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Megastable chaotic systems are somehow the newest in the family of special chaotic systems. In this paper, a new
megastable two-dimensional system is proposed. In this system, coexisting attractors are in some islands, interestingly
covered by megalimit cycles. *e introduced two-dimensional system has no defined equilibrium point. However, it seems
that the origin plays the role of an unstable equilibrium point. *erefore, the attractors are determined as hidden attractors.
Adding a forcing term to the system, we can obtain chaotic solutions and coexisting strange attractors. Moreover, the effect
of three different values of the forcing term’s amplitude is studied. *e dynamical properties of the designed system are
investigated using attractor plots, bifurcation diagrams, and Lyapunov Exponents diagram. Phase portraits of the novel
megastable oscillator are presented by FPGA design. Xilinx system generator block diagrams of the proposed system and
trigonometric functions are also presented.

1. Introduction

Finding new special chaotic systems or, more specifically, new
systems with special and unique dynamical characteristics has
been an active area of research since about 30 years ago. First,
Sprott has introduced some elegant quadratic three-dimen-
sional chaotic systems [1]. *en, people have tried to find the
simplest cases of special chaotic systems [2]. For example,
chaotic systems with many wings have been designed [3],
simplest jerk systems have been introduced [4], elegant
hyperchaotic systems have been found [5, 6], circulant chaotic

systems have been constructed [7], and symmetric chaotic flows
have been investigated [8, 9].

One crucial point about dynamical systems is the role of
equilibria in them. It was believed that the strange attractors and
unstable equilibrium points have a strong relationship. More
particularly, unstable equilibrium points were supposed to be
the clue for strange attractors. However, finding dissipative
chaotic systems with no equilibria was an exciting discovery
which challenged that confidence [10]. Also, chaotic systems
with stable equilibria changed many conventional beliefs about
the reason for the creation of strange attractors [11]. Systems
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with lines, curves, and surfaces of equilibria came one after
another and shed more light on many unknown points in the
field. Nevertheless, calculating system’s equilibrium points is the
first basic step of analyzing its dynamics.

Multistability is an important phenomenon in dynamical
systems [12], which is a kind of double-edged sword feature.
While it can cause unwanted shifts in a system’s dynamic, it can
provide extra flexibility, e.g., for the control aims. Sometimes the
number of coexisting attractors in amultistable system becomes
infinite. In such a scenario, if those infinite attractors are un-
countable, the system is called extreme multistable [13–15].
Initial conditions play the role of bifurcation parameters in such
systems. However, when those infinite attractors are countable,
the system is called megastable.*e term “megastable” was first
used in [16]. Megastable chaotic systems are somehow the
newest in the family of special chaotic systems [16]. In sum-
mary, the main difference between a megastable system and an
extreme multistable system is in the countability of the system’s
coexisting attractors. In both terms, the number of coexisting
attractors is limitless. Many interesting configurations of
coexisting attractors have been reported in megastable systems
[17].

Hidden and self-excited are types of attractors. Many
research studies have focused on categorizing dynamical
attractors based on them [18–20]. A self-excited attractor
can be detected easily by observing an unstable equilibrium
point in the attractor’s basin of attraction. However, an
attractor with no equilibrium point inside its basin of at-
traction is called hidden [21].

*e analysis of the dynamics of a dynamical system
needs some powerful tools to provide primary information
about the system behaviors in different conditions. In this
way, obtaining the bifurcation diagram is considered as one
of the primary steps of analyzing system’s dynamics. An-
other popular tool for analyzing the dynamics of a system is
the Lyapunov Exponents spectrum (LE diagram). LE is
simply a quantitative measure that can prove the presence of
chaos in a dynamical system [2].

Chaotic systems have many engineering applications.
*ey can be used in image encryption [22], communication
[23], circuits [24], robots [25], and so on [26]. Field pro-
grammable gate array (FPGA) implementation of nonlinear
systems plays a vital role in realizing a system using targeted
hardware. In fact, FPGAs are a kind of chips or gate arrays
that are easy to program. Engineering applications of FPGA
are wired and wireless communication, industrial and
medical systems, military, and aerospace. FPGAs are cost-
effective depending on their families, such as Spartan,
Kintex, and Virtex. Many researchers have shown interest in
FPGA implementation of chaotic systems. *ey have per-
formed the software-hardware interface by implementing
chaotic systems in FPGA [27].

