
Research Article
Bounding the Inefficiency of the Multiclass, Multicriteria C-Logit
Stochastic User Equilibrium in a Transportation Network

Lekai Yuan ,1 Xi Zhang ,1 and Chaofeng Shi 2

1College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
2School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China

Correspondence should be addressed to Xi Zhang; xzhang@cqjtu.edu.cn

Received 28 August 2021; Revised 24 November 2021; Accepted 27 November 2021; Published 27 December 2021

Academic Editor: Inés P. Mariño

Copyright © 2021 Lekai Yuan et al. 2is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We derive the exact inefficiency upper bounds of the multiclass C-Logit stochastic user equilibrium (CL-SUE) in a transportation
network. All travelers are classified on the basis of different values of time (VOT) into M classes. 2e multiclass CL-SUE model
gives a more realistic path choice probability in comparison with the logit-based stochastic user equilibriummodel by considering
the overlapping effects between paths. To find efficiency loss upper bounds of the multiclass CL-SUE, two equivalent variational
inequalities for the multiclass CL-SUE model, i.e., time-based variational inequality (VI) and monetary-based VI, are formulated.
We give four different methods to define the inefficiency of the multiclass CL-SUE, i.e., to compare multiclass CL-SUE with
multiclass system optimum, or to compare multiclass CL-SUE with multiclass C-Logit stochastic system optimum (CL-SSO),
under the time-based criterion and the monetary-based criterion, respectively. We further investigate the effects of various
parameters which include the degree of path overlapping (the commonality factor), the network complexity, degree of traffic
congestion, the VOT of user classes, the network familiarity, and the total demand on the inefficiency bounds.

1. Introduction

Concerning the path choice behavior in networks, Wardrop
proposed two basic principles: one is the user equilibrium
(UE) and the other is the system optimum (SO) [1]. 2e UE
principle shows that all used paths have minimum and equal
travel cost (or time), and all unused paths have higher or
equal travel cost (or time). In addition, the UE principle
assumes that every traveler has a full understanding of the
network information and chooses the travel path accord-
ingly to minimize their own travel cost. Later, the re-
searchers have extended the UE model in different aspects,
such as boundedly rational UE [2–4], fuzzy UE [5–7], and
prospect-based UE [8–10]. 2e concept of the boundedly
rational user equilibrium (BRUE) was proposed in the 1980s.
Lou et al. [3] investigated congestion pricing strategies in
static networks with boundedly rational route choice be-
havior. Xuan et al. [4] studiedmathematical formulation and
solution sets of BRUE. Miralinaghi et al. [7] proposed an
alternative approach for a traffic assignment problem that

further extends the applications of the fuzzy theory in route
choice behavior and network traffic modelling. Xu et al. [10]
proposed a conjecture on travelers’ determination of ref-
erence points and encapsulates it into the prospect-based
user equilibrium conditions. However, in practice, we
cannot always assume that this assumption is true. More
realistically, travelers who choose the same route may have
different perceived travel times due to all kinds of unmea-
sured factors. Suppose that the perceived travel times are
considered as independent and identical distributed (IID)
Gumbel random variables [11], travelers’ path choices for
minimizing their perceived travel time will lead to the
stochastic user equilibrium (SUE) state [12]. Concerning the
path choice problem in the network, two disadvantages of
the logit-based SUE model are as follows: (1) it cannot
explain overlapping between paths and (2) it cannot explain
the perception variance of travels of different lengths
[13, 14].

To alleviate the above two disadvantages, some extended
logit-based SUE models have been proposed in recent two
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decades, such as C-Logit SUE (CL-SUE) model [13–16],
generalized nested logit SUE (GNL-SUE) model [17], cross-
nested logit SUE (CNL-SUE) model [18, 19], and paired
combinatorial logit SUE (PCL-SUE) model [20]. Other
significant theoretical achievements in [21, 22] have also
made a contribution to overcoming the disadvantages of the
logit-based SUE model. CL-SUE model proposed by Cas-
cetta et al. [13] can solve the overlapping problem by using a
commonality factor reflecting path overlapping to modify
the systematic part of the utility function. Zhou et al. [14]
further provided equivalent variational inequality (VI) and
mathematical programming (MP) formulations for the CL-
SUE model.

2e CL-SUE model can overcome the disadvantages of
the logit-based SUE model by considering the overlapping
effects between paths and give a more realistic path choice
probability. 2e SO state has the minimum inefficiency
loss by definition. 2erefore, the CL-SUE model is still
inefficient compared with the SO model due to the users’
selfish routing. Recently, quantifying and bounding the
inefficiency of the equilibrium assignment in the trans-
portation environment has aroused great research inter-
est, while less attention has been paid to multiclass CL-
SUE. Koutsoupias and Papadimitriou first gave the con-
cept of “price of anarchy (POA)” [23]. After that, the POA
was first used in the traffic network by Roughgarden and
Tardos [24]. In the next few years, other great theoretical
achievements of POA proposed by Roughgarden [25–27]
have greatly promoted the development of inefficiency in
the transportation network. In recent years, the above
works have been extensively investigated in many aspects
[28–36]. Guo et al. [37] gave two efficiency loss bounds of
the SUE against SO and stochastic system optimum (SSO)
in a stochastic circumstance, respectively. Considering a
transportation network with multiple classes of users, Yu
et al. [38] studied the inefficiency of the multiclass SUE,
which is the extension of research achievements in [37].
Based on the above main work, some researchers have also
studied the inefficiency of the extended logit-based SUE.
Yong et al. provided several efficiency loss upper bounds
of the CL-SUE by considering the overlapping effects
between paths [39], which is also the extension of research
achievements in [37]. Zeng and Wang initially explored
inefficiency upper bound of CNL-SUE in the taxed sto-
chastic transportation network and further investigated
inefficiency upper bounds for the low-degree travel time
function [40]. For a transportation network with het-
erogeneous users who have different values of time
(VOT), the network optimization usually has two ob-
jectives, i.e., minimizing total system travel time (TSTT)
and minimizing total system travel cost (TSTC). Guo and
Yang further measured the system optimal performance
difference by the two different criteria, i.e., time-based
criteria and monetary-based criteria [41]. Yu and Wang
[42] derived the accurate inefficiency bounds of multiclass
UE with elastic travel demand by making full use of
equivalent VI under time-based criterion and cost-based
criterion, respectively. Han and Yang [43] have given
several bounds for the inefficiency of the multiclass traffic

equilibrium assignment problem in the tolled network
under the two different criteria, respectively. Huang et al.
[44] further discussed the efficiency loss of the SUE where
all travelers are classified into two main categories, one
equipped with advanced traveler information systems
(ATIS) and another unequipped. Yu et al. studied the
inefficiency of the mixed equilibrium with heterogeneous
users [45–47].

Different from the existing studies, this study extends
the logit-based SUE to the multiclass CL-SUE. 2e
purpose of our study was to derive four efficiency loss
upper bounds of the multiclass CL-SUE. 2e two cor-
responding models, i.e., multiclass SO model and mul-
ticlass C-Logit stochastic system optimum (CL-SSO)
model, should be mentioned before exploring the effi-
ciency loss of the multiclass CL-SUE. 2e multiclass SO
model that minimizes the TSTT has been widely used in
the literature. In this article, the multiclass CL-SSO
model that minimizes the total perceived travel time
(TPTT) is established based on the work in [39, 48, 49].
2erefore, there are four kinds of ways to define the
efficiency loss of the multiclass CL-SUE, i.e., comparing
multiclass CL-SUE with multiclass SO, or comparing
multiclass CL-SUE with multiclass CL-SSO, under the
time-based criterion and the monetary-based criterion,
respectively. 2e highlights of our research focus on these
four situations. In recent years, the effects of various
parameters (e.g., degree of traffic congestion and total
traffic demand of the network) on the inefficiency upper
bound has been widely studied, while paying less at-
tention to commonality factor reflecting path over-
lapping. 2is paper studies the effects of commonality
factor reflecting path overlapping on the efficiency loss of
the multiclass CL-SUE. 2e result shows that the com-
monality factor reflecting path overlapping has a sig-
nificant impact on the inefficiency upper bound.

2e rest of this article is organized below. In Section 2,
we have a brief review of multiclass SUE and CL-SUE
models, and then formulate the equivalent VI formulations
of the multiclass CL-SUE model under time-based criterion
and monetary-based criterion, respectively. In Sections 3
and 4, we derive four inefficiency upper bounds by using the
equivalent VI formulations of the multiclass CL-SUE. Sec-
tion 5 discusses the effects of various parameters on the
efficiency loss bounds. In Section 6, we summarize the main
research findings of this paper in tabular form. We give a
numerical example to illustrate our conclusions in Section 7.
Finally, Section 8 provides some conclusions and analyses
the further research directions.

