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Due to the introduction of memristors, the memristor-based nonlinear oscillator circuits readily present the state initial-dependent
multistability (or extreme multistability), i.e., coexisting multiple attractors (or coexisting infinitely many attractors). The dimensionality
reduction modeling for a memristive circuit is carried out to realize accurate prediction, quantitative analysis, and physical control of its
multistability, which has become one of the hottest research topics in the field of information science. Based on these considerations, this
paper briefly reviews the specific multistability phenomenon generating from the memristive circuit in the voltage-current domain and
expounds the multistability control strategy. Then, this paper introduces the accurate flux-charge constitutive relation of memristors.
Afterwards, the dimensionality reduction modeling method of the memristive circuits, i.e., the incremental flux-charge analysis method,
is emphatically introduced, whose core idea is to implement the explicit expressions of the initial conditions in the flux-charge model and
to discuss the feasibility and effectiveness of the multistability reconstitution of the memristive circuits using their flux-charge models.
Furthermore, the incremental integral transformation method for modeling of the memristive system is reviewed by following the idea
of the incremental flux-charge analysis method. The theory and application promotion of the dimensionality reduction modeling and
multistability reconstitution are proceeded, and the application prospect is prospected by taking the synchronization application of the
memristor-coupled system as an example.

1. Introduction

The intrinsic memory property [1] of the memristor makes
the memristor-based nonlinear circuits and systems easily
exhibit the state initial-dependent dynamical behaviors. By
keeping the system parameters unchanged and changing the
state initials, the trajectories of the memristive circuits and
systems can asymptotically approach to different stable
states, showing the state initial-dependent multistability
[2, 3] or extreme multistability [4-7], i.e., coexisting multiple
or infinitely many attractors. On the one hand, these
coexisting multistable modes can provide more flexibility for
information engineering applications [8-11]; on the other
hand, it may also lead the application systems to abnormal
working states [12]. These ungovernable problems pose a
severe test for realizing the control of multistable modes. In

addition, the dynamical behaviors of memristive circuits and
systems are highly dependent on the state initials, but the
state initials cannot be explicitly expressed in their state
equations, which bring great obstacles in mechanical ana-
lyses of the state initial-dependent dynamical behaviors.
Moreover, the memristive circuits and systems usually have
line equilibrium set, plane equilibrium set, no equilibrium,
or stable equilibrium, whose stabilities and induced dy-
namical behaviors are hard to be analyzed by using the
traditional stability theory [12]. Therefore, accurate pre-
diction, quantitative analysis, and physical control of such
special phenomena have become an important research
problem in the field of information science.

Traditional control strategies usually adopted nonfeed-
back control strategy to convert a multistable system to a
mono-stable system [13-17] or adopted feedback control
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strategy to stabilize the system in a certain desired state
[13, 18, 19]. But these control strategies cannot achieve the
multistable control. To solve this problem, researchers
proposed different dimensionality reduction modeling
schemes based on the memristive circuit and system [20, 21].
In [22], the concept of dimensionality reduction modeling
was proposed, which modeled the memristive circuits with
two physical quantities of flux and charge as main state
variables, and the dimension of the obtained flux-charge
model was lower than that of the traditional voltage-current
model. Bao et al. [23] built the reduce-ordered flux-charge
model of a two-memristor-based circuit and analyzed its
dynamical characteristics via the voltage-current and flux-
charge models. Bao et al. [24] qualitatively pointed out that
the flux-charge model of the memristive circuit can be
equivalent to realize its dynamical behavior in the voltage-
current model. However, in these early studies, the state
initials of the memristive circuit were not explicitly
expressed in the dimensionality reduction model [25],
resulting in the information loss of state initials of the
memristive circuit. Therefore, the established dimensionality
reduction model could not reflect the multistability of the
memristive circuit. In recent years, Corinto proposed an
incremental flux-charge analysis method [26, 27] and ap-
plied it to the dimensionality reduction modeling of
memristor-based cellular neural networks [28] and mem-
ristor-based oscillator array [29]. With this method, the state
initials of the memristive circuit can be expressed as
standalone system parameters in the flux-charge domain
[12], which is conducive to the analyses and measurements
of the state initial-dependent dynamical behaviors. There-
after, this method was applied for reconstituting and ana-
lyzing extreme multistability of ideal memristor-based
circuits [12, 20, 30, 31]. On this basis, the incremental in-
tegral transformation method was proposed for the analyses
of memristive systems [21, 32]. Hereto, a complete set of
dimensionality reduction reconstruction theory for ideal
memristor-based circuits and systems was thereby formed.

It should be noted that, in the original literature, these
two methods were called the flux-charge analysis method
[26, 27] and the state variable mapping method [21], re-
spectively. But the state variables of the dimensionality re-
duction model are actually expressed by the incremental
integral of the original memristive circuit’s and system’s
state variables, whose core idea is integral transformation.
Therefore, in this paper, these two methods are called the
incremental flux-charge analysis method and the incre-
mental integral transformation method, respectively. By
using these two methods, on the one hand, the implicit state
initials in the original memristive circuit and system can be
transformed into the explicitly state initial-related system
parameters appearing in the dimensionality reduction
model. On the other hand, the line or plane equilibrium set
in the original memristive circuit and system can be con-
verted into the certain equilibrium, which is beneficial to the
elaboration of the dynamic mechanism. In short, the state
initial-dependent dynamical behaviors of the original
memristive circuit and system are transformed into the
parameter-dependent ~ dynamical behaviors of the
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dimensionality reