFS score-based decision-making algorithm.

Table 1: )e probabilistic linguistic decision matrix.

C1 C2 C3 C4

A1 s3(0.4), s4(0.6)  s2(0.2), s4(0.8)  s3(0.2), s4(0.8)  s3(0.4), s5(0.6) 

A2 s3(0.8), s5(0.2)  s2(0.3), s3(0.4), s4(0.3)  s1(0.3), s2(0.4), s3(0.3)  s3(0.8), s4(0.2) 

A3 s3(0.6), s4(0.4)  s3(0.6), s4(0.2), s5(0.2)  s3(0.4), s4(0.2), s5(0.4)  s4(0.7), s6(0.3) 

Table 2: )e probabilistic hesitant fuzzy decision matrix.

C1 C2 C3 C4

A1 0.5(0.4), 0.67(0.6){ } 0.33(0.2), 0.67(0.8){ } 0.5(0.2), 0.67(0.8){ } 0.5(0.4), 0.83(0.6){ }

A2 0.5(0.8), 0.83(0.2){ } 0.33(0.3), 0.5(0.4), 0.67(0.3){ } 0.17(0.3), 0.33(0.4), 0.5(0.3){ } 0.5(0.8), 0.67(0.2){ }

A3 0.5(0.6), 0.67(0.4){ } 0.5(0.6), 0.67(0.2), 0.83(0.2){ } 0.5(0.4), 0.67(0.2), 0.83(0.4){ } 0.67(0.7), 1(0.3){ }

Problem:
Set of Alternatives

The DMs

Probabilistic hesitant
fuzzy decision matrix of

each DMs 

Inputs

Build the PHF
decision matrix Step 2 Unifying PHFSs

Reducing to
SVEHFSs 

Step 1

Step 4
Computing
the Scores 

Ranking of alternatives
and the best one 

The Best

End

Start

Computation Process

Outputs

Section 3
Eq.(5)

Section 4
Eq.(10) 

Section 2
Algorithm2.1

St
ep

 3

Figure 4: Proposed SVEHFS score-based decision-making algorithm.
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including Zhang et al. [21] and Farhadinia and Herrera-
Viedma [23].

)e problem here is that we are seeking the best Chinese
hospital with regards to the medical resource restriction and
the old-age limitation of target population. In this regard,
three criteria are mainly considered as C1: environment of
health service, C2: treatment optimization, and C3: social
resource allocation. )e corresponding weight vector of
criteria is supposed to be w � (0.2, 0.1, 0.7). For this opti-
mization problem, we evaluate four candidate hospitals
including A1: West China Hospital of Sichuan University,
A2: Huashan Hospital of Fudan University, A3: Union
Medical College Hospital, and A4: Chinese PLA General
Hospital. Since one option is not able to describe the in-
fluence factor, a number of experts are asked to express their
preferences related to the abovementioned hospitals based
on available criteria in the form of PHFSs.

Now, performing Step 1 of Algorithm 3 leads to con-
structing the following probabilistic hesitant fuzzy decision
matrix (see Table 6).

Similar to what is discussed in Section 3 and applying
Steps 2 and 3 of Algorithm 3, we will derive the corre-
sponding unified PHFEs’ and SVEHFEs’ matrices, as shown
in Tables 7 and 8, respectively.

Following Step 4 of Algorithm 3, if we now consider the
weight vector of criteria Ci(i � 1, 2, 3) in the form of w �

(0.2, 0.1, 0.7) together with λ � 1 for distance measures
d1(., .), d2(., .), and d3(., .) given, respectively, by (14)–(16),
then the proposed SVEHFS-score function Sc(.) gives rise to
the priority of Chinese hospitals listed in Tables 9 and 10. In
addition to these results, the output of Zhang et al.’s [21],
Song et al.’s [28], and Farhadinia and Xu [22] techniques
have been also presented in Tables 9 and 10.

As what can be observed from Tables 9 and 10, the most
repeated alternative is A2 which implies that the most ap-
propriate hospital is the Huashan Hospital of Fudan Uni-
versity. )is is exactly what we observe from the last three
rows of Table 10 dedicated to the results of proposed
SVEHFS-score functions.