2. ReviewofMulticlass SUE andCL-SUEModels

2.1. Multiclass SUE Model. Let G(N, A) be a directed
transportation network defined by a set N of nodes and a set
A of directed links. All travelers are classified in terms of
different VOT into M classes. Table 1 provides the notations
used in the paper:

According to Table 1, the following relationships and
constraints hold:
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In a multiclass SUE model, assume that all users are utility-
maximizers. Let Um

rw denote the travel utility perceived by user
class m on path r ∈ Rw, w ∈W. 2en, Um

rw is given by
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where Cm
rw is the perceived travel time of user class m on path

r ∈ Rw, w ∈W, θ is a positive unit scaling parameter, − θcm
rw

is the measured utility, and ξm
rw is a random term repre-

senting the user’s perception error. Let Pm
rw be the probability

of user class m choosing path r ∈ Rw, w ∈W, then the utility
maximization theory shows that
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All random terms ξm
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Gumbel random variables. 2en, the path choice probability
for user class m is given by

P
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and fm
rw can be obtained by

f
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m
rw, r ∈ Rw, w ∈W, m � 1, 2, · · · , M. (6)

Similar to that done in Fisk [12], the multiclass logit-
based SUE model can be formulated as an equivalent MP
problem below.
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2e equivalent VI of problem (7) is presented in the
lemma below.

Lemma 1. If the link time function, ta(va), a ∈ A is differen-
tiable, convex, separable, and monotonically increasing with link
flow va, amulticlass logit-based SUEmodel with fixedODdemand
is equivalent to the following VI, i.e., find f

→
∈ Ωf, such that
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rw ≥ 0,∀f ∈ Ωf.

(8)

2e disadvantages of the multiclass SUE model have been
found by some researchers. One of the disadvantages is that it
cannot explain the overlapping effects between different paths,
which means that the unrealistic path choice probability is
given.

2.2. Multiclass CL-SUEModel. Cascetta et al. [13] proposed a
CL-SUE model, which can overcome the disadvantages of the
logit-based SUE by using a commonality factor reflecting path

Table 1: Notations.

Notation Description
W 2e set of origin-destination (OD) pairs
Rw 2e set of all feasible paths connecting OD pair w ∈W

βm(βm > 0) 2e average VOT for users of class m

dm
w 2e travel demand of user class m between OD pair w ∈W

fm
rw 2e flow of user class m on path r ∈ Rw, w ∈W

f Path flow vector, f � (fm
rw, r ∈ Rw, w ∈W, m � 1, 2, . . . , M)T

vm
a 2e flow of user class m on link a ∈ A

va 2e total flow on link a ∈ A

v Link flow vector, v � (vm
a , a ∈ A, m � 1, 2, . . . , M)T

δw
ar 2e link-path incidence indicator, which is equal to 1 if path r ∈ Rw uses link a ∈ A, and 0 otherwise

Ωf Set of feasible path flow vectors, Ωf � {f|fm
rw ≥ 0, 

r∈Rw

fm
rw � dm

w ,∀r ∈ Rw,∀w ∈W, m � 1, 2, . . . , M}

Ωv Set of feasible link flow vectors, Ωv � {v|f ∈ Ωf, vm
a � 

w∈W


r∈Rw

fm
rwδ

w
ar, va � 

M
m�1 vm

a ,∀a ∈ A, m � 1, 2, . . . , M}

ta(va) 2e travel time function on link a ∈ A, which is supposed to be separable, convex, differentiable, andmonotonically increasing
with va

cm
a (va) 2e actual travel time of user class m on link a ∈ A, which is assumed to be a monotonically increasing function of va

cm
rw 2e actual travel time of user class m on path r ∈ Rw, w ∈W
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overlapping tomodify the systematic part of the utility function.
Similar to the work of Cascetta et al. [13], themulticlass CL-SUE
model can be established. 2en, the path choice probability of
the multiclass CL-SUE model is provided by
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where cfrw is a commonality factor of path r ∈ Rw, w ∈W.
In this paper, the form of the commonality factor [13] is used
as follows:

cfrw � β0 ln 
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where β0 and c0 are the parameters; Lw
rl denotes the common

length of paths r and l between the OD pair w ∈W; and Lw
r

and Lw
l denote the lengths of paths r and l between the OD

pair w ∈W, respectively. 2e length can be regarded as the
free-flow travel time [14]. And fm
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problem below.
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To find efficiency loss upper bounds of themulticlass CL-
SUE, the equivalent VI of problem (12) is presented in the
lemma below.

Lemma 2. If the link time function, ta(va), a ∈ A is differ-
entiable, convex, separable, and monotonically increasing
with link flow va, a multiclass CL-SUE model with fixed OD
demand is equivalent to the following VI, i.e., find f ∈ Ωf,
such that
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Proof of Lemma 2. Since ta(va) is monotonically increasing
and Ωf is compact, the objective function (12) is strictly
convex. Hence, the path flow solution of the problem (12) is
unique. 2e necessary and sufficient condition, which can
guarantee that f ∈ Ωf is the unique optimal solution of
problem (12), is provided as follows:
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T
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Substituting (16) and (17) into (13), respectively, and
using (1), we can get the following time-based VI and
monetary-based VI, respectively.
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3. Bounding the Inefficiency of the Multiclass
CL-SUE Compared with the Multiclass SO

3.1. Time Units. 2e multiclass SO problem in time units
that minimizes the TSTT is presented as follows:

min
v∈Ωv
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ta va( va. (19)

Let v ∈ Ωv be the link flow solution of problem (19), the
corresponding path flow solution is denoted by f ∈ Ωf. Let
vt ∈ Ωv be the link flow solution of the VI (18), the corre-
sponding path flow solution is denoted by f
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efficiency loss of the multiclass CL-SUE compared with the
multiclass SO under time-based criterion is defined as
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Now, we begin to find the upper bound of the term
a∈A(ta(vt

a) − ta(va))va in (22). To achieve this, we give the
same way which has been used in [37]. For completeness, a
brief introduction is given here. Because ta(va) is increasing,
we have (ta(vt

a) − ta(va))va ≤ 0 for va ≥ vt
a. Hence, we just

need to pay attention to (ta(vt
a) − ta(va))va for va < vt
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shown in Figure 1, let ta(vt

a)vt
a denote the area of the large
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0≤ ca(ta, za)≤ 1. Let φ denote a class of link time functions,
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With definitions (23) and (24), the lemma is given as
follows:
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denote an arbitrary nonnegative link flow. <en,
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We now begin to seek the upper bound on the third term
of the right-hand side of (22). To achieve this, we give the
lemma which has been proved in [39] below.

Lemma 4. <e maximization problem is considered as
follows:

maxF(x, y) � 
n

i�1
yi − xi(  lnxi + θcfi( , (28)

subject to

va

t(vta)

vta

ta(va)

t0a

Travel Time

0
Flow

Free-flow
Travel Time

Link Time
Function

Figure 1: Geometric illustration of the definition of c(φ).
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In addition, we further define c � Tt
SO/D as the actual

average travel time of all travelers at multiclass SO.2en, the
theorem is presented as follows:

Theorem 1. Let φ denote a class of differentiable, separable,
convex, and monotonically increasing link time functions
ta(va). Let Tt

CL− SUE be the TSTTat the multiclass CL-SUE and
Tt
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Furthermore, we can have the following corollary by
comparing the efficiency loss upper bounds of the multiclass
CL-SUE and the multiclass SUE.

Corollary 1. In a transportation network, the efficiency loss
upper bound against the multiclass SO by the multiclass CL-
SUE under time-based criterion is not less than that by the
multiclass SUE.

Proof of Corollary 1. Let v
→ ∈ Ωv be link flow solution of the

VI (8), the corresponding path flow solution is denoted by

f
→
∈ Ωf. Tt

SUE � w∈Wr∈Rw


M
m�1c

m
rw( f

→
) f
→m

rw � a∈Ata

( v
→

a) v
→

a is the TSTT at the multiclass SUE. 2e inefficiency
upper bound of the multiclass SUE against the multiclass SO
under time-based criterion was given by Yu et al. [38], i.e.,

ρt
SUE �

T
t
SUE

T
t
SO
≤

1
1 − c(φ)

  1 +
k
→

θc
⎛⎝ ⎞⎠, (34)

where k
→

� w∈W
M
m�1(dm

w /D)kSUE
w is the average of kSUE

w ,
w ∈W, and kSUE

w solves the equation k exp(k + 1) � |Rw|

− 1, w ∈W.
We can see that the difference between (33) and (34) is

only dependent upon the difference between k and k
→
, or

kCL− SUE
w and kSUE

w . kCL− SUE
w is the solution of k exp(k + 1) �


|Rw |
r�1,r≠jexp(θ(cfjw − cfrw)) with j � argmax r(cfrw, r ∈

Rw), w ∈W. We always have 
|Rw|
r�1,r≠jexp(θ(cfjw − cfrw))≥

|Rw| − 1, when j � argmax r(cfrw, r ∈ Rw), w ∈W. Since
f(k) � k exp(k + 1) is a nondecreasing function of k, we can
obtain kCL− SUE

w ≥ kSUE
w , which implies that k≥ k

→
. Hence, the

upper bound (33) is not less than the upper bound (34). 2is
completes the proof.

