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Sea wind speed forecast is important for meteorological navigation system to keep ships in safe areas. .e high volatility and
uncertainty of wind make it difficult to accurately forecast multistep wind speed..is paper proposes a new decomposition-based
model to forecast hourly sea wind speeds. Because mode mixing affects the accuracy of the empirical mode decomposition-
(EMD-) based models, this model uses the variational mode decomposition (VMD) to alleviate this problem. To improve the
accuracy of predicting subseries with high nonlinearity, this model uses stacked gate recurrent units (GRU) networks. To alleviate
the degradation effect of stacked GRU, this model modifies them by adding residual connections to the deep layers. .is model
decomposes the nonlinear wind speed data into four subseries with different frequencies adaptively. Each stacked GRU predictor
has four layers and the residual connections are added to the last two layers. .e predictors have 24 inputs and 3 outputs, and the
forecast is an ensemble of five predictors’ outputs..e proposedmodel can predict wind speed in the next 3 hours according to the
past 24 hours’ wind speed data. .e experiment results on three different sea areas show that the performance of this model
surpasses those of a state-of-the-art model, several benchmarks, and decomposition-based models.

1. Introduction

Sea wind always threatens the safe navigation of ships.
According to the Marine Casualties and Incidents Reports
published by the International Maritime Organization
(IMO), there were 1561 well-documented ship accidents in
the first 10 years of the 21st century, of which 755 were
caused by strong winds and large waves caused by strong
winds, and accidents caused by strong winds accounted for
48.3% of total accidents. In addition, when the wind wave
and swell appear at the same time, the danger of navigation
will be greatly increased [1]. .erefore, the accurate wind
speed forecasting is of great significance for routes opti-
mization and navigation risk management.

Wind speed forecasts are divided into 4 categories, su-
per-short-term [2, 3], short-term [4–7], medium-term [8, 9],
and long-term [10], ranging from a few seconds to 30
minutes, from 30 minutes to 6 hours, from 6 hours to 24

hours, and from 24 hours to a week or more, respectively
[11]. According to the principle of the wind speed forecasts
models, they are classified into physical models and statis-
tical models. .e second class includes time series models
and machine learning models [11, 12]. .e physical
methods, like the numerical weather prediction (NWP),
construct differential equations about physical factors such
as wind speed, wind direction, air temperature, and pressure.
Solving meteorological equations requires a large number of
computing resources and time. .e result belongs to long-
term forecasting of a large area. .e time series methods
model the relationship between current wind speeds and
historical wind speeds, which are suitable for short-term and
medium-term forecast. Most time series methods, such as
the autoregressive integrated moving average (ARIMA)
[2, 13] and autoregressive moving average with exogenous
variables (ARMAX) [14], assume that there is a linear re-
lationship between current data and past data or errors. .e
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construction, order identification of these models is easy to
understand, but their linear assumptions lead to poor
forecast performance on nonlinear data. Machine learning
methods are suitable for short-term or super-short-term
forecasting. .ey take each time point of past series as an
input feature and that of predicted series as an output feature
and construct nonlinear relationship. Many complex ma-
chine learning models, such as the long short-term memory
(LSTM) [15] and gated recurrent unit (GRU) [4, 16], are able
to learn temporal correlation and often outperform time
series models. Among them, GRU not only alleviates the risk
of gradient explosion and vanishing but also is faster than
LSTM.

Decomposition-based methods have attracted much
attention recently. .ese methods decompose the original
wind speed into several subseries and use a group of same or
different individual prediction models to learn each sub-
series [17]. Usually, time series or machine learning models
are selected as predictor. .e decomposition-based methods
reduce the complexity of original data and make the pre-
dictors easier to learn. In addition, multimodel ensemble
decreases the risk of getting stuck in local optima in the
training process [18]. .erefore, decomposition-based
forecasting is more accurate than direct forecasting via
individual model. In the field of wind speed forecasting,
wavelet transform (WT) methods and empirical mode de-
composition (EMD) methods are the most used algorithms
[19]. Usually, the repeated WT and ARIMA are used to
predict super-short-term wind speed of a 10min scale [20].
Because LSTM is more effective than ARIMA in nonlinear
system, the WT and LSTM are combined to predict hourly
wind speed, and feature selection based on mutual infor-
mation is executed between decomposition and predictors
[6]. .e characteristics of linear and nonlinear are different;
then the ARIMA and multilayer perceptron (MLP) are used
to predict linear and nonlinear subseries which are classified
based on the EMD [21]. .ere are also some decomposition-
based methods that are used to deal with nonlinearity.
Moving average (MA) filter [22] and ARIMA filter [23] are
used to separate linear components, and MLP is used to
predict the nonlinear parts [24]. Besides the linear and
nonlinear predictors, a predictor is used to predict the re-
sidual of EMD, since it includes some information [25]. For
short-term forecast, a permutation entropy (PE) method is
used to predict a 3-step hourly forecast. .e subseries is
reorganized into several new series according to their PE
values. Because it is difficult to capture the nonlinear fea-
tures, this method uses MLP to predict each component
[26].