Now, let us conclude the part of this section with some
discussions on the pros and cons of proposed SVEHFS-score
functions. )e techniques of Zhang et al. [21] and Song et al.
[28] are restricted directly to the normalization process of
PHFSs, and Farhadinia and Xu [22] techniques are related to
the multiplying and exponential deformation formulas of
each pair of possible membership degree and its associated
probability. )is is while the proposed SVEHFS-score
functions do not change the original form of PHFSs, and this
can be seen as a pro. )e other significant advantage of
SVEHFS-based score functions over the other above-
mentioned techniques is its ease of use.

5.3. Case Study III. Because of competition and limitation of
research funding in universities of China, a few outstanding
research topics are annually supported. In order to select the
best research topic several aspects including practicality,
innovativeness, and feasibility are taken into consideration.

In March 2018, the business school of university A in
China asked three instructors to submit their research topics
for evaluating which one is more suitable for granting the
university research funding. In this project, three professors
DMk (k � 1, 2, and 3) are invited for evaluating the quality
of the three research topics Ai (i � 1, 2, and 3) in accordance
with three criteria: Cj�1: innovativeness, Cj�2: practicality,
and Cj�3: feasibility. All the criteria are benefit types, and all
the corresponding evaluations of three professors DMk (k �

1, 2, and 3) are represented in the form of PHFE-based
decision matrices (see Tables 11–13).

By applying Steps 2 and 3 of Algorithm 3, the individual
unified PHFEs are computed as the data given in
Tables 14–16.

Following the process discussed by Li et al. [35], the
decision makers’ weights are obtained as

ϖk �


n
j�1 

m−1
i�1 

m
g�i+1 d c

k
ij, c

k
gj 


z
k�1 

n
j�1 

m−1
i�1 

m
g�i+1 d c

k
ij, c

k
gj 

, k � 1, 2, and 3,

(35)

Table 5: Ranking results of the different techniques.

Ranking order Optimal alternative
Pang et al.’s TOPSIS-based technique [33] A1 >A3 >A2 A1
Pang et al.’s aggregation-based technique [33] A1 >A3 >A2 A1
)e proposed SVEHFS-score function Scd1

A3 >A1 >A2 A3
)e proposed SVEHFS-score function Scd2

A3 >A1 >A2 A3
)e proposed SVEHFS-score function Scd3

A3 >A1 >A2 A3

Table 6: )e probabilistic hesitant fuzzy decision matrix.

Environment of health
service(C1)

Treatment optimization(C2) Social resource allocation(C3)

West China Hospital (A1) 0.5(0.4), 0.7(0.6){ } 0.9(1){ } 0.3(0.2), 0.5(0.8){ }

Huashan Hospital (A2) 0.8(0.3), 0.9(0.7){ } 0.5(1){ } 0.8(0.4), 0.9(0.6){ }

Union Medical College Hospital (A3) 0.5(1){ } 0.7(0.5), 0.9(0.5){ } 0.8(0.6), 0.9(0.4){ }

PLA General Hospital (A4) 0.8(0.5), 0.9(0.5){ } 0.3(0.5), 0.6(0.5){ } 0.7(1){ }
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Table 10: Continues from Table 9.

Technique Ranking order Optimal
alternative

Zhang et al.’s [21] A2 >A3 >A4 >A1 A2

Song et al.’s [28] A2 > 0.838A3 > 0.819A4 > 1A1 A2

Farhadinia and Xu’s [22] first two step-based process multiplying deformation
formula: S1(A1) � 0.144, S1(A2) � 0.2116, S1(A3) � 0.199, and S1(A4) � 0.1814 A2 >A3 >A4 >A1 A2

Exponential deformation formula: S1(A1) � 0.873, S1(A2) � 0.9590,
S1(A3) � 0.945, and S1(A4) � 0.9229 A2 >A3 >A4 >A1 A2

Farhadinia and Xu’s [22] second two step-based process multiplying
deformation formula: S2(A1) � 0.1445, S2(A2) � 0.2116, S2(A3) � 0.1998, and
S2(A4) � 0.1814

A2 >A3 >A4 >A1 A2

Exponential deformation formula: S2(A1) � 0.8732, S2(A2) � 0.9590,
S2(A3) � 0.9454, and S2(A4) � 0.9229 A2 >A3 >A4 >A1 A2

Farhadinia and Xu’s [22] third two step-based process multiplying deformation
formula: R3(A1) � (0.1445, 0.1376), R3(A2) � (0.2116, 0.1171),
R3(A3) � (0.1998, 0.0428), R3(A4) � (0.1814, 0.1824)