2e above analyses show that the commonality factor
reflecting path overlapping has a significant impact on the
inefficiency upper bound (33). 2erefore, it is meaningful to
study the efficiency loss of the multiclass CL-SUE model,
which provides a more realistic upper bound than the
multiclass SUE model by considering the path overlapping
problem. □

3.2. Monetary Units. 2e multiclass SO problem in mone-
tary units that minimizes the TSTC is presented as follows:

min
v∈Ωv


a∈A



M

m�1
βmta va( v

m
a . (35)

Let v ∈ Ωv be link flow solution of problem (35), the
corresponding path flow solution is denoted by f ∈ Ωf. Let
vc ∈ Ωv be link flow solution of the VI (18), the corre-
sponding path flow solution is denoted by f

c ∈ Ωf. 2e
efficiency loss of the multiclass CL-SUE compared with the
multiclass SO under monetary-based criterion is defined as

ρc
CL− SUE �

T
c
CL− SUE
T

c
SO

, (36)

where Tc
CL− SUE � w∈Wr∈Rw


M
m�1c

m
rw(f

c
) f

m,c

rw � a∈A


M
m�1βmta(vc

a)vm,c
a is the TSTC at the multiclass CL-SUE and

Tc
SO � a∈A

M
m�1βmta(va)vm

a is the TSTC at the multiclass
SO. Clearly, ρc

CL− SUE ≥ 1.
Setting f � f

c and f � f in VI (18), we can obtain
inequality as follows:
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a∈A



M

m�1
βmta v

c
a(  v

m
a − v

m,c
a(  +

1
θ


w∈W


r∈Rw



M

m�1
lnf

m,c

rw + θcfrw  f
m

rw − f
m,c

rw ≥ 0. (37)

2is leads to

T
c
CL− SUE ≤T

c
SO + 

a∈A


M

m�1
βmv

m
a ta v

c
a(  − ta va( (  +

1
θ


w∈W


r∈Rw



M

m�1
lnf

m,c

rw + θcfrw  f
m

rw − f
m,c

rw . (38)

To derive the upper bound of the term
a∈A

M
m�1βmvm

a (ta(vc
a) − ta(va)) in (38), we need to define a

new parameter [43]. For each link time function ta � ta(za),

nonnegative link flow za ≥ 0, and the VOT
βm, m � 1, 2, · · · , M, we define

ca za, ta, β(  �
1


M
m�1βmz

m
a ta za( 

max
vm

a ≥ 0


M

m�1
βmv

m
a

⎛⎝ ⎞⎠ ta za(  − ta va( ( 
⎧⎨

⎩

⎫⎬

⎭. (39)

Here, suppose that 0/0 � 0 always holds. For guaran-
teeing ca(za, ta, β)< 1, we further define

c(φ, β) � sup
ta∈φ,a∈A1

max
v

m,c
a ≥ 0

ca za, ta, β( , (40)

where A1 � a ∈ A|ca(za, ta, β)< 1 .
Define

c(φ, β) � sup
ta∈φ

g za, ta, β( . (41)

And

g za, ta, β(  � max
vm

a ≥ 0,a ∉ A1

h(x) �


M
m�1βmv

m
a ta za(  − ta va( ( 


M
m�1βmv

m
a ta va( 

.

(42)

Hence, we can obtain c(φ, β)> − 1. Furthermore,
h(x)⟶ − 1 when vm

a ⟶ +∞ and h(x)⟶ +∞ when
vm

a ⟶ 0, m � 1, 2, · · · , M.
Let va � va and za � vc

a in definition (39), we then have



M

m�1
βmv

m
a ta v

c
a(  − ta va( ( ≤ ca v

c
a, ta, β(  

M

m�1
βmv

m,c
a ta v

c
a( .

(43)

2us, we can obtain


a∈A



M

m�1
βmv

m
a ta v

c
a(  − ta va( (  � 

a∈A1



M

m�1
βmv

m
a ta v

c
a(  − ta va( (  + 

a∉A1



M

m�1
βmv

m
a ta v

c
a(  − ta va( ( ≤ c(φ, β)T

c
CL− SUE + c(φ, β)T

c
SO.

(44)

From Lemma 4, the upper bound on the last term of the
right-hand side of (38) can be provided by


r∈Rw

lnf
m,c

rw + θcfrw  f
m

rw − f
m,c

rw ≤ k
CL− SUE
w d

m
w . (45)

Substituting (44) and (45) into (38), it yields

T
c
CL− SUE ≤T

c
SO + c(φ, β)T

c
CL− SUE + c(φ, β)T

c
SO +

1
θ


w∈W


M

m�1
k
CL− SUE
w d

m
w .

(46)

In the same way, let D � w∈W
M
m�1d

m
w denote the total

traffic demand, k � w∈W
M
m�1(dm

w /D)kCL− SUE
w denote the

average of kCL− SUE
w , and w ∈W. 2en, we can rewrite (46) as

T
c
CL− SUE ≤T

c
SO + c(φ, β)T

c
CL− SUE + c(φ, β)T

c
SO +

1
θ

kD.

(47)

Furthermore, we define c � Tc
SO/D as the actual average

travel cost of all travelers at multiclass SO.2en, the theorem
is presented as follows.
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Theorem 2. Let φ denote a class of differentiable, separable,
convex, and monotonically increasing link time functions
ta(va). Let Tc

CL− SUE be the TSTC at the multiclass CL-SUE and
Tc
SO be the TSTC at the multiclass SO under monetary-based

criterion. <en,

ρc
CL− SUE �

T
c
CL− SUE
T

c
SO
≤
1 + c(φ, β) + k/θc

1 − c(φ, β)
. (48)

4. Bounding the Inefficiency of the Multiclass
CL-SUE Compared with the Multiclass CL-
SSO

Before analyzing the inefficiency of the multiclass CL-SUE
against the multiclass CL-SSO, we first give a brief intro-
duction to the corresponding multiclass CL-SSO model.
Considering commonality factor reflecting path over-
lapping, we establish the multiclass CL-SSO model, which is
the extension of research achievements in [39, 48]. 2e

definition of SSO given by Maher et al. [48] states that the
SSO problem is to minimize the TPTT. 2erefore, the
multiclass CL-SSO problem is also to minimize the TPTT.
For the multiclass CL-SUE model, the TPTT in the trans-
portation network can be provided by (the process of proof
is shown in Appendix A)

F(f) � 
w∈W


r∈Rw



M

m�1
f

m
rw c

m
rw(f) + cfrw( 

+
1
θ


w∈W


r∈Rw



M

m�1
f

m
rw lnf

m
rw −

1
θ


w∈W



M

m�1
d

m
w ln d

m
w .

(49)

Substituting (16) and (17) into (49), respectively, and in
view of (1), the minimization of TPTT can be formulated as
the following minimization problem under time-based
criterion and monetary-based criterion, respectively.

min
f∈Ωf

F
t
(f) � 

a∈A
ta va( va + 

w∈W


r∈Rw



M

m�1
cfrwf

m
rw +

1
θ


w∈W


r∈Rw



M

m�1
f

m
rw lnf

m
rw −

1
θ


w∈W



M

m�1
d

m
w ln d

m
w . (50)

min
f∈Ωf

F
c
(f) � 

a∈A


M

m�1
βmta va( v

m
a + 

w∈W


r∈Rw



M

m�1
cfrwf

m
rw +

1
θ


w∈W


r∈Rw



M

m�1
f

m
rw lnf

m
rw −

1
θ


w∈W



M

m�1
d

m
w ln d

m
w . (51)

Let f
⌢

∈ Ωf be path flow solution of problem (50), the
corresponding link flow solution is denoted by v

⌢ ∈ Ωv.2en,
the minimum TPTT is denoted by Ft

CL− SSO � Ft(f
⌢

). Let

f
⌣

∈ Ωf be path flow solution of problem (51), the

corresponding link flow solution is denoted by v
⌣ ∈ Ωv.2en,

the minimum total perceived travel cost (TPTC) is denoted
by Fc

CL− SSO � Fc(f
⌣

). 2ey are given by

F
t
CL− SSO � 

a∈A
ta v

⌢

a v
⌢

a + 
w∈W


r∈Rw



M

m�1
cfrwf

⌢m

rw +
1
θ


w∈W


r∈Rw



M

m�1
f
⌢m

rw lnf
⌢m

rw −
1
θ


w∈W



M

m�1
d

m
w ln d

m
w . (52)

F
c
CL− SSO � 

a∈A


M

m�1
βmta v

⌣

a v
⌣m

a + 
w∈W


r∈Rw



M

m�1
cfrwf

⌣m

rw +
1
θ


w∈W


r∈Rw



M

m�1
f
⌣m

rw lnf
⌣m

rw −
1
θ


w∈W



M

m�1
d

m
w ln d

m
w . (53)

Correspondingly, let Ft
CL− SUE and Fc

CL− SUE denote the
TPTT and the TPTC at the multiclass CL-SUE, respectively.
2en, we have

F
t
CL− SUE � 

a∈A
ta v

t
a v

t
a + 

w∈W


r∈Rw



M

m�1
cfrwf

m,t

rw +
1
θ


w∈W


r∈Rw



M

m�1
f

m,t

rw lnf
m,t

rw −
1
θ


w∈W



M

m�1
d

m
w ln d

m
w ,

F
c
CL− SUE � 

a∈A


M

m�1
βmta v

c
a( v

m,c
a + 

w∈W


r∈Rw



M

m�1
cfrwf

m,c

rw +
1
θ


w∈W


r∈Rw



M

m�1
f

m,c

rw lnf
m,c

rw −
1
θ


w∈W



M

m�1
d

m
w ln d

m
w .