According to above references, the decomposition-based
methods have many advantages. However, they have some
problems that have not been widely solved. Firstly, the
decomposition algorithms have some defects. Although the
WT and EMD are used in wind speed forecast, there are
some defects that decrease the forecast accuracy. It is difficult
to use WT to analyse local low-frequency changes [27] and
the decomposition behaviour depends on wavelet basis
functions [15]; different wavelet basis functions bring dif-
ferent decomposition results. .e EMD decomposes a time

series into subseries with different frequency domain
bandwidths and the frequency bands have no overlap ideally.
When there is a frequency band overlap in the subseries,
multiple modes are mixed, and it is not suitable for further
processing [28]. In [29], the ensemble empirical mode de-
composition was used to predict short-term wind speed. In
[30], the complementary ensemble empirical mode de-
composition was used to alleviate mode mixing. .ese two
methods add multiple white noises to the original data and
then integrate the results of multiple EMDs. Variational
mode decomposition (VMD) is proposed to solve the mode
mixing and does not depend on fixed basis. Different from
the EMD-based algorithms, it avoids mode mixing as much
as possible by solving specific intrinsic mode functions
(IMFs) [31]. In recent studies, the VMD, MLP, and
autoregressive moving average (ARMA) are used to predict
wind speed with 10-minute interval [32] and 30-minute
interval [19].

Secondly, the subseries’ predictors can be improved by
stacking. Although the decomposed subseries are simplified
in frequency, they still have relatively high nonlinearity.
Many prediction studies used the support vector machine
regression (SVR) and MLP as nonlinear predictors [21, 33].
.e neural networks are good at nonlinear modelling, so
complex neural networks, such as LSTM [6, 34] and GRU
[4], are helpful to improve the accuracy of forecast. A hybrid
predictor that includes the VMD and a single-layer GRU is
used to predict the wind power interval [3]. Ideally, stacking
more models will significantly improve the ability of non-
linear modelling. However, the actual performance of a
stacked network often becomes worse when there are more
layers. It is difficult to train deeper layers to fit an identity
mapping and it leads to the degradation of stacked models.
.e residual connections solve this degradation phenome-
non by building linear paths between deep layers [35]. .e
stacked LSTM with residual connections shows superior
accuracy in machine translation and sentiment intensity
prediction [36, 37], but this improvement has not been
applied to wind speed forecasting. In [36], two 8-layer
LSTMs are added with residual connections every 2 layers.
In [37], an 8-layer LSTM is added with residual connections
every 1 and 2 layers, respectively, and two types have their
own advantages. In wind speed forecasting field, these two
types remain to be verified by experiments.

.is paper proposes a VMD-Stacked GRU model with
residual connections to forecast the short-term global sea
wind speed with multiple steps. .e decomposition and
predictor are designed based on analysis and experiments.
Original wind speed data is complex and the VMD is used to
decompose the wind speed data; it makes an adaptive de-
composition that overcomes the defect caused by mode
mixing in EMD-based models. A modified GRU is used as
subseries predictor to improve its nonlinear modelling
ability. .e performances of the stacked GRU are improved
by adding the residual connections between the last two
layers. .is improvement by adding residual connection is
very novel in the field of wind speed forecasting. In addition,
a lot of experiments are carried out on the European Re-
analysis (ERA5) dataset. It has been proved to surpass the
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performances of several benchmark and baseline models.
Different frommost studies based on wind farm observation
data, it supports the study of sea wind speeds. .e experi-
ment results show that the performance of the proposed
model is better than those of some benchmark and baseline
models.

.is paper is organized as follows. Section 2 describes
three methods involved in the proposed model. Section 3
details the proposed model’s architecture and evaluation
criteria. Section 4 details the experiments and analysis that
are used to obtain the best forecast performances. Section 5
provides discussion and Section 6 summarises the conclu-
sions. An acronyms list is shown in Table 1.

2. Methodology

2.1. VariationalModeDecomposition. Wind speed series are
nonlinear nonstationary signals which contain a variety of
period characteristics. For example, the Fourier transform
for hourly wind speed shows that it is not a 24-hour period,
but there are many significant periods. It means that mul-
tiperiod wind speed cannot be represented by an instan-
taneous frequency. When forecasting wind speed directly,
the complex periodicity will be disadvantageous to model
learning. To understand the signals with complex periodic
patterns, an effective strategy is to use IMFs, which are ideal
functions with fixed instantaneous frequency. Since there is
no complex periodicity, it is relatively easy to predict the
IMFs.

To extract IMFs from the original series, the EMD adopts
a completely different iteration method to deal with the
original data adaptively [27]. But, in practice, there are some
imperfections such as overshoots, undershoots, asymmetric
wave forms, and ends swing in the results of EMD, which

make them not the ideal IMFs [38]. In order to alleviate the
above problems, the VMD is proposed to calculate the IMFs
more accurately. By constructing and solving a constrained
variational problem, the VMD obtains all modal compo-
nents nonrecursively and improves the decomposition ro-
bustness to noise. Under the constraint that the summation
over all modes is equal to the original signal, the sum of the
all estimated bandwidths of modes is minimized, and the
following optimization problem is constructed [31]:

min uk{ }, wk{ } 
K

k�1
Dt uk, wk( s.t. 

K

k�1
uk � f,

⎧⎨

⎩ (1)

where uk and wk are the k-th modal component and the
center frequency after decomposition, respectively.
uk � Ak(t)cos(φk(t)), wk(t) � φk

′(t), k ∈ 0, 1, 2, . . . , K{ }. f

is the original time series, and K is its mode decomposition
number. Dt is the estimated bandwidth of each modal
component:

Dt � zt δ(t) +
j

πt
 ∗ uk(t) exp −jwkt( 

2
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where 2
2 is the squared L2 -norm of the gradient and ∗

represents the convolution operation. zt is the partial de-
rivative operation, and δ(t) is the Dirac distribution.