R3(A2)≥ lexR3(A3)≥ lex

R3(A4)≥ lexR3(A1) A2 >A3 >A4 >A1
A2

Exponential deformation formula: R3(A1) � (0.8732, 0.1499),
R3(A2) � (0.9590, 0.1114), R3(A3) � (0.9454, 0.0475), and
R3(A4) � (0.9229, 0.0430)

R3(A2)≥ lexR3(A3)≥ lex

R3(A4)≥ lexR3(A1) A2 >A3 >A4 >A1
A2

)e proposed SVEHFS-score function Scd1
: Scd1

(A1) � 0.5471,
Scd1

(A2) � 0.8735, Scd1
(A3) � 0.7483, and Scd1

(A4) � 0.7000 A2 >A3 >A4 >A1 A2

)e proposed SVEHFS-score function Scd2
Scd2

(A1) � 0.4310,
Scd2

(A2) � 0.7970, Scd2
(A3) � 0.7300, and Scd2

(A4) � 0.6800 A2 >A3 >A4 >A1 A2

)e proposed SVEHFS-score function Scd2
Scd3

(A1) � 0.4890,
Scd3

(A2) � 0.8352, Scd3
(A3) � 0.7391, and Scd3

(A4) � 0.6900 A2 >A3 >A4 >A1 A2

Table 8: )e SVEHFS decision matrix.

C1 C2 C3

A1 (0.5, 0.5, 0.5, 0.7, 0.7, 0.7){ } (0.9, 0.9, 0.9, 0.9, 0.9, 0.9){ } (0.3, 0.5, 0.5, 0.5, 0.5, 0.5){ }

A2 (0.8, 0.8, 0.8, 0.9, 0.9, 0.9){ } (0.5, 0.5, 0.5, 0.5, 0.5, 0.5){ } (0.8, 0.8, 0.8, 0.9, 0.9, 0.9){ }

A3 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5){ } (0.7, 0.7, 0.7, 0.7, 0.9, 0.9){ } (0.8, 0.8, 0.8, 0.8, 0.8, 0.9){ }

A4 (0.8, 0.8, 0.8, 0.8, 0.9, 0.9){ } (0.3, 0.3, 0.3, 0.3, 0.7, 0.7){ } (0.7, 0.7, 0.7, 0.7, 0.7, 0.7){ }

Table 9: Ranking results of Chinese hospitals.