(54)
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By definition, we easily have Ft
CL− SUE ≥Ft

CL− SSO and
Fc
CL− SUE ≥Fc

CL− SSO. However, it can be found from (52)–(54)
that Ft

CL− SSO, F
c
CL− SSO, F

t
CL− SUE, and Fc

CL− SUE may be negative,
which implies that the ratio Ft

CL− SUE/F
t
CL− SSO and

Fc
CL− SUE/Fc

CL− SSO may be meaningless. 2erefore, instead of
using the ratio Ft

CL− SUE/Ft
CL− SSO and Fc

CL− SUE/Fc
CL− SSO, we use

the terms Ft
CL− SUE − Ft

CL− SSO ≥ 0 and Fc
CL− SUE − Fc

CL− SSO ≥ 0
to quantify the absolute inefficiency of the multiclass CL-
SUE against the multiclass CL-SSO under time-based

criterion and monetary-based criterion, respectively. 2ey
are defined as

ρt
CL− SUE/CL− SSO � F

t
CL− SUE − F

t
CL− SSO,

ρc
CL− SUE/CL− SSO � F

c
CL− SUE − F

c
CL− SSO.

(55)

4.1. TimeUnits. Setting f � f
t and f � f

⌢

in VI (18), we can
obtain inequality as follows:


a∈A

ta v
t
a  v

⌢

a − v
t
a  +

1
θ


w∈W


r∈Rw



M

m�1
lnf

m,t

rw + θcfrw  f
⌢m

rw − f
m,t

rw ≥ 0. (56)

2is leads to


a∈A

ta v
t
a v

t
a + 

w∈W


r∈Rw



M

m�1
cfrwf

m,t

rw +
1
θ


w∈W


r∈Rw



M

m�1
f

m,t

rw lnf
m,t

rw ≤ 
a∈A

ta v
⌢

a v
⌢

a + 
w∈W


r∈Rw



M

m�1
cfrwf

⌢m

rw

+
1
θ


w∈W


r∈Rw



M

m�1
f
⌢m

rw lnf
⌢m

rw + 
a∈A

ta v
t
a  − ta v

⌢

a  v
⌢

a

+
1
θ


w∈W


r∈Rw



M

m�1
f
⌢m

rw lnf
m,t

rw − lnf
⌢m

rw .

(57)

2us,

F
t
CL− SUE − F

t
CL− SSO ≤ 

a∈A
ta v

t
a  − ta v

⌢

a  v
⌢

a +
1
θ


w∈W


r∈Rw



M

m�1
f
⌢m

rw lnf
m,t

rw − lnf
⌢m

rw . (58)

We can get the upper bound of the term a∈A(ta(vt
a) −

ta(v
⌢

a))v
⌢

a in (58) from Lemma 3. Let va � v
⌢

a, we can obtain
inequality below.


a∈A

ta v
t
a  − ta v

⌢

a  v
⌢

a ≤ c(φ)T
t
CL− SUE. (59)

2e upper bound on the last term of the right-hand side
of (58) is equal to zero from Gibbs’ inequality. 2erefore, the
following inequality holds:


r∈Rw

f
⌢m

rw lnf
m,t

rw − lnf
⌢m

rw ≤ 0, w ∈W, m ∈M. (60)

Here, r∈Rw
f
⌢m

rw(lnf
m,t

rw − lnf
⌢m

rw) � 0 if and only if

f
m,t

rw � f
⌢m

rw. Substituting (59) and (60) into (58), the fol-
lowing theorem can be obtained.

Theorem 3. Let φ denote a class of differentiable, separable,
convex, and monotonically increasing link time functions
ta(va). <en, the absolute inefficiency of the multiclass CL-
SUE against the multiclass CL-SSO under time-based crite-
rion, ρt

CL− SUE/CL− SSO, is upper bounded, i.e.,

ρt
CL− SUE/CL− SSO � F

t
CL− SUE − F

t
CL− SSO ≤ c(φ)T

t
CL− SUE. (61)

Wenow begin to discuss the tightness of the bound given
in (61) and provide Corollary 2 (the similar process of proof
is shown in Guo et al. [37]).

Corollary 2. Ft
CL− SUE − Ft

CL− SSO � c(φ)Tt
CL− SUE if and only if

c(φ) � 0.

Corollary 2 It states that the upper bound (61) is tight if
and only if c(φ) � 0 (without traffic congestion). Here, we
have f

t
� f

⌢

and Ft
CL− SUE − Ft

CL− SSO. However, traffic
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congestion is a common phenomenon in a realistic trans-
portation network. As a result, we always have
Ft
CL− SUE − Ft

CL− SSO < c(φ)Tt
CL− SUE, which means that the

upper bound (61) is usually not tight in most cases.

4.2.MonetaryUnits. Setting f � f
c and f � f

⌣

in VI (18), we
can obtain the inequality as follows:


a∈A



M

m�1
βmta v

c
a(  v

⌣m

a − v
m,c
a  +

1
θ


w∈W


r∈Rw



M

m�1
lnf

m,c

rw + θcfrw  f
⌣m

rw − f
m,c

rw ≥ 0. (62)

2is leads to


a∈A



M

m�1
βmta v

c
a( v

m,c
a + 

w∈W


r∈Rw



M

m�1
cfrwf

m,c

rw +
1
θ


w∈W


r∈Rw



M

m�1
f

m,c

rw lnf
m,c

rw ≤ 
a∈A



M

m�1
βmta v

⌣

a v
⌣m

a + 
w∈W


r∈Rw



M

m�1
cfrwf

⌣m

rw

+
1
θ


w∈W


r∈Rw



M

m�1
f
⌣m

rw lnf
⌣m

rw

+ 
a∈A



M

m�1
βmv

⌣m

a ta v
c
a(  − ta v

⌣

a  

+
1
θ


w∈W


r∈Rw



M

m�1
f
⌣m

rw lnf
m,c

rw − lnf
⌣m

rw .

(63)

2us,

F
c
CL− SUE − F

c
CL− SSO ≤ 

a∈A


M

m�1
βmv

⌣m

a ta v
c
a(  − ta v

⌣

a   +
1
θ


w∈W


r∈Rw



M

m�1
f
⌣m

rw lnf
m,c

rw − lnf
⌣m

rw . (64)

We can get the upper bound of the term
a∈A

M
m�1βmv

⌣m

a (ta(vc
a) − ta(v

⌣

a)) in (64) by applying the
definitions (39)–(42). Let va be v

⌣

a and za be vc
a, then we have


a∈A



M

m�1
βmv

⌣m

a ta v
c
a(  − ta v

⌣

a   � 
a∈A1



M

m�1
βmv

⌣m

a ta v
c
a(  − ta v

⌣

a   + 
a∉A1



M

m�1
βmv

⌣m

a ta v
c
a(  − ta v

⌣

a  ≤ c(φ, β)T
c
CL− SUE + c(φ, β)T

c
CL− SSO,

(65)

where Tc
CL− SSO � a∈A

M
m�1βmta(v

⌣

a)v
⌣m

a is the TSTC at the
multiclass CL-SSO.

2e upper bound on the last term of the right-hand side
of (64) is equal to zero from Gibbs’ inequality. 2erefore, the
following inequality holds:


r∈Rw

f
⌣m

rw lnf
m,c

rw − lnf
⌣m

rw ≤ 0, w ∈W, m ∈M. (66)

Here, r∈Rw
f
⌣m

rw(lnf
m,c

rw − lnf
⌣m

rw) � 0 if and only if

f
m,c

rw � f
⌣m

rw. Substituting (65) and (66) into (64), we can
obtain the theorem as follows.

Theorem 4. Let φ denote a class of differentiable, separable,
convex, and monotonically increasing link time functions
ta(va). <en, the absolute inefficiency of the multiclass CL-
SUE against the multiclass CL-SSO under monetary-based
criterion, ρc

CL− SUE/CL− SSO, is upper bounded, i.e.,

ρc
CL− SUE/CL− SSO � F

c
CL− SUE − F

c
CL− SSO

≤ c(φ, β)T
c
CL− SUE + c(φ, β)T

c
CL− SSO.