By using quadratic penalty factor α and Lagrangian
multipliers λ, the lowest point of this variational constraint
problem is transformed into saddle point of augmented
Lagrange equation defined as follows. .e augmented
Lagrange equation is shown as follows [31]. .e equation
can be iteratively calculated by the Alternating Direction
Multiplier Algorithm.
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(3)

2.2. Stacked Gate Recurrent Unit. .e conventional ma-
chine learning methods deal with time series problem;
each moment of a sample is regarded as a different in-
dependent random variable, and it is given into the
regression model or neural network for training. How-
ever, these models assume that the data at different
moments are independent of each other, and their se-
quence in time is not considered. .e recurrent neural
network (RNN) is proposed to capture this temporal
correlation by using the machine learning. .e GRU is a
modified RNN based on the LSTM. When error signals
propagate backwards through time in the conventional
RNN, the signals tend to vanish or blow up, and both of
the cases lead to the failure of the network to learn from
data [28]. .e GRU not only retains the ability to prevent

the previously mentioned problems but also reduces the
complexity of the structure without losing the efficient
learning ability [39].

.e structure of the GRU at each step is the GRU cell,
which is shown in Figure 1. In this figure, the reset gate and
the update gate are fully connected layers with sigmoid
activation, which are used to control the memory. .e
previous hidden state preserves the past memory, the reset
gate controls how to combine the input with the past
memory to become a candidate hidden state, and the update
gate controls how to add the candidate hidden state into the
hidden state [39]. Finally, the candidate hidden state, pre-
vious hidden state, and output of the update gate constitute
the current hidden state and output. .e GRU cell can be
expressed as follows:
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zt � σ Wzxt + Uzht−1 + bz
( ,

rt � σ Wrxt + Urht−1 + br
( ,

ht � tanh Wxt + U rt ⊙ht−1(  + b( ,

ht � 1 − zt( ⊙ ht + zt ⊙ ht−1,

(4)

where ht−1 is the hidden state at t − 1 and xt, zt, rt, ht, and ht

are the input of the GRU cell, output of the update gate,
output of the reset gate, candidate hidden state, and hidden
state at t, respectively. W and U are the weight matrices of
the fully connected layer, and b is the bias vector. σ and tanh
are sigmoid and tanh activation function, respectively. ⊙
represents the element-wise product between two matrices
of the same size. .e GRU cell is shown in Figure 1.

To make the GRU work, its current hidden state is
connected to the next hidden state input. In order to im-
prove the learning ability, multiple GRU cells can be stacked
along the input-output direction, and the output of the GRU
cell at each step can be used as the input of the next GRU cell

at corresponding step. Compared with single-layer GRU,
stacked GRU has multiple hidden layers, which can improve
the ability to learn time series. .e structure of stacked GRU
along the time axis is shown in Figure 2.

2.3. Residual Connections. With the appearance of nor-
malization and dropout, the vanishing and exploding gra-
dients problem of the stacked neural network is greatly
alleviated, which makes the training of deep network no
longer difficult. In theory, the learning ability of the stacked
neural network increases with the number of layers, and its
error also decreases until it remains unchanged. But actually,
when the number of layers increases, the network’s per-
formance will degrade rapidly. At present, stacked RNN,
LSTM, or GRU generally has no more than four recurrent
layers [36].

.e latest research pointed out that overfitting is not the
cause of stack network degradation..e assumption that the
performance of a deep network is not lower than that of a
shallow network is based on the ability of the deep part of the
network identity mapping its input, in other words, the
ability of the deep part of the network fitting f(x) � x [35].
However, artificial neural network has been proved to be
difficult to apply in learning linear relationship [33]. In order
to give the network layer this ability, the residual connec-
tions as shown in Figure 3 are proposed [35].

.e red part in Figure 3 is the added residual connec-
tions, also known as skip connections or shortcut connec-
tions. After adding residual connections, the input of the
network layer is directly superimposed with the output, and
the layer is transformed from fitting f(x) � x to fitting
f(x) � h(x) − x. h(x) is the approximate identity mapping
of x; the network layer is changed to learning the nonlinear
residual of identity mapping. It is much easier for neural
network to learn a group of nonlinear data close to zero
compared to linear data.

.e residual connections shown in Figure 3 were first
used to solve the degradation problem of the deep con-
volutional neural network in image recognition, but they can
also be applied to any stacked network. Figure 4 shows the
stacked GRU structure with residual connections, which is
the same as Google’s stacked LSTM in its machine trans-
lation model [36]. Different from Figure 3, the residual
connections in Figure 4 skip one GRU layer instead of two,
and Add is set before the activation function. .e GRU
network layer inputs the second GRU layer after the ele-
ment-wise addition of the output and input at each step.
Each GRU layer with residual connections constitutes a
residual block, which can be defined as follows:

hi
t � GRUi xi−1

t , hi
t−1;W

i
,Ui

 

xi
t � hi

t + xi−1
t

,
⎧⎪⎨

⎪⎩
(5)

where the function is composed of equations (6)–(8), rep-
resenting the i -th GRU layer.