Score function Score of hospitals Ranking order Optimal alternative
S

d1 0.8555 0.7884 0.8002 0.8186 A2 >A3 >A4 >A1 A2
Sd1 0.1268 0.0410 0.0546 0.0771 A2 >A3 >A4 >A1 A2
S

d2 0.8618 0.7951 0.8007 0.8186 A2 >A3 >A4 >A1 A2
Sd2 0.1406 0.0432 0.0595 0.0774 A2 >A3 >A4 >A1 A2
S

d3 0.9631 0.9063 0.8310 0.8255 A4 >A3 >A2 >A1 A4
Sd3 0.2075 0.0576 0.0827 0.0860 A2 >A3 >A4 >A1 A2
S

d4 0.9093 0.8473 0.8156 0.8220 A3 >A4 >A2 >A1 A3
Sd4 0.1671 0.0493 0.0686 0.0815 A2 >A3 >A4 >A1 A2
S

AM
0.1445 0.2116 0.1998 0.1814 A2 >A3 >A4 >A1 A2

S
AM

0.8732 0.9590 0.9454 0.9229 A2 >A3 >A4 >A1 A2
S

GM
0.1054 0.1871 0.1977 0.1814 A3 >A2 >A4 >A1 A3

S
GM

0.8711 0.9589 0.9451 0.9229 A2 >A3 >A4 >A1 A2
S

Min
0.0369 0.0937 0.1690 0.1745 A4 >A3 >A2 >A1 A4

S
Min

0.7925 0.9424 0.9173 0.9140 A2 >A3 >A4 >A1 A2
S

Max
0.2957 0.3704 0.2328 0.1880 A2 >A1 >A3 >A4 A2

S
Max

0.9399 0.9742 0.9707 0.9312 A2 >A3 >A1 >A4 A2
S

P
0.0001 0.0012 0.0015 0.0011 A3 >A2 >A4 >A1 A3

S
P

0.5758 0.8455 0.7979 0.7255 A2 >A3 >A1 >A4 A2
S

BS
0.5779 0.8464 0.7992 0.7257 A2 >A3 >A1 >A4 A2

S
BS

1 1 1 1 A1 >A2 >A3 >A4 A1
S

F
0.0007 0.0112 0.0112 0.0069 A3 >A2 >A4 >A1 A3

S
F

0.9993 1.0000 1.0000 0.9998 A2 >A3 >A1 >A4 A2
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Table 17: )e SVEHFS decision matrix for DM1.

C1 C2 C3

A1 blue(0.3, 0.4, 0.4, 0.5){ } (0.4, 0.5, 0.5, 0.6){ } (0.2, 0.2, 0.2, 0.2){ }

A2 0.7, 0.7, 0.7, 0.7{ } 0.3, 0.3, 0.4, 0.4{ } 0.8, 0.8, 0.9, 0.9{ }

A3 0.6, 0.6, 0.8, 0.8{ } 0.7, 0.7, 0.9, 0.9{ } 0.3, 0.3, 0.4, 0.4{ }

Table 11: Evaluation information provided by DM1.

C1 C2 C3

A1 0.3(0.3), 0.4(0.4), 0.5(0.3){ } 0.4(0.3), 0.5(0.4), 0.6(0.3){ } 0.2(1){ }

A2 0.7(1){ } 0.3(0.5), 0.4(0.5){ } 0.8(0.5), 0.9(0.5){ }

A3 0.6(0.5), 0.8(0.5){ } 0.7(0.5), 0.9(0.5){ } 0.3(0.5), 0.4(0.5){ }

Table 12: Evaluation information provided by DM2.

C1 C2 C3

A1 0.4(0.5), 0.5(0.5){ } 0.6(1){ } 0.5(0.3), 0.7(0.4), 0.8(0.3){ }

A2 0.3(0.5), 0.4(0.5){ } 0.4(0.3), 0.5(0.4), 0.6(0.3){ } 0.6(0.5), 0.7(0.5){ }

A3 0.5(0.5), 0.6(0.5){ } 0.8(0.5), 0.9(0.5){ } 0.6(1){ }

Table 13: Evaluation information provided by DM3.

C1 C2 C3

A1 0.1(0.5), 0.3(0.5){ } 0.3(0.3), 0.4(0.4), 0.5(0.3){ } 0.6(0.5), 0.7(0.5){ }

A2 0.7(0.3), 0.8(0.4), 0.9(0.3){ } 0.5(0.3), 0.6(0.4), 0.8(0.3){ } 0.3(1){ }

A3 0.4(0.5), 0.5(0.5){ } 0.9(1){ } 0.7(0.5), 0.8(0.5){ }

Table 14: )e unified probabilistic hesitant fuzzy decision matrix for DM1.

C1 C2 C3

A1 0.3(0.3), 0.4(0.2), 0.4(0.2), 0.5(0.3){ } 0.4(0.3), 0.5(0.2), 0.5(0.2), 0.6(0.3){ } 0.2(0.3), 0.2(0.2), 0.2(0.2), 0.2(0.3){ }

A2 0.7(0.3), 0.7(0.2), 0.7(0.2), 0.7(0.3){ } 0.3(0.3), 0.3(0.2), 0.4(0.2), 0.4(0.3){ } 0.8(0.3), 0.8(0.2), 0.9(0.2), 0.9(0.3){ }

A3 0.6(0.3), 0.6(0.2), 0.8(0.2), 0.8(0.3){ } 0.7(0.3), 0.7(0.2), 0.9(0.2), 0.9(0.3){ } 0.3(0.3), 0.3(0.2), 0.4(0.3), 0.4(0.3){ }

Table 15: )e unified probabilistic hesitant fuzzy decision matrix for DM2.