(67)

Next, we will discuss the tightness of the bound given in
(67) and provide Corollary 3 as follows.
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Corollary 3. Fc
CL− SUE − Fc

CL− SSO � c(φ,β)Tc
CL− SUE + c(φ,

β)Tc
CL− SSO if and only if c(φ,β) � c(φ,β) � 0.

Proof of Corollary 3. Firstly, if c(φ, β) � c(φ, β) � 0, we can
obtain Fc

CL− SUE − Fc
CL− SSO ≤ 0 from2eorem 4. According to

the definition of the multiclass CL-SSO, we have Fc
CL− SUE

≥Fc
CL− SSO. Hence, we can obtain Fc

CL− SUE � Fc
CL− SSO, which

means that Fc
CL− SUE − Fc

CL− SSO � 0. Since c(φ, β) � c(φ, β) �

0, we have c(φ, β)Tc
CL− SUE + c(φ, β)Tc

CL− SSO � 0. 2erefore,
Fc
CL− SUE − Fc

CL− SSO � c(φ, β)Tc
CL− SUE + c(φ, β)Tc

CL− SSO if c

(φ, β) � c(φ, β) � 0. Secondly, we assume that Fc
CL− SUE −

Fc
CL− SSO � c(φ, β)Tc

CL− SUE + c(φ, β)Tc
CL− SSO holds. From the

specific derivation process of (67), Fc
CL− SUE − Fc

CL− SSO
� c(φ, β)Tc

CL− SUE + c(φ, β)Tc
CL− SSO implies that inequality

(66) takes equality; i.e., f
c

� f
⌣

. Since f
c

� f
⌣

, we can have
vc � v

⌣, Fc
CL− SUE � Fc

CL− SSO, and Tc
CL− SUE � Tc

CL− SSO. With
definitions (39)–(42), if vc � v

⌣ holds, we can obtain
c(φ, β) � c(φ, β) � 0. 2e proof is completed.

Corollary 3 shows that the upper bound (67) is tight if
and only if c(φ, β) � c(φ, β) � 0. 2e expression c(φ, β) �

c(φ, β) � 0 means that the multiclass CL-SUE state is
equivalent to the multiclass CL-SSO state. Here, we have
f

c
� f

⌣

, vc � v
⌣, Fc

CL− SUE � Fc
CL− SSO, and Tc

CL− SUE � Tc
CL− SSO,

which are usually not satisfied in a realistic transportation
network. As a result, we always have Fc

CL− SUE − Fc
CL− SSO

< c(φ, β)Tc
CL− SUE + c(φ, β)Tc

CL− SSO, which means that the
upper bound (67) is usually not tight in most cases. □

5. Effects of Parameters on the
Inefficiency Bounds

2is section discusses the effects of various parameters on
the upper bounds (33), (48), (61), and (67), namely, c(φ),
c(φ, β), c(φ, β), k, θ, c, and c.

c(φ) ∈ [0, 1] is a dimensionless coefficient defined only
by the class of link time functions. Both the upper bounds
(33) and (61) are monotonically increasing functions of
c(φ). Consider a widely used class of link travel time
functions, ta(va) � t0a + αa(va)p, a ∈ A, where t0a ≥ 0 denotes
free-flow travel time on link a ∈ A, αa ≥ 0 is a constant, and
p≥ 0 reflects the degree of traffic congestion. Roughgarden
[27] provided a specific expression of c(φ) as follows:

c(φ) �
p

p + 1
 

1
p + 1

 

1/p

. (68)

Equation (68) shows that c(φ)⟶ 0 when p⟶ 0
(without traffic congestion) and c(φ)⟶ 0 when p⟶
+∞ (with severe congestion). When p � 1 and 4, c(φ) �

0.25 and 0.535, respectively. So, the upper bounds (33) and
(61) are bothmonotonically increasing functions of p. When
the value of p can be reduced, we will have more space to
improve the congestion in the traffic network by driving the
multiclass CL-SUE state to the multiclass SO or the mul-
ticlass CL-SSO state.

Both c(φ, β) and c(φ, β) are dimensionless coefficients
depending on the class of link time functions and VOT β.

Both the upper bounds (48) and (67) are monotonically
increasing functions of c(φ, β) and c(φ, β).

Recall that kCL− SUE
w solves the equation k exp(k + 1) �


|Rw |
r�1,r≠jexp(θ(cfjw − cfrw)) with j � argmax r(cfrw, r

∈ Rw), w ∈W, and k � w∈W
M
m�1(dm

w /D)kCL− SUE
w . So, k is a

dimensionless coefficient, which increases with the relative
values of the commonality factors of paths and the number
of feasible paths. Hence, k can reflect the degree of network
complexity. Let j′ � argmin r(cfrw, r ∈ Rw), w ∈W, then
we have kCL− SUE

w exp(kCL− SUE
w + 1)≤ (|Rw| − 1)exp(θ(cfjw

− cfj′w)). If each OD pair has only one available path in a
transportation network, i.e., |Rw| � 1, we can obtain
kCL− SUE

w � 0 and thus k � 0. When |Rw| � 1, we have
ρt
CL− SUE ≤ (1 − c(φ))− 1 and ρc

CL− SUE ≤ (1 + c(φ, β))/ (1 − c

(φ, β)). When |Rw|> 1, the value of kCL− SUE
w (and hence k) is

greatly limited only if values of θ and cf rw are given (the
similar discussion is shown in Guo et al. [37]). Even though
the effect is small, both the upper bounds (33) and (48) are
increasing with the degree of network complexity.

Parameter θ is the perception error of travel time, which
can reflect the degree of network familiarity. Both the upper
bounds (33) and (48) decrease with θ. When θ⟶ +∞, we
have ρt

CL− SUE ≤ (1 − c(φ))− 1 and ρc
CL− SUE ≤ (1 + c(φ, β))/(1−

c(φ, β)), which are the results of the standard multiclass UE
problem under time-based criterion and monetary-based
criterion, respectively.

2eorems 1 and 2 show that the upper bound (33)
decreases with c and the upper bound (48) decreases with c,
respectively. Since c � Tt

SO/D and c � Tc
SO/D, both the upper

bounds (33) and (48) will increase when the total demand,
D, goes up.

Finally, the results of the above discussions are sum-
marized in Table 2.

6. Summary of the Main Research Findings

In Sections 3 and 4, we have derived four inefficiency bounds
of the multiclass CL-SUE, and given four theorems. In this
section, we provide a table to summarize the main research
findings of four theorems in this article. 2ese findings are
shown in Table 3.

7. Numerical Example

2e Nguyen and Dupuis network [50] shown in Figure 2 is
used to further illustrate the above conclusions. 2e network
consists of 19 links, 13 nodes, 25 paths, and 4 OD pairs. All
users are classified on the basis of different VOTs into three
main classes. Let β1 � 1.0 (¥/min) (denoted by “1”) be VOT
for users of class 1, β2 � 2.0 (¥/min) (denoted by “2”) be
VOT for users of class 2, and β3 � 3.0 (¥/min) (denoted by
“3”) be VOT for users of class 3. As shown in Figure 2, the
network has 4 OD pairs: 1⟶ 2 (denoted by “w1”), 1⟶ 3
(denoted by “w2”), 4⟶ 2 (denoted by “w3”), and 4⟶ 3
(denoted by “w4”). Suppose that the traffic demand is
d1

w1
� 120, d2

w1
� 200, d3

w1
� 80, d1

w2
� 240, d2

w2
� 400,
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Table 2: Effects of various parameters on the upper bounds.

Congestion degree c(φ, β) c(φ, β) Network complexity Network familiarity Total demand
Bound (33) + No No + — +
Bound (48) No + + + — +
Bound (61) + No No No No No
Bound (67) No + + No No No

Table 3: 2e main research findings of four theorems.

2eorem 2e upper bounds Main research findings

2eorem 1 ρt
CL− SUE � Tt

CL− SUE/T
t
SO ≤ (1/(1 − c(φ)))(1 + k/(θc))

(1) 2e upper bound (33) depends on four parameters, namely,
c(φ), k, θ, and c(2) Corollary 1: in a transportation network, the
efficiency loss upper bound against the multiclass SO by the
multiclass CL-SUE under time-based criterion is not less than
that by the multiclass SUE. Corollary 1 shows that the
multiclass CL-SUE model provides a more realistic upper
bound than the multiclass SUE model by considering the path
overlapping problem.

2eorem 2 ρc
CL− SUE � Tc

CL− SUE/T
c
SO ≤ (1 + c(φ, β) + k/(θc))/(1 − c(φ, β))

(1) 2e upper bound (48) depends on five parameters, namely,
c(φ, β), c(φ, β), k, θ, and c.(2) Similar to the proof of Corollary
1, we can find that the efficiency loss upper bound against the
multiclass SO by the multiclass CL-SUE under monetary-based
criterion is not less than that by the multiclass SUE.