.e residual connections can significantly improve the
flow of gradients between network layers. In theory, the
network with any number of layers can be trained after

Table 1: Acronyms used in the article.

Acronyms
ARIMA Autoregressive integrated moving average model
ARMA Autoregressive moving average

ARMAX Autoregressive moving average with exogenous
variables

EMD Empirical mode decomposition
ERA5 .e European Reanalysis dataset
GRU Gated recurrent unit
IMFs Intrinsic mode functions
LSTM Long short-term memory
MA Moving average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer perceptron
NWP Numerical weather prediction
PE Permutation entropy
RMSE Root Mean Square Error
RNN Recurrent neural network
SVR Support vector machine regression
VMD Variational mode decomposition
WT Wavelet transform
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Figure 1: Cell of gated recurrent unit.
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stacking residual blocks. But, in practical works, the sum of
LSTM layers with and without residual network is no more
than 8 [36].

3. The Proposed Model

3.1. Model Architecture. .e proposed model architecture is
shown in Figure 5. It contains three parts: data split, data

decomposition, and components prediction. .e process of
the proposed model is summarized as follows:

(1) .e data split part splits the original wind speed
series into three subsets: training set, validation set,
and test set..e train-validation-test split percentage
is 60%-20%-20%..e test set is considered unknown
and does not participate in the training process; and
the validation set is used to determinate

GRU1 GRU1 ... GRU1

GRU2 GRU2 ... GRU2

GRUn GRUn ... GRUn

... ... ... ...

Initial hidden state
of GRU layer1

Output matrix

Input sample

Time 

...

Hidden state of
GRU layer1 at t0

Input of GRU
layer1 at t0 

GRU layer1

GRU layer2

Last GRU layer

t0 t1 tn

Figure 2: Structure of stacked GRU along the time axis.

ReLU

ReLU

add

weight layer

weight layer

x

x

h (x) = f (x)+x

f (x)

Figure 3: Structure of the residual connections.
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hyperparameters. In order to speed up model
training, we also normalize the three subsets to
eliminate the range differences and accelerate the
gradient descent. .e maximum and minimum

values of the training set are obtained to scale the
validation set and test set.

(2) .e data decomposition part uses VMD to solve the
constrained variational problem and then

GRU1 GRU1 GRU1

GRU2 GRU2 GRU2

2x0
2x1

2x2

1x0
1x1

1x2

0x0
0x1

0x2

Figure 4: Structures of stacked GRU with residual connections.

Original wind
speed data Training data Validation

data Test data

Data split

Data decomposition
IMF1 IMF2 IMF3 IMF4

Decomposition
residual

Components
prediction 

Sum

Forecast results

Training

Test

Validation

Stacked GRU
with residual
connections

Stacked GRU
with residual
connections

Stacked GRU
with residual
connections

Stacked GRU
with residual
connections

Stacked GRU
with residual
connections

Figure 5: Architecture of the proposed model.
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reconstruct the component series and calculates the
decomposition residual. Correlated information
remains in the decomposition residual, so it is
necessary to set up a predictor for the decomposition
residual. .e number of subseries determines the
number of predictors and total training time. In
order to make a trade-off between the training time
and forecasting accuracy, the wind speed series are
decomposed into four subseries in this part under
termination conditions� 1e-7.

(3) In the components prediction part, since the sub-
series have different frequency characteristics, five
stacked GRU models with residual connections are
used to predict the subseries and a decomposition
residual, respectively. .e final forecast values are
obtained by integrating the forecast outputs of all
predictors. Since this paper is a short-term hourly
forecasting; the data from the past 24 hours are
highly related to the forecast values. .erefore, the
data from 24 hours are used tomake a 3-hours-ahead
wind speed forecasting.

According to the above section, the residual connections
should be set in the deep layer of the network, so we design a
stacked GRU with four layers, and GRU layer 1 and GRU
layer 2 are independent, while the residual connections are
set at the input of GRU layer 3 and the output of GRU layer
4..e output of GRU layer 2 will be fed to the output of GRU
layer 3 and added to it, and then the sum of them will be fed
to the output of GRU layer 4 and added to it. In order to
match the output of the stacked GRU with the desired
output step size, we use a flatten layer to reshape the output
into a one-dimensional vector, and then a dense layer with
linear activation function is used for linear conversion. A
detailed parameters determination is described in the
Parametric Study section.

3.2. Evaluation Criteria. Time series forecasting can be
converted into a supervised regression problem, so we use
three regression metrics to evaluate the forecasting per-
formance. .ese regression metrics are the Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). .ey are defined
as follows:

RMSE �

���������������

1
n



n

i�1
yi − f xi( ( 

2




, (6)

MAE �
1
n



n

i�1
yi − f xi( 


, (7)

MAPE �
100
n



n

i�1

yi − f xi( 

yi




, (8)

where xi represents the model inputs, f(xi) is the forecast
value, yi is the corresponding actual value, and n is the
number of actual values.

RMSE and MAE have the same physical dimensions as
the original data and range from 0 to∞. A lower RMSE or
MAE means the model has a higher forecasting accuracy.
MAE uses the absolute value to describe the gap between two
curves, and the error of each prediction point has the same
weight in the final error. .erefore, the MAE is less than the
RMSE on the same data. Since the square term of the RMSE
magnifies the error between two points, the large gap be-
tween the RMSE andMAE can indicate that some prediction
points contribute significantly to the final error of the
prediction curve. .e MAPE is a dimensionless metric
ranging from 0 to∞, and a lower MAPE means the model
has a higher forecasting accuracy. We use this metric be-
cause it considers the proportion of error in the total data
and is able to evaluate performance of different models on
the same dataset. In addition, 5-fold cross-validation
strategy is used in the Result of Multistep Wind Speed
Forecasting section.