In this paper, a new two-dimensional megastable system
is proposed. *e sections of this paper are arranged as
follows. *e new proposed two-dimensional system is in-
troduced in Section 2. Moreover, the dynamical properties
are explained in that section. Next, Section 3 describes the
FPGA implementation of the proposed system. *e con-
clusion of the paper is presented in Section 4.

2. A New Megastable Chaotic Oscillator

Consider System (1), which is a two-dimensional nonlinear
autonomous oscillator,

_x � − 0.1y + x
cos(r)

r
,

_y � sin(0.1x) + y
cos(r)

r
,

r �

������

x
2

+ y
2

􏽱

.

(1)

System (1) is symmetric around the origin because the
equations are invariant under the transformation
(x, y)⟶ (− x, − y).

System (1) has no equilibrium points since no points can
be found to solve the equations − 0.1y + x(cos(r)/r) � 0 and
sin(0.1x) + y(cos(r)/r) � 0. However, the origin (0, 0)

mimics an unstable equilibrium. *is system is megastable
since it has infinite countable coexisting attractors (here,
limit cycles).

Figure 1 is a plot of coexisting limit cycles in System (1)
resulted from random initial conditions distributed around
the x-axis. *e formation of these attractors is noticeable.
We can see islands of attractors consisting of 3, 4, and 5 limit
cycles. Surprisingly 11 islands are enclosed by a huge limit
cycle. Due to the attractors’ isolated configuration, the
phrase “islands of attractors” can be used for such systems
attractors. Figure 1 includes both transient and final states of
the trajectories to show the areas of islands more
significantly.

By introducing a periodic external force in the first
equation of System (1), the following forced oscillator is
achieved:
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It is primarily desired to find chaos in System (2). Many
sets of (A,ω) may result in chaos. By trial and error, ω � 0.6
is chosen, and A is considered as the bifurcation parameter.
However, an infinite number of coexisting attractors are
detected. Each attractor can go through different dynamical
regimes during the change in the bifurcation parameter.
*us, two attractors (one around the origin and the other
around the point (60, 0)) are selected, and their occurring
bifurcations are tracked to show such a difference.

Figure 2 shows the bifurcation diagram and LEs diagram
versus A for the nearest attractor around the origin resulted
from the constant initial conditions (0.1, 0). It is seen that
the dynamical solution starts from an attracting torus (one
negative and two zero LEs). After observing limit cycles (two
negative and one zero LEs), chaos occurs (one positive LE).
*en, the dynamic alternates between chaos and limit cycles.
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Figure 3 shows the bifurcation diagram and LEs diagram
versus A for the nearest attractor around the point (60, 0)

resulted from the constant initial conditions (60, 0). It is seen
that the dynamical solutions are different from the previous
attractor. It starts from a limit cycle and continues with it,
encountering narrow areas of chaotic attractor. It occasionally
has an attracting torus in larger values of the parameter.

It should bementioned that the LEs represented in Figures 2
and 3 are plotted and calculated using the Wolf algorithm [28]
with the run time of 2000. Moreover, these two bifurcation
diagrams and LEs diagrams can help comprehend the system
behaviors in two different initial conditions. Furthermore, the
local maxima of the time-series of variable y (ymax, which are
the peaks of the time-series of y ) are considered for plotting the
bifurcation diagrams of the proposed system.

Figure 4 shows coexisting attractors for different values
of the amplitude of the forcing term. While the system can
have different types of attractors (limit cycle, torus, and
strange attractor) simultaneously, increasing the amplitude
makes them become closer and even overlap with each other.

3. FPGA Implementation of Novel
Megastable Oscillator

FPGAs are gate arrays that are programmable, and they can
be designed to meet a special need. FPGAs are also cost-
efficient, and they are simple to design, implement, and fast