2eorem 3 ρt
CL− SUE/CL− SSO � Ft

CL− SUE − Ft
CL− SSO ≤ c(φ)Tt

CL− SUE

(1) 2e upper bound (61) depends on two parameters, namely,
c(φ) and Tt

CL− SUE. 2e commonality factor reflecting path
overlapping has no impact on the inefficiency upper bound
(61).(2) Corollary 2 (Ft

CL− SUE − Ft
CL− SSO � c(φ)Tt

CL− SUE if and
only if c(φ) � 0). It states that the upper bound (61) is tight if
and only if c(φ) � 0 (without traffic congestion), which means
that the upper bound (61) is usually not tight in most cases.

2eorem 4 ρc
CL− SUE/CL− SSO � Fc

CL− SUE − Fc
CL− SSO ≤ c(φ, β)Tc

CL− SUE
+c(φ, β)Tc

CL− SSO

(1) 2e upper bound (67) depends on four parameters, namely,
c(φ, β), c(φ, β), Tc

CL− SUE, and Tc
CL− SSO. 2e commonality factor

reflecting path overlapping has no impact on the inefficiency
upper bound (67).(2) Corollary 3
(Fc

CL− SUE − Fc
CL− SSO � c(φ, β)Tc

CL− SUE + c(φ, β)Tc
CL− SSO if and

only if c(φ, β) � c(φ, β) � 0): It shows that the upper bound
(67) is tight if and only if c(φ, β) � c(φ, β) � 0, which means
that the upper bound (67) is usually not tight in most cases.

4 5 6 7 8

9 10 11 2

1 12
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14 15124
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Origin
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Figure 2: Nguyen and Dupuis network.
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d3
w2

� 160, d1
w3

� 180, d2
w3

� 300, d3
w3

� 120, d1
w4

� 60,
d2

w4
� 100, and d3

w4
� 40. Assume that parameters θ � 0.5,

β0 � 1, and c0 � 1.
2e link time functions use the following BPR (Bureau of

Public Road) form, with free-flow travel time t0a and link
capacity Ca provided in Table 4:

ta va(  � t
0
a 1 + 0.15 ×

va

Ca

 

4
⎡⎣ ⎤⎦. (69)

2e relationship between paths and nodes in the network
is shown in Table 5. 2e commonality factor cfrw can be
calculated by (10). In this paper, the free-flow travel time is
used instead of length to calculate cf rw. 2e results are also
shown in Table 5.

2e link flow, path flow, and path cost solutions of the
multiclass CL-SUE model are shown in Tables 6 and 7 by
solving VI (18), respectively. 2e link flow solutions of the
multiclass SO and CL-SSO models are shown in Table 8
by solving the minimization problems (19), (35), (50),
and (51).

From Tables 6 and 7, we can obtain Tt
CL− SUE � w∈W

r∈Rw


M
m�1c

m
rw(f

t
)f

m,t

rw � 86316.9550, Tc
CL− SUE � w∈W r∈Rw


M
m�1c

m
rw(f

c
)f

m,c

rw � 171413.1091, Ft
CL− SUE � 74528.8734, and

Fc
CL− SUE � 144177.3510. From Table 8, we can obtain Tt

SO �

77678.1637, Tc
SO � 146623.4458, Tc

CL− SUE � 145869.2905,
Ft
CL− SSO � 74296.2072, and Fc

CL− SSO � 143566.4683. 2us, we
have ρt

CL− SUE � Tt
CL− SUE/T

t
SO � 1.1112, ρc

CL− SUE � Tc
CL− SUE/

Tc
SO � 1.1691, ρt

CL− SUE/CL− SSO � Ft
CL− SUE − Ft

CL− SSO � 232.6662,
and ρc

CL− SUE/CL− SSO � Fc
CL− SUE − Fc

CL− SSO � 610.8827.
For the link time function with p � 4 in this example, it is

easy to obtain that c(φ) � 0.535. Since kCL− SUE
w is the so-

lution of k exp(k + 1) � 
|Rw|
r�1,r≠jexp(θ(cfjw − cfrw)) with

j � argmax r(cfrw, r ∈ Rw), w ∈W, then we can obtain
kCL− SUE

w1
� 1.0767, kCL− SUE

w2
� 0.9412, kCL− SUE

w3
� 0.8441, and

kCL− SUE
w4

� 0.9469. Hence, we can have k � 0.9397 by k �

w∈W
M
m�1(dm

w /D)kCL− SUE
w and D � w∈W

M
m�1d

m
w . We can

also obtain c � 38.8391 and c � 73.3117 by c � Tt
SO/D and

c � Tc
SO/D, respectively.

From Table 7, we can have v1,c
1 � 222.2, v2,c

1 � 392.4, v3,c
1

� 159.5, and vc
1 � 774.1. Based on definition ca(za,ta, β)�

[1/ ((
M
m�1βmzm

a )ta(za))]maxvm
a ≥0 (

M
m�1βmvm

a ) (ta(za)− ta

(va))} and t1(v1)�7[1+0.15×(v1/900)4], we can obtain
c1(z1, t1, β) � (maxvm

a ≥ 0 (1 · v11 + 2 · v21 + 3 · v31)[7.5748 − 7

(1 + 0.15(v1/900)4)]})/((1 · 222.17 + 2 · 392.44 + 3· 159.53)·

7.5748). When v11 � 0, v21 � 0, v31 � 517.7044, and
v1 � 517.7044, the above optimization problem reaches at
the maximum c1(z1, t1, β) � 0.0635. By the same way, we
obtain c2(z2, t2, β) � 0.0173, c3(z3, t3, β) � 0.0212, c4(z4, t4,

β) � 0.0029, c5(z5, t5, β) � 0.0253, c6(z6, t6, β) � 0.1694,
c7(z7, t7, β) � 0.0179, c8(z8, t8, β) � 0.000012, c9(z9, t9, β) �

0.2739, c10(z10, t10, β) � 0.0027, c11(z11, t11,β) � 0.1540,
c12(z12, t12,β) � 0.0007, c13(z13, t13,β) � 0.3058, c14(z14, t14,

β) � 0.0015, c15(z15, t15, β) � 0.0014, c16(z16, t16,β) � 0.0003,
c17(z17, t17,β) � 0.0002, c18(z18, t18,β) � 0.0099, and
c19(z19, t19,β) � 0.2002. 2en, we have c(φ,β) � 0.3058 and
c(φ,β) � 0.2us, bound (33) becomes ρt

CL− SUE � 1.1112≤
(1/1 − c(φ))(1+ k/θc) � 2.2546 according to 2eorem 1.

Table 4: Parameters of links.

Link no. Free-flow travel time Capacity Link no. Free-flow travel time Capacity
1 7 900 11 10 700
2 8 700 12 10 700
3 9 700 13 9 600
4 14 900 14 8 700
5 5 800 15 9 700
6 9 600 16 8 700
7 5 900 17 7 300
8 13 500 18 15 700
9 5 300 19 11 700
10 9 400

Table 5: Parameters between four OD pairs.

OD pair Path no. Node sequence 2e value of cfrw

1-2

1 1-12-8-2 0.8202
2 1-5-6-7-8-2 1.1226
3 1-5-6-7-11-2 1.2437
4 1-5-6-10-11-2 1.2105
5 1-5-9-10-11-2 1.0206
6 1-12-6-7-8-2 1.1621
7 1-12-6-7-11-2 1.2744
8 1-12-6-10-11-2 1.2439

1-3

9 1-5-9-13-3 0.5843
10 1-5-6-7-11-3 1.0851
11 1-5-6-10-11-3 1.1507
12 1-5-9-10-11-3 1.0777
13 1-12-6-7-11-3 0.9550
14 1-12-6-10-11-3 1.0409

4-2

15 4-9-10-11-2 0.8153
16 4-5-6-7-8-2 0.7551
17 4-5-6-7-11-2 1.0217
18 4-5-6-10-11-2 1.0704
19 4-5-9-10-11-2 1.0592

4-3

20 4-9-13-3 0.6606
21 4-9-10-11-3 0.9540
22 4-5-9-13-3 0.9012
23 4-5-6-7-11-3 0.8922
24 4-5-6-10-11-3 1.0088
25 4-5-9-10-11-3 1.1190
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Bound (48) becomes ρc
CL− SUE � 1.1691≤1+ c(φ,β) + k/θc/1 −

c(φ,β) � 1.4774 according to 2eorem 2. Bound (61) be-
comes ρt

CL− SUE/CL− SSO � 232.6662≤c(φ)Tt
CL− SUE �

46179.5710 according to 2eorem 3. Bound (67) becomes
ρc
CL− SUE/CL− SSO � 610.8827≤ c(φ,β) Tc

CL− SUE+

c(φ,β)Tc
CL− SSO � 52418.1288 according to 2eorem 4.

Table 6: Path results of the multiclass CL-SUE model.

Path no.