4. Case Study

4.1. Datasets. Marine meteorological datasets are collected,
sorted, and released by scientific research institutions in
various countries. .e use of the datasets varies greatly
depending on the observation method, observation area,
observation period, and observation elements. Selecting a
high-quality, long-term, and high-resolution marine mete-
orological dataset is the premise of modelling. Reanalysis
datasets are produced from the buoy and satellite obser-
vation data by determining the optimal estimation of the
system state. .e reanalysis datasets can be regarded as the
real global ocean data and are currently used as the data
source for the NWP.

.erefore, the ERA5 is selected in the case study. .e
ERA5 is the latest global meteorological dataset released by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). .e ERA5 provides hourly wind speed data in
137 levels from the surface up to a height of 80 km, covering
the global land and ocean with 30 km grids [40]. .e wind
speeds are decomposed into u-component and v-compo-
nent. .e positive u-component of wind is eastward wind
speed, and the negative counterpart is westward wind speed.
.e positive v-component of wind is northward wind speed,
and the negative counterpart is southward wind speed.

In order to verify the applicability of the proposed model
in global ocean, we use hourly wind speed u-component
from 1 January 2016, 00 : 00, to 31 December 2017, 23 : 00,
which includes 17544 hours to make forecast experiments.
.e forecast areas are located in the Pacific, Indian, and
Atlantic Oceans, respectively. Figure 6 shows the coordi-
nates of three forecast areas and their surrounding areas on
the map, as well as the heat map of wind speed in January
2016. .e map in Figure 6 is drawn based on the National
Oceanic and Atmospheric Administration (NOAA) Panoply
software..e statistical indices of three areas in two years are
shown in Table 2.

To further analyse the characteristics of the dataset,
Figure 7 shows the original time series, as well as [0, 1]
normalized trends and seasonality of the first month with 24
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hours as period. .e trendy series present great changes in a
month. .e seasonal series do not show repetitive patterns,
which indicates that the wind speed data contain multiple
seasonalities. .erefore, it is necessary to use decomposition
methods that support multiple frequencies.

In Table 2, the positive average wind speed means
eastward wind speed, and the negativemeans westward wind
speed. It can be seen from Table 2 that the maximum
westward wind speeds in areas 2 and 3 are significantly
higher than the maximum eastward wind speed, while they
are similar in area 1. Area 2 has the highest average wind
speed and the largest standard deviation. In addition, al-
though the maximum wind speed in area 3 is just
9.3708m·s−1, its minimum value is 0.1613m·s−1, much
higher than other areas. According to the statistical indices
of trends and seasonality, area 1 and area 2 have similar
seasonal standard deviations, and the higher volatility of area
2 is attributed to its trendy part. Area 3 has the lowest trendy
and seasonal standard deviations among the three areas.

4.2. Comparison between Decomposition-Based Models. In
order to prove that the VMD is superior to other decom-
position methods and that the performance of the stacked
GRU is improved by the residual connections as a com-
ponent predictor, the following experiments are carried out.
All of data are normalized when passed to the model for
training.

First, a group of experiments are carried out in area 1 to
prove that the proposed combination of the VMD and the
stacked GRU is superior to the combinations of the other
decomposition and prediction models. In the experiment,
three decomposition methods and four prediction models
are cross-combined. .e WT, EMD, and VMD are selected.
Among them, the decomposition level of the WT is 4, which
means that the wind speed sequence will be decomposed
into an approximate component, four detail components,
and a decomposition residual sequence. .e EMD processes
the sequence adaptively, so the wind data in area 1 is
decomposed into 9 to 11 subseries. .erefore, the highest
frequent subseries will be discarded until the number of all
subseries does not exceed 9. .e VMD decomposes wind
data into four subseries under termination conditions� 1e-
7.

.e prediction methods include the LSTM, GRU,
stacked LSTM, and stacked GRU. .e LSTM and GRU are
designed as a single-layer structure with 512 neural units.
.e stacked LSTM and stacked GRU are designed as four
layers with 512, 32, 32, and 32 neural units in each layer,
respectively. .e batch size is 25 and Adam optimizer’s
learning rate is 0.001. .e results are shown in Table 3.

.e three metrics of the EMD are slightly lower than
those of WT. .ere are some exceptions in Figure 3. For

Area 1
+

2.5N, 162.5W

Area 2
+

Area 3
+

10S, 5W 20S, 80E

(m·s-1)4.11.2-1.6-4.5-7.3-10.2

Figure 6: Coordinates of three areas and their surroundings on the map.

Table 2: Statistical indices of three sea areas.