C1 C2 C3

A1 0.4(0.3), 0.4(0.2), 0.5(0.2), 0.5(0.3){ } 0.6(0.3), 0.6(0.2), 0.6(0.2), 0.6(0.3){ } 0.5(0.3), 0.7(0.2), 0.7(0.2), 0.8(0.3){ }

A2 0.3(0.3), 0.3(0.2), 0.4(0.2), 0.4(0.3){ } 0.4(0.3), 0.5(0.2), 0.5(0.2), 0.6(0.3){ } 0.6(0.3), 0.6(0.2), 0.7(0.2), 0.7(0.3){ }

A3 0.5(0.3), 0.5(0.2), 0.6(0.2), 0.6(0.3){ } 0.8(0.3), 0.8(0.2), 0.9(0.2), 0.9(0.3){ } 0.6(0.3), 0.6(0.2), 0.6(0.2), 0.6(0.3){ }

Table 16: )e unified probabilistic hesitant fuzzy decision matrix for DM3.

C1 C2 C3

A1 0.1(0.3), 0.1(0.2), 0.3(0.2), 0.3(0.3){ } 0.3(0.3), 0.4(0.2), 0.4(0.2), 0.5(0.3){ } 0.6(0.3), 0.6(0.2), 0.7(0.2), 0.7(0.3){ }

A2 0.7(0.3), 0.8(0.2), 0.8(0.2), 0.9(0.3){ } 0.5(0.3), 0.6(0.2), 0.6(0.2), 0.8(0.3){ } 0.3(0.3), 0.3(0.2), 0.3(0.2), 0.3(0.3){ }

A3 0.4(0.3), 0.4(0.2), 0.5(0.2), 0.5(0.3){ } 0.9(0.3), 0.9(0.2), 0.9(0.2), 0.9(0.3){ } 0.7(0.3), 0.7(0.2), 0.8(0.2), 0.8(0.3){ }
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in which d(., .) is a distance measure.
If we implement distance measures d1(., .), d2(., .), and

d3(., .) provided, respectively, by (14)–(16) with λ � 1, then
the weight vectors will be

ϖd1
� ϖ1,ϖ2,ϖ3(  � (0.3545, 0.2421, 0.4034),

ϖd2
� ϖ1,ϖ2,ϖ3(  � (0.3864, 0.1932, 0.4204),

ϖd3
� ϖ1,ϖ2,ϖ3(  � (0.3927, 0.1859, 0.4215).

(36)

To save more space for convenient storage, we only list
the subsequent results for ϖd1

.
Now, if we aggregate the individual SVEHFS matrices

given in Tables 17–19 by the help of the following rule

_h � ⊕3k�1 ϖk × _hk  � 1 − 

3

k�1
1 − _Zk 

ϖk⎛⎝ ⎞⎠

(1)

, . . . , 1 − 

3

k�1
1 − _Zk 

ϖk⎛⎝ ⎞⎠

(m)⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (37)

in which ϖk stands for the weight of the decision makers DMk

(k � 1, 2, and 3) and the notation (j) (for j � 1, . . . , m) de-
notes the jth element of collective SVEHFS, then the collective
SVEHFS matrices can be derived in the form of Table 20.

Table 21 shows the comparison outcomes of different
techniques. )e ranking results obtained by the techniques
of Xu et al. [36, 37] and Li et al. [35] are identical to those of
proposed SVEHFS-score techniques. Such identical ranking
results are possibly related to the same steps of processing
which are performed using the latter-mentioned techniques.
Briefly speaking, the common steps of these techniques are
the integration of evaluation information given by the de-
cision makers, the calculation of score value of the collective
evaluation information, and the comparison of alternatives
by the help of their score values. )e outcomes of such
identical steps are seen in identical ranking results.

But, the result of classical ORESTE technique [38] is
quite different from that of other abovementioned tech-
niques. Such a different ranking result arises from the two-
stage integrating ranking process. )e initial stage calcu-
lates utility values for determining the weak ranking of
alternatives. )en, the subsequent stage will derive the
preference, indifference, and incomparability relations
with conflict analysis. Finally, the strong ranking of al-
ternatives is extracted. However, due to such complicated
two-stage procedure, the best alternative obtained from
classical ORESTE technique does not appear convincing
enough.

In summary, the comparison with other considered
techniques suggests that the proposed SVEHFS-score
techniques have superior performance and also less com-
putational complexity.

Table 18: )e SVEHFS decision matrix for DM2.