2e multiclass CL-SUE
Path flow Path cost

Time-based Monetary-based Time-based Monetary-based
m� 1 m� 2 m� 3 m� 1 m� 2 m� 3 m� 1 m� 2 m� 3 m� 1 m� 2 m� 3

1 85.0 141.6 56.6 96.8 197.1 79.9 33.5 33.5 33.5 33.5 67.0 100.5
2 21.1 35.2 14.1 10.3 1.9 0.1 32.8 32.8 32.8 32.8 65.6 98.4
3 1.5 2.6 1.0 2.5 0.1 0.0 36.4 36.4 36.4 36.4 72.8 109.2
4 0.8 1.4 0.6 0.8 0.0 0.0 44.4 44.4 44.4 44.2 88.3 132.5
5 0.6 0.9 0.4 0.7 0.0 0.0 51.9 51.9 51.9 50.8 101.5 152.3
6 9.9 16.5 6.6 6.7 0.8 0.0 35.3 35.3 35.3 35.3 70.6 105.9
7 0.7 1.2 0.5 1.6 0.0 0.0 38.9 38.9 38.9 38.9 77.8 116.7
8 0.4 0.6 0.3 0.5 0.0 0.0 46.9 46.9 46.9 46.6 93.3 139.9
9 160.5 267.5 107.0 141.3 362.5 157.1 56.2 56.2 56.2 57.6 115.3 172.9
10 30.1 50.2 20.1 40.5 23.2 2.2 34.6 34.6 34.6 34.6 69.3 103.9
11 16.8 28.1 11.2 13.9 2.6 0.1 42.6 42.6 42.6 42.4 84.8 127.2
12 12.2 20.4 8.2 12.0 2.1 0.1 50.1 50.1 50.1 49.0 98.0 147.0
13 13.0 21.6 8.6 23.9 8.6 0.5 37.1 37.1 37.1 37.1 74.3 111.4
14 7.3 12.2 4.9 8.3 1.0 0.0 45.1 45.1 45.1 44.9 89.8 134.6
15 34.2 56.9 22.8 55.2 80.0 23.0 44.7 44.7 44.7 44.5 89.1 133.6
16 126.3 210.5 84.2 87.1 205.0 95.6 34.1 34.1 34.1 34.2 68.3 102.5
17 9.9 16.5 6.6 23.0 12.5 1.3 37.8 37.8 37.8 37.8 75.5 113.3
18 5.5 9.2 3.7 7.8 1.4 0.1 45.7 45.7 45.7 45.5 91.0 136.5
19 4.1 6.9 2.7 7.0 1.1 0.0 53.3 53.3 53.3 52.1 104.2 156.4
20 49.0 81.7 32.7 48.0 98.0 39.9 48.9 48.9 48.9 51.4 102.8 154.2
21 3.4 5.6 2.3 3.7 0.5 0.0 42.9 42.9 42.9 42.8 85.6 128.3
22 5.9 9.8 3.9 6.1 1.4 0.1 57.6 57.6 57.6 59.0 118.0 177.0
23 0.9 1.4 0.6 1.3 0.1 0.0 36.0 36.0 36.0 36.0 72.0 108.0
24 0.5 0.8 0.3 0.5 0.0 0.0 44.0 44.0 44.0 43.8 87.5 131.2
25 0.4 0.7 0.3 0.5 0.0 0.0 51.5 51.5 51.5 50.4 100.7 151.1

Table 7: Link results of the multiclass CL-SUE model.

Link no.

2e multiclass CL-SUE
Link flow

Time-based Monetary-based
m� 1 m� 2 m� 3 m� 1 m� 2 m� 3

1 243.8 406.3 162.5 222.2 392.4 159.5
2 116.2 193.7 77.5 137.8 207.6 80.5
3 153.5 255.8 102.3 133.1 221.5 97.1
4 86.5 144.2 57.7 106.9 178.5 62.9
5 213.6 355.9 142.4 187.8 246.8 99.4
6 183.7 306.2 122.5 167.5 367.1 157.2
7 213.5 355.8 142.3 197.0 252.2 99.8
8 31.4 52.3 20.9 31.8 5.1 0.2
9 157.3 262.2 104.9 104.0 207.7 95.7
10 56.1 93.6 37.4 92.9 44.5 4.1
11 242.3 403.8 161.5 200.9 404.8 175.6
12 54.8 91.4 36.6 79.0 83.7 23.1
13 215.4 359.0 143.6 195.4 461.9 197.1
14 86.2 143.6 57.5 110.9 88.8 23.2
15 57.7 96.2 38.5 99.2 95.2 24.4
16 84.6 141.0 56.4 104.6 38.1 3.0
17 31.3 52.1 20.9 41.0 10.5 0.6
18 85.0 141.6 56.6 96.8 197.1 79.9
19 215.4 359.0 143.6 195.4 461.9 197.1
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In summary, the numerical results show that 2eorems
1–4 are correct and valid.

Next, we will select three representative parameters for
sensitivity analysis. 2e sensitivities of the upper bounds
with respect to parameters c(φ), k, and θ are addressed in
the following. According to the above results, we can obtain
c(φ) � 0.535, c(φ, β) � 0.3058, c(φ, β) � 0, k � 0.9397,

θ � 0.5, c � 38.8391, c � 73.3117, and Tt
CL− SUE �

86316.9550. Since (33) and (68), it is easy to know that
bound (33) as a function of p and the function expression
is ρt

CL− SUE(p) � 1.0484(1 − (p/(p + 1))(1/(p + 1))1/p)− 1.
By the same way, we can obtain the other five function ex-
pressions: (1) bound (33) as a function of k and the function
expression is ρt

CL− SUE(k) � 1/0.465(1 + k/19.4196); (2) bound

Table 8: Link results of the multiclass SO and CL-SSO models.

Link no.

2e multiclass SO 2e multiclass CL-SSO
Link flow Link flow

Time-based Monetary-based Time-based Monetary-based
m� 1 m� 2 m� 3 m� 1 m� 2 m� 3 m� 1 m� 2 m� 3 m� 1 m� 2 m� 3

1 287.1 478.6 191.4 282.6 471.0 188.4 255.4 425.7 170.3 255.4 428.8 171.8
2 72.9 121.4 48.6 77.4 129.0 51.6 104.6 174.3 69.7 104.7 171.2 68.2
3 70.7 117.9 47.1 87.0 145.1 58.0 111.7 186.2 74.5 111.9 171.7 68.0
4 169.3 282.1 112.9 153.0 254.9 102.0 128.3 213.8 85.5 128.1 228.3 92.0
5 212.1 353.6 141.4 238.0 396.7 158.7 217.3 362.1 144.8 217.6 365.4 146.5
6 145.7 242.9 97.1 131.6 219.4 87.7 149.9 249.8 99.9 149.7 235.1 93.3
7 212.1 353.6 141.4 238.0 396.7 158.7 239.3 398.8 159.5 239.6 401.0 160.0
8 0.0 0.0 0.0 0.0 0.0 0.0 8.5 14.1 5.7 8.5 6.3 2.4
9 117.9 196.4 78.6 123.9 206.5 82.6 106.7 177.9 71.2 106.7 179.9 71.9
10 94.3 157.1 62.9 114.1 190.2 76.1 132.5 220.9 88.3 132.9 221.1 88.1
11 190.7 317.9 127.1 201.3 335.5 134.2 180.9 301.4 120.6 180.8 309.2 124.2
12 109.3 182.1 72.9 98.7 164.5 65.8 98.1 163.5 65.4 98.2 152.5 60.8
13 205.7 342.9 137.1 185.9 309.8 123.9 180.1 300.1 120.0 179.7 310.9 124.5
14 109.3 182.1 72.9 98.7 164.5 65.8 106.6 177.7 71.1 106.7 158.8 63.2
15 109.3 182.1 72.9 98.7 164.5 65.8 119.2 198.6 79.4 119.2 190.8 75.8
16 94.3 157.1 62.9 114.1 190.2 76.1 120.0 199.9 80.0 120.4 189.1 75.5
17 0.0 0.0 0.0 0.0 0.0 0.0 30.5 50.8 20.3 30.6 41.9 15.9
18 72.9 121.4 48.6 77.4 129.0 51.6 74.1 123.5 49.4 74.1 129.4 52.3
19 205.7 342.9 137.1 185.9 309.8 123.9 180.1 300.1 120.0 179.7 310.9 124.5
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Figure 3: Bound (33) and bound (61) as a function of p.
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(33) as a function of θ and the function expression is
ρt
CL− SUE(θ) � 1/0.465(1 + 0.0242/θ); (3) bound (48) as a
function of k and the function expression is
ρc
CL− SUE(k) � 1/0.6942(1 + k/36.6559); (4) bound (48) as a
function of θ and the function expression is
ρc
CL− SUE(θ) � 1/0.6942(1 + 0.0128/θ); and (5) bound (61) as
a function of p and the function expression is
ρt
CL− SUE/CL− SSO(p) � 86317(p/(p + 1))(1/(p + 1))1/p. 2e
following figures present the sensitivities of upper bounds
subject to parameters p, k, and θ (see Figures 3–5).