Wind speed (m·s−1) Area 1 Area 2 Area 3
Maximum eastward speed 13.5472 8.9360 1.0977
Maximum westward speed 11.3178 24.1463 9.3708
Minimum absolute speed 0.0093 0.0269 0.1613
Average speed −5.7063 −7.4246 −5.1017
Standard deviation 1.9026 3.0145 1.3896
Average speed of trendy series −5.6236 −7.1146 −4.8573
Standard deviation of trendy series 1.6162 2.8849 1.2616
Maximum speed of seasonal series 9.3964 12.7637 7.7910
Standard deviation of seasonal series 0.4388 0.4328 0.3293
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example, when the EMD is combined with the GRU and
stacked LSTM, the RMSE is 0.2709 and 0.4361, while when
the WT is combined with them, the RMSE is 0.2574 and
0.2982. It can be seen from the table that the VMD is better
than WT and EMD in all combinations.

.e RMSE of GRU is lower than LSTM under the three
decomposition methods, and the RMSE of stacked GRU is
lower than the stacked LSTM. .is shows that GRU shows
better performance than the LSTM in both single layer and
multiple layers. However, the metrics of stacked GRU are
higher than GRU, and the metrics of stacked LSTM are higher
than LSTM. For example, the 1-step RMSE of VMD-Stacked
GRU is 0.1436, and the 1-step RMSE of VMD-GRU is 0.1385.
.is shows that the stacked GRU and stacked LSTM are de-
graded when combined with the VMD. .is degradation is
found in themodels based on all three decompositionmethods.

4.3. Improvement of VMD-Stacked GRU by Residual
Connections. After the above analysis, the VMD-GRU is
determined as the best combination of decomposition-

prediction methods, and the VMD-Stacked GRU is deter-
mined as the second best combination. In order to confirm
that residual connections improved VMD-Stacked GRU to
make it surpass the VMD-GRU method, a comparative
experiment was carried out. In the experiment, two kinds of
residual connections were used. Residual connections (a)
represent the structure shown in Figure 4 and equation (8),
and residual connections (b) change the single-layer skipping
to double-layer skipping. .e results are shown in Table 4.

.e VMD-Stacked GRU with residual connections (a)
outperforms that with residual connections (b) in most
metrics. .e VMD-stacked GRU with residual connec-
tions (a) perform slightly worst than that with residual
connections (b) only on the 1st and 3rd steps of Area 1 and
the 3rd step of Area 3. .erefore, it can be considered that
residual connections (a) are more suitable than residual
connections (b) for wind speed prediction tasks. .e
VMD-Stacked GRU with residual connections (a) out-
performs VMD-GRU in most metrics. It is illustrated that
residual connections (a) solve the degradation of VMD-
Stacked GRU and make it surpass VMD-GRU.
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Figure 7: Visualization of datasets used in experiments. (a) Original time series. (b–d) Trends and seasonality in areas 1–3.

Table 3: Result of different combination of decomposition and prediction methods.

Step
LSTM GRU Stacked LSTM Stacked GRU

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

WT
1 0.2745 0.2108 4.2170 0.2574 0.1927 3.8381 0.2982 0.2272 4.5937 0.2882 0.2182 4.3407
2 0.4507 0.3495 7.0160 0.4574 0.3533 6.9554 0.4782 0.3698 7.4155 0.4746 0.3696 7.2957
3 0.5372 0.4191 8.3136 0.5463 0.4257 8.3779 0.5645 0.4378 8.8016 0.5681 0.4412 8.7430

EMD
1 0.2304 0.1892 3.2575 0.2709 0.2103 3.8818 0.4361 0.3522 6.0360 0.2691 0.2131 3.6862
2 0.2724 0.2183 3.7819 0.4051 0.3124 5.7697 0.5206 0.4182 7.2722 0.4167 0.3290 5.8089
3 0.3316 0.2632 4.5792 0.5425 0.4185 7.7118 0.5835 0.4681 8.3242 0.4485 0.3486 6.3692

VMD
1 0.1598 0.1251 2.4619 0.1385 0.1058 2.0586 0.1682 0.1298 2.4828 0.1436 0.1080 2.0625
2 0.1896 0.1495 2.9270 0.1643 0.1290 2.5175 0.2087 0.1645 3.1505 0.1733 0.1361 2.6172
3 0.2048 0.1615 3.1113 0.1779 0.1393 2.7237 0.2257 0.1784 3.3679 0.1889 0.1485 2.7730
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4.4. Parametric study. To determine the optimal parameters
of the proposed model, a detailed parametric study is carried
out. .e parameters to be determined are the network
parameters and training parameters of the stacked GRU..e
network parameters include the number of hidden neural
units of each layer. .e training parameters include batch
size, maximum epochs, and the learning rate of the
optimizer.

.e training parameters are first determined, followed by
the network parameters. When determining the training
parameters, the network parameters are set in advance
according to the latest research. In the article in [4], the
optimal two-layer GRU is determined with 512 units in the
first layer and 32 units in the second layer. Since the Adam
optimizer outperforms classical optimizers such as
RMSProp, SGD, and Adagrad [41], it is adopted in the
experiment, and its learning rate is searched in {0.1, 0.001,
0.0001}. Batch size is searched in {8, 16, 25, 32, 64} since a
study in [42] showed that a smaller batch helps to model
training. We set maximum epochs� 50 and use TensorFlow
2.3.1’s callback function [43] to monitor the lowest loss value
of the validation set in epochs iteration. .e parametric
study is carried out on area 1, and results are average of three
time steps. .e RMSE results are shown in Figure 8.