C1 C2 C3

A1 0.4, 0.4, 0.5, 0.5{ } 0.6, 0.6, 0.6, 0.6{ } 0.5, 0.7, 0.7, 0.8{ }

A2 0.3, 0.3, 0.4, 0.4{ } 0.4, 0.5, 0.5, 0.6{ } 0.6, 0.6, 0.7, 0.7{ }

A3 0.5, 0.5, 0.6, 0.6{ } 0.8, 0.8, 0.9, 0.9{ } 0.6, 0.6, 0.6, 0.6{ }

Table 19: )e SVEHFS decision matrix for DM3.

C1 C2 C3

A1 0.1, 0.1, 0.3, 0.3{ } 0.3, 0.4, 0.4, 0.5{ } 0.6, 0.6, 0.7, 0.7{ }

A2 0.7, 0.8, 0.8, 0.9{ } 0.5, 0.6, 0.6, 0.8{ } 0.3, 0.3, 0.3, 0.3{ }

A3 0.4, 0.4, 0.5, 0.5{ } 0.9, 0.9, 0.9, 0.9{ } 0.7, 0.7, 0.8, 0.8{ }

Table 20: )e collective SVEHFS decision matrix.

C1 C2 C3

A1 (0.2537, 0.2934, 0.3891, 0.4273){ } 0.4212, 0.4901, 0.4901, 0.5623{ } 0.4602, 0.5230, 0.5753, 0.6150{ }

A2 0.6317, 0.6873, 0.6987, 0.7722{ } 0.4112, 0.4851, 0.5125, 0.6508{ } 0.6079, 0.6079, 0.7140, 0.7140{ }

A3 0.5028, 0.5028, 0.6577, 0.6577{ } 0.8254, 0.8254, 0.9000, 0.9000{ } 0.5657, 0.5657, 0.6508, 0.6508{ }
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6. Conclusion

Adopting a probability splitting algorithm for deriving an
efficient probabilistic-unification process of PHFSs, we de-
veloped a class of score functions for SVEHFSs which are
novel deformation of PHFSs. As we demonstrated here, the
concept of SVEHFS belongs to a less dimensional space
compared to that of PHFSs. Furthermore, we indicated that
the proposed SVEHFS-based score functions satisfy a
number of interesting properties. It may be of interest to
mention that the proposed SVEHFS-based score functions
are able to be more generalized to a wider class. Lastly, three
case studies were prepared to illustrate the applicability and
efficiency of proposed SVEHFS-based score functions
compared to other existing PHFS-based techniques. In
contrast to the other existing techniques for PHFSs, the
SVEHFS-based score functions are associated with less
complexity and computation requirements.

In future work, we will work towards opportunities to
investigate the meaning and essence of SVEHFS-based score
functions in the MCDM under probabilistic hesitant fuzzy
setting.
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[18] S. Zeng, J. M. Merigó, andW. Su, “)e uncertain probabilistic
OWA distance operator and its application in group decision
making,” Applied Mathematical Modelling, vol. 37, no. 9,
pp. 6266–6275, 2013.

[19] Q. Ding, Y.-M. Wang, and M. Goh, “TODIM dynamic
emergency decision-making method based on hybrid
weighted distance under probabilistic hesitant fuzzy

Table 21: Ranking results of the different techniques.

Technique Score of alternatives Ranking order Optimal alternative
PHFWA-based technique of Xu et al. [36] 0.4584 0.5990 0.7245 A1 <A2 <A3 A3
PHFWG-based technique of Xu et al. [36] 0.4117 0.5284 0.6909 A1 <A2 <A3 A3
Xu et al. [37] 0.2804 0.3653 0.7974 A1 <A2 <A3 A3
Classical ORESTE [38] 4.8172 7.1306 6.7856 A2 <A3 <A1 A1
Li et al. [35] 0.2563 0.1933 0.1212 A1 <A2 <A3 A3
)e proposed SVEHFS-score function Scd1

0.4583 0.6244 0.6837 A1 <A2 <A3 A3
)e proposed SVEHFS-score function Scd2

0.3784 0.5503 0.6313 A1 <A2 <A3 A3
)e proposed SVEHFS-score function Scd3

0.4183 0.5873 0.6575 A1 <A2 <A3 A3

18 Complexity



information,” International Journal of Fuzzy Systems, vol. 23,
no. 2, pp. 474–491, 2021.

[20] B. Farhadinia, “An innovative unification process for prob-
abilistic hesitant fuzzy elements and its application to decision
making,” Fuzzy Optimization and Decision Making, 2021.