Figure 3 shows both bound (33) and bound (61) increase
with p; Figure 4 shows both bound (33) and bound (48)
increase with k, and bound (48) is always smaller than bound
(33); and Figure 5 shows both bound (33) and bound (48)
decrease with θ, and bound (48) is always smaller than

bound (33). 2erefore, our sensitivity analysis results are
consistent with the conclusions given in Section 5, which
means that the conclusions given in Section 5 are valid.

8. Conclusions

We have derived four inefficiency bounds of the multiclass
CL-SUE by making full use of equivalent VI formulations
and provide some main conclusions as follows.

When comparingmulticlass CL-SUE withmulticlass SO,
the upper bound under time-based criterion depends on the
class of link time functions, the network complexity (in-
cluding the commonality factor reflecting path overlapping
and the number of feasible paths), the perception error of
travel time, and the total demand. 2e upper bound will be
underestimated in a realistic transportation network, if the
commonality factor is not considered. By contrast, besides
the factors mentioned above, the upper bound under
monetary-based criterion is dependent upon the VOT of
user classes.

When comparing multiclass CL-SUE with multiclass
CL-SSO, the upper bound under monetary-based criterion
depends on the class of link time functions and the VOT of
user classes. However, the upper bound under time-based
criterion only depends on the class of link time functions.
Moreover, our research results suggest that the upper bound
will increase when the degree of traffic congestion goes up.
2e upper bound is usually not tight in most cases because
traffic congestion is inevitable, which means that there is
more space to improve the congestion in the traffic network.

Furthermore, the effects of various parameters on the
bounds have been further studied, especially the com-
monality factor. 2e results of the above discussions are
shown in Table 2.

Our study can be further extended in two ways: (1) to
explore more accurate upper bounds when more detailed
network information is known and (2) to investigate the
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inefficiency of the multiclass CL-SUE with elastic demand
under different decision criteria.

Abbreviations

CL-SUE: C-logit stochastic user equilibrium
VOT: Values of time
VI: Variational inequality
CL-SSO: C-Logit stochastic system optimum
UE: User equilibrium
SO: System optimum
BRUE: Boundedly rational user equilibrium
IID: Independent and identical distributed
SUE: Stochastic user equilibrium
GNL-SUE: Generalized nested logit SUE
CNL-SUE: Cross-nested logit SUE
PCL-SUE: Paired combinatorial logit SUE
MP: Mathematical programming
POA: Price of anarchy
SSO: Stochastic system optimum
TSTT: Total system travel time
TSTC: Total system travel cost
ATIS: Advanced traveler information systems
TPTT: Total perceived travel time
OD: Origin-destination
TPTC: Total perceived travel cost
BPR: Bureau of public road.

Appendix

Now, we consider the simple network consisting of 2 nodes,
n paths, and one OD pair with a demand d and with
provided path flows fr, r ∈ 1, 2, · · · , n{ }. Let u1, u2, · · · , un be

a user’s perceived values of the path travel time and
f(u1, u2, · · · , un) denote the probability density function of
the user’s perceived travel time. 2e mean perceived path
travel time c1, c2, · · · , cn are functions of the path flowsfr. All
users need to be assigned to paths to minimize their TPTT,
by dividing the whole space of perceived travel time u �

(u1, u2, · · · , un) into mutually exclusive and exhaustive re-
gions Br  in an optimal manner.2e region Br is that within
which ur − hr < uk − hk, k ∈ 1, 2, · · · , n{ }, where hr should be
given so that the proportion assigned by the above process to
path r is fr/d. Hence,


Br

f u1, u2, · · · , un( du1du2 · · · dun � pr �
fr

d
. (A1)

With this assignment, the TPTTof the network with one
OD pair is

F f1, f2, · · · , fr(  � d 
r


Br

urf u1, u2, · · · , un( du1du2 · · · dun.

(A2)

We suppose that only the means c1, c2, · · · , cn are
influenced by path flows fr and the variances and covari-
ances remain constant. Hence, the density function satisfies
the condition below.

f u1 + h1, u2 + h2, · · · , un + hn; c1, c2, · · · , cn( 

� f u1, u2, · · · , un; c1 − h1, c2 − h2, · · · , cn − hn( .
(A3)

Setting wr � ur − hr and denoting by Qr the set of
perceived path travel time for which path r is the optimum,
(A2) can be rewritten as

F f1, f2, · · · , fr(  � d 
r


Qr

wr + hr( f w1 + h1, w2 + h2, · · · , wn + hn; c1, c2, · · · , cn( dw1dw2 · · · dwn,

� d 
r


Qr

wr + hr( f w1, w2, · · · , wn; c1 − h1, c2 − h2, · · · , cn − hn( dw1dw2 · · · dwn,

� d 
r


Qr

wrf w1, w2, · · · , wn; c1 − h1, c2 − h2, · · · , cn − hn( dw1dw2 · · · dwn + d 
r

hrpr,

� dS c1 − h1, c2 − h2, · · · , cn − hn(  + 
r

hrfr,

(A4)

where S is the composite travel time. In the logit case, S is
provided by a specific “logsum” expression:

S c1 − h1, c2 − h2, · · · , cn − hn( 

� −
1
θ
log 

r

exp − θ cr − hr( ( ⎛⎝ ⎞⎠.

(A5)

Suppose that we have a multiple OD pair trans-
portation network with multiple classes of users. 2e
demand of user class m between OD pair w ∈W is

denoted by dm
w . 2e flow of user class m on path

r ∈ Rw, w ∈W is expressed by fm
rw. Let cm

rw denote the
mean perceived travel time of user class m on path
r ∈ Rw, w ∈W. 2erefore, the TPTT is given by

F(f) � 
w∈W



M

m�1
d

m
w S

m
w c

m
w − h

m
w( 

+ 
w∈W


r∈Rw



M

m�1
h

m
rwf

m
rw.

(A6)

Here, we have
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S
m
w c

m
w − h

m
w(  � −

1
θ
log 

r

exp − θ c
m
rw − h

m
rw( ( ⎛⎝ ⎞⎠. (A7)

In the C-Logit case, we suppose that c′mrw � cm
rw + cfrw is

the mean perceived travel time, where cm
rw is the actual travel

time of user class m on path r ∈ Rw, w ∈W and cfrw is a
commonality factor of path r ∈ Rw, w ∈W. 2e path choice
probability for user class m is given by

p
m
rw �

exp − θ c′mrw − h
m
rw  

l∈Rw
exp − θ c′mrw − h

m
rw  

, r ∈ Rw, w ∈W, m � 1, 2, · · · , M.

(A8)

Hence, we can obtain the values of hm
rw and hm

lw from

ln
f

m
rw

f
m
lw

� − θ c′mrw − h
m
rw − c′mlw + h

m
lw , (A9)

so that

h
m
rw − h

m
lw � c′mrw − c′mlw +

1
θ
ln

f
m
rw

f
m
lw

. (A10)

Here, we can set any one of the hm
rw to zero. Setting

hm
1w � 0, the value of hm

rw is given by

h
m
rw � c′mrw − c′m1w +

1
θ
ln

f
m
rw

f
m
1w

. (A11)

For any one OD pair w, we can have the following
objective function:

F f
m
w(  � −

1
θ



M

m�1
d

m
w ln 

r

exp − θ c′mrw − h
m
rw  ⎛⎝ ⎞⎠

+ 
r≠1



M

m�1
f

m
rw c′mrw − c′m1w +

1
θ
ln

f
m
rw

f
m
1w

 .

(A12)

Substituting (A11) into (A12) and summing all OD
pairs, the objective function for the multiclass CL-SSO is
given as follows:

F(f) � −
1
θ


w∈W



M

m�1
d

m
w ln 

r

exp − θ c′mrw − h
m
rw  ⎛⎝ ⎞⎠ + 

w∈W


r∈Rw,r≠ 1


M

m�1
f

m
rw c′mrw − c′m1w +

1
θ
ln

f
m
rw

f
m
1w

 ,

� 
w∈W


r∈Rw



M

m�1
f

m
rwc′mrw +

1
θ


w∈W


r∈Rw



M

m�1
f

m
rw lnf

m
rw −

1
θ


w∈W



M

m�1
d

m
w ln 

r

exp − θ c′m1w −
1
θ
ln

f
m
rw

f
m
1w

  ⎛⎝ ⎞⎠,

� 
w∈W


r∈Rw



M

m�1
f

m
rwc′mrw +

1
θ


w∈W


r∈Rw



M

m�1
f

m
rw lnf

m
rw −

1
θ


w∈W



M

m�1
d

m
w lnd

m
w .

(A13)

Substituting c′mrw � cm
rw + cfrw into (A13), we can obtain

F(f) � 
w∈W


r∈Rw



M

m�1
f

m
rw c

m
rw(f) + cfrw( 

+
1
θ


w∈W


r∈Rw



M

m�1
f

m
rw lnf

m
rw −

1
θ


w∈W



M

m�1
d

m
w ln d

m
w .

(A14)
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