.e above results show that the best configuration of
training parameters is batch size� 24 and learning rate-
� 0.001. .e stacked GRU network parameters are, re-
spectively, marked as (a∗, a∗), (a, a∗, a∗), and (a, b, b∗, b∗)
according to different layers. For example, (a∗, a∗) repre-
sents two-layer GRU, and the units number is a; and ∗means
that there are residual connections in this layer. Units search
is firstly conducted in {10, 100, 200, . . ., 600} and then amore
accurate search is conducted in the best interval. .e RMSE
results are shown in Figure 9.

It can be seen that (500, 50, 50∗, 50∗) are the optimal
network parameters. Above all, the best parametric con-
figuration set is shown in Table 5.

4.5. Result ofMultistepWind Speed Forecasting. To prove the
superiority of the proposed model VMD-Stacked GRU with
residual connections, we choose seven time series and
machine learning models, as well as a published EMD-based

model [26], as baseline models. .ese models directly learn
wind speed series without composition. .rough Auto-
correlation Function and Partial Autocorrelation Function
diagrams, the ARIMA parameters p� 2, d� 1, and q� 12 are
determined. .e support vector machine regression (SVR)
uses RBF kernel and establishes the relationship between
past information and each forecast time step. .e structure
ofMLP is a four-layer structure with 400, 32, 32, and 32 units
in each layer, respectively. .e EMD-PE-ANN reconstructs
IMFs into IMF1, IMF2, and 

9
i�3 IMFi. 5-Fold cross-vali-

dation strategy is used to obtain the results in Tables 6–8. It
can be seen from Tables 6–8 that, compared with predicting
wind speed directly, the proposed model has lower error
metrics at three time steps in three areas. Most of the error
metrics of GRU are lower than those of LSTM, especially in
area 2. Most of the error metrics of stacked GRU are lower
than those of stacked LSTM, and the RMSE is lower than
stacked LSTM only on the 3rd step of area 1 and the first step
of area 3. When directly predicting wind speed, the stacked
model also has a less obvious degradation effect. For ex-
ample, compared with the GRU, the RMSE of the stacked
GRU shows degradation in the 3 steps of area 1 and the 1st
step of area 2 and area 3. In addition, although not sur-
passing the proposed model, the two classic methods,
ARIMA and SVR, have relatively good metrics which are
close to GRU.

To further illustrate the superiority of the proposed
model, the following figures show the comparison curves of
models in area 1. It can be seen from Figure 10 that the fitting
effect of the prediction curve (red line) of the proposed
model is significantly higher than those of the other models.
.e values at the last input time step (Persistence) and the
overall mean values of inputs (Average) are also added in the
figure as benchmarks, and the experiment results show that
the proposed model surpasses the benchmarks.

5. Discussion

.e case study concludes that, compared with other direct
prediction or decomposition-based prediction models, the
proposed VMD-Stacked GRU model with residual con-
nections is more accurate in multistep forecasting. .e
proposedmodel performs well on the ERA5 sea surface wind

Table 4: Comparison of VMD-based models with and without residual connections.

Step
VMD-GRU

VMD-Stacked GRU
without residual
connections

VMD-Stacked GRU with
residual connections (a)

VMD-Stacked GRU with
residual connections (b)

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Area 1
1 0.1385 0.1058 2.0586 0.1436 0.1080 2.0625 0.1369 0.1039 1.9920 0.1353 0.1027 2.0204
2 0.1643 0.1290 2.5175 0.1733 0.1361 2.6172 0.1583 0.1221 2.2883 0.1583 0.1238 2.4080
3 0.1779 0.1393 2.7237 0.1889 0.1485 2.7730 0.1730 0.1332 2.5687 0.1655 0.1301 2.5090

Area 2
1 0.1573 0.1186 1.8829 0.1740 0.1295 2.0598 0.1560 0.1172 1.8288 0.1708 0.1280 1.9927
2 0.2090 0.1622 2.7126 0.2209 0.1712 2.8313 0.2141 0.1665 2.8083 0.2234 0.1733 2.7884
3 0.2617 0.2044 3.5049 0.2576 0.2004 3.3341 0.2500 0.1950 3.3832 0.2558 0.1994 3.2428

Area 3
1 0.1031 0.0771 1.5846 0.1036 0.0772 1.5947 0.1039 0.0776 1.6081 0.1056 0.0789 1.6002
2 0.1253 0.0972 2.0268 0.1255 0.0972 2.0249 0.1252 0.0975 2.0334 0.1255 0.0975 2.0457
3 0.1367 0.1067 2.2642 0.1361 0.1063 2.2395 0.1358 0.1062 2.2520 0.1347 0.1053 2.2406
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speed datasets of three ocean areas around the world.
Compared with the classic model WT-LSTM, the proposed
model has lower errors metrics. According to the case study,

the superior performance of the proposed model is due to
the three following reasons:

(1) .e VMD is an excellent decomposition method,
and its error in combination with LSTM, GRU,
stacked LSTM, and stacked GRU is lower than the
combination of WT or EMD and these methods.

(2) .e GRU is a better forecasting model than LSTM. In
the cases of direct prediction, direct prediction after
stacking, and decomposition-based prediction after
stacking, the GRU’s error metrics are lower than LSTM.

(3) .e residual connections can alleviate the degrada-
tion of stacked GRU and improve its learning ability.
.e overall error metrics of VMD-Stacked GRUwith
residual connections are lower than those of VMD-
GRU and VMD-Stacked GRU without residual
connections.
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Figure 8: .e RMSE results of determining batch size and learning rate.
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Figure 9: .e RMSE results of determining network parameters. (a) Search for 2-layer network. (b) Search for 3-layer network. (c) First
search for 4-layer network. (d) Second search for 4-layer network.