[21] S. Zhang, Z. Xu, and Y. He, “Operations and integrations of
probabilistic hesitant fuzzy information in decision making,”
Information Fusion, vol. 38, pp. 1–11, 2017.

[22] B. Farhadinia and E. Herrera-Viedma, “Sorting of decision-
making methods based on their outcomes using dominance-
vector hesitant fuzzy-based distance,” Soft Computing, vol. 23,
no. 4, pp. 1109–1121, 2019.

[23] B. Farhadinia and E. Herrera-Viedma, “A modification of
probabilistic hesitant fuzzy sets and its application to multiple
criteria decision making,” Iranian Journal of Fuzzy Systems,
2020.

[24] J. Li and Z.-X. Wang, “Multi-attribute decision making based
on prioritized operators under probabilistic hesitant fuzzy
environments,” Soft Computing, vol. 23, no. 11,
pp. 3853–3868, 2019.

[25] X. Wu, H. Liao, Z. Xu, A. Hafezalkotob, and F. Herrera,
“Probabilistic linguistic MULTIMOORA: a multicriteria de-
cision making method based on the probabilistic linguistic
expectation function and the improved Borda rule,” IEEE
Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 3688–3702,
2018.

[26] M. Lin, Q. Zhan, and Z. Xu, “Decision making with proba-
bilistic hesitant fuzzy information based on multiplicative
consistency,” International Journal of Intelligent Systems,
vol. 35, no. 8, pp. 1233–1261, 2020.

[27] F. Jiang and Q. Ma, “Multi-attribute group decision making
under probabilistic hesitant fuzzy environment with appli-
cation to evaluate the transformation efficiency,” Applied
Intelligence, vol. 48, no. 4, pp. 953–965, 2018.

[28] C. Song, Z. Xu, and H. Zhao, “A novel comparison of
probabilistic hesitant fuzzy elements in multi-criteria decision
making,” Symmetry, vol. 10, no. 5, p. 177, 2018.

[29] R. Krishankumar, K. S. Ravichandran, P. Liu, S. Kar, and
A. H. Gandomi, “A decision framework under probabilistic
hesitant fuzzy environment with probability estimation for
multi-criteria decision making, Neural,” Computer Applica-
tions, vol. 33, pp. 8417–8433, 2021.

[30] J. Wu, S. Zhang, Z. Wang, and H. Garg, “Extended cumulative
residual entropy for emergency group decision-making under
probabilistic hesitant fuzzy environment,” International
Journal of Fuzzy Systems, vol. 87, 2021.

[31] B. Farhadinia and Z. Xu, “Developing the comparison
techniques of probabilistic hesitant fuzzy elements in multiple
criteria decision making,” Soft Computing, vol. 25, no. 1,
pp. 331–342, 2021.

[32] B. Zhu, Decision Method for Research and Application Based
on Preference Relation, Southeast University, Nanjing, China,
2014.

[33] Q. Pang, H. Wang, and Z. Xu, “Probabilistic linguistic term
sets in multi-attribute group decision making,” Information
Sciences, vol. 369, pp. 128–143, 2016.

[34] B. Farhadinia and Z. Xu, “Ordered weighted hesitant fuzzy
information fusion-based approach to multiple attribute
decision making with probabilistic linguistic term sets,”
Fundamenta Informaticae, vol. 159, no. 4, pp. 361–383, 2018.

[35] J. Li, Q. Chen, L. Niu, and Z. Wang, “An ORESTE approach
for multi-criteria decision-making with probabilistic hesitant
fuzzy information,” International Journal of Machine
Learning and Cybernetics, vol. 11, 2020.

[36] Z. Xu and W. Zhou, “Consensus building with a group of
decision makers under the hesitant probabilistic fuzzy envi-
ronment,” Fuzzy Optimization and Decision Making, vol. 16,
no. 4, pp. 481–503, 2017.

[37] Z. Xu and X. Zhang, “Hesitant fuzzy multi-attribute decision
making based on TOPSIS with incomplete weight informa-
tion,” Knowledge-Based Systems, vol. 52, pp. 53–64, 2013.

[38] H. Pastijn and J. Leysen, “Constructing an outranking relation
with ORESTE,” Models and Methods in Multiple Criteria
Decision Making, vol. 12, pp. 1255–1268, 1989.

Complexity 19