prototyping. Some of the recent pieces of the literature on
FPGA design had attracted many researchers, such as
variable-order fractional operator [29], hardware imple-
mentation of the multistable chaotic jerk system [30], FPGA
implementation of self-excited and hidden chaotic systems
[31], the discrete memristor chaotic system realized using
hardware [32], and digital implementation of thememristive
chaotic circuit [33]. Development of the nonlinear system on
an FPGA using VHDL or VERILOG hardware description
language is very work-intensive. It is easy to design the
system using the Xilinx system generator rather than writing
test benches for the VHDL or Verilog HDL programming.
In a Simulink library browser, a separate Xilinx block set
toolbox is readily available to design the system in the Xilinx
system generator platform. Simulink diagrams of Systems
(1) and (2) are shown in Figures 5 and 6 using Xilinx system
generator software. Basic blocks such as adder, subtractor,
multiplier, divider, constant multiplier, and square root are
used to design the proposed system in FPGA. All Xilinx
block sets are different fromMATLAB Simulink blocks with
the Xilinx logo in them. Additional blocks are created to
represent trigonometric functions present in the proposed
system. By applying the Taylor series (equations (3) and (4)),
trigonometric functions are implemented using the readily
available (XSG) Xilinx System Generator block sets, which is
shown in Figure 7 (sine function) and Figure 8 (cosine
function). All these blocks used to design the proposed
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Figure 1: Coexisting limit cycles in System (1) resulted from random initial conditions distributed around the x-axis. Islands of attractors
can be observed, consisting of 3, 4, and 5 limit cycles. Surprisingly 11 islands are enclosed by a huge limit cycle. *e transients are shown in
cyan, and steady states are shown in dark blue.
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Figure 2: (a) Local maximum values of “y” time-series versus A in System (2) when ω � 0.6. *e initial conditions are (0.1, 0) without
reinitiating. *us, the diagram is only related to the first (inner) limit cycle around the origin. (b) Corresponding Lyapunov exponent
diagram. *e dynamic of the system starts from an attracting torus, then limit cycles observed, and finally strange attractors appear.
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system are configured according to the IEEE754 standard,
and the step size h � 0.01 is set. Integrator blocks of the state
equations are designed using Forward Euler’s Method, and

the mathematical equation to design integrators is expressed
in equation (5). A set of discretized system equations are
stated in equations (6) and (7).
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Figure 3: (a) Local maximum values of “y” time-series versus A in System (2) when ω � 0.6. *e initial conditions are (60, 0) without
reinitiating. *us, the diagram is only related to the inner limit cycle around the point (60, 0). (b) Corresponding Lyapunov exponent
diagram. *e dynamic of the system starts from a limit cycle, and then narrow areas of chaos are observed.
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Figure 4: Coexisting attractors in System (2) resulted from random initial conditions distributed around the x-axis. *e transients are
shown in cyan, and steady states are shown in dark blue. *e frequency of the forcing term is ω � 0.6, and the amplitude is (a) A � 2, (b)
A � 4.3, and (c) A � 9.7. Increasing the amplitude of the forcing term leads to more overlapped islands.
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Figure 5: Xilinx system generator (XSG) Simulink diagram of System (1). It is another representation of the proposed system in au-
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Figure 9: Phase portraits in the plane (x, y) for System (1) illustrating megastability obtained by considering random initial conditions
distributed around the x-axis. For all initial conditions, the final state represents a limit cycle.
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system exhibit various dynamics.
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Figure 11: Phase portrait in the plane (x, y) for System (2) illustrating megastability obtained by considering random initial conditions
distributed around the x-axis.*e frequency of the forcing term is ω � 0.6, and the amplitude A � 4.3. Adding a forcing term can make the
system exhibit various dynamics.
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A system generator token is an important block that is
dragged from the Xilinx block set library, which has
information about the system generator model, through
which it is possible to interface with the Vivado design
tool to create an RTL design of the system. *e phase
planes of the proposed System (1) are shown in Figure 9,
and the phase planes of System (2) are shown in
Figures 10–12, which are obtained while running the
system generator by changing initial conditions dis-
tributed around the x-axis.

4. Conclusion

A megastable system, the newest in the family of special
chaotic systems, was designed and proposed. It was two-
dimensional flow coexisting attractors in some islands,
interestingly covered by megalimit cycles. No equilib-
rium point was found for the proposed two-dimensional
system. However, the origin (0, 0) acted like an unstable
point. Adding a forcing term to the proposed system,
chaotic solutions and coexisting strange attractors were
obtained. Different behaviors were observed by altering
the amplitude of the forcing term. Since the system was
found to have no equilibrium point, the attractors were

considered in the category of hidden attractors. *e
dynamical properties of this new system were investi-
gated utilizing some tools such as attractor plots, bi-
furcation diagrams, and LEs diagrams. Two bifurcation
and LEs diagrams were plotted to show the effect of initial
conditions in the system’s behaviors and dynamics. Phase
portraits of the novel megastable oscillator were pre-
sented by FPGA design. Xilinx system generator block
diagrams of the proposed system and trigonometric
functions were also presented. *e proposed system is a
low-dimensional system with the ability to exhibit chaos
by adding a forcing term. So, it can be used in some
applications, such as a random number generator or
image encrypting as future works.
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