Table 5: Parameters of the proposed model.

Stacked GRU predictor Parameters

GRU layer 1 Number of units: 500
Input shape: (24, 1)

GRU layer 2 Number of units: 50
GRU layer 3 (∗) Number of units: 50
GRU layer 4 (∗) Number of units: 50
Flatten layer None

Dense layer Number of units: 3
Output shape: (3)

General setting Batch size: 24
Learning rate: 0.001
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Table 6: Comparison of the proposed model and other models (a).

Step
ARIMA SVR MLP

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Area 1
1 0.2501 0.1893 7.1170 0.3073 0.2202 8.4358 0.3191 0.2556 8.3750
2 0.4589 0.3959 12.3518 0.4920 0.3909 13.5945 0.5023 0.3987 13.1154
3 0.6008 0.4738 15.7427 0.6381 0.5035 17.3020 0.6510 0.5144 16.7805

Area 2
1 0.3397 0.2433 4.9072 0.4701 0.3495 7.1652 0.4557 0.3415 6.6360
2 0.5393 0.3925 5.9793 0.6869 0.5114 10.2742 0.6694 0.5009 9.5826
3 0.8762 0.6341 13.5656 1.0856 0.8040 17.2215 1.0842 0.8062 15.9731

Area 3
1 0.2093 0.1665 3.9011 0.1806 0.1425 3.3526 0.2572 0.2151 4.8661
2 0.3827 0.2977 6.9902 0.3405 0.2691 6.5123 0.3704 0.3028 7.2131
3 0.4799 0.3779 7.8140 0.4708 0.3858 9.1068 0.3077 0.2298 4.6195

Table 7: Comparison of the proposed model and other models (b).

Step
LSTM GRU Stacked LSTM

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Area 1
1 0.2454 0.1901 7.2279 0.2428 0.1851 7.1381 0.2494 0.1915 7.0653
2 0.4466 0.3547 13.8548 0.4522 0.3570 13.8690 0.4857 0.3636 12.1895
3 0.6002 0.4756 16.1619 0.5941 0.4696 16.0096 0.5988 0.4721 15.7203

Area 2
1 0.4641 0.3422 7.1769 0.3931 0.2770 5.4830 0.4002 0.2963 5.6956
2 0.6611 0.4921 9.8987 0.6518 0.4761 9.8307 0.6342 0.4696 9.3063
3 1.0504 0.7804 16.2258 0.9645 0.7029 14.3546 0.9345 0.7166 15.5719

Area 3
1 0.1811 0.1424 3.3351 0.1755 0.1363 3.1782 0.1672 0.1309 3.0642
2 0.3248 0.2569 6.0276 0.3248 0.2588 6.1428 0.3174 0.2512 5.8463
3 0.2385 0.1842 4.0038 0.4536 0.3661 8.6473 0.4445 0.3371 8.6531

Table 8: Comparison of the proposed model and other models (c).

Step
Stacked GRU EMD-PE-ANN VMD-Stacked GRU with

residual connections
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Area 1
1 0.2429 0.1813 6.8944 0.2715 0.2065 7.8447 0.1366 0.1037 4.1950
2 0.4433 0.3505 11.8503 0.3980 0.3081 10.2622 0.1600 0.1259 5.0163
3 0.6021 0.4562 15.7775 0.5010 0.3853 13.1785 0.1650 0.1297 4.4211

Area 2
1 0.3973 0.2907 5.5544 0.4111 0.2984 5.6557 0.2427 0.1775 2.3541
2 0.5506 0.3970 7.5523 0.5109 0.3673 6.6612 0.2837 0.2087 4.1246
3 0.9100 0.6679 13.2735 0.7215 0.5899 12.2075 0.3917 0.2875 6.1061

Area 3
1 0.1775 0.1386 3.2802 0.1724 0.1349 3.2383 0.1051 0.0803 1.8354
2 0.3156 0.2500 6.0146 0.2993 0.2565 4.989 0.1264 0.0980 2.3893
3 0.4443 0.3515 8.5417 0.4009 0.3203 8.0080 0.1320 0.1038 2.5462
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Figure 10: Continued.

12 Complexity



6. Conclusions

.e sea wind speed forecasting is a key part to guarantee safety
of sailing ships. To solve the problems of hourly short-term
wind speed forecasting, an ensemble model based on the VMD
and stacked GRU is proposed, and the residual connections are
used to improve stacked GRU. .e model uses VMD to de-
compose the wind speed series and then uses the stacked GRU
model with residual connections to predict each component. In
order to prove the performance of the proposed model, three
cases from the Pacific, Indian, and Atlantic Oceans are studied.
In the experiment, three error metrics, RMSE, MAE, and
MAPE, are used to evaluate each time step. .rough the case
studies, the following conclusions can be illustrated:

(1) Separately predicting the decomposed wind speed se-
quence and then superimposing it as the final result can
improve the prediction effect, and VMD is the most
effective one of the various decomposition methods.

(2) .e forecast error metrics of VMD-Stacked GRU with
residual connections are generally lower than those of
ARIMA, SVR, MLP, LSTM, GRU, stacked LSTM, and
stacked GRU models at the 1st, 2nd, and 3rd steps.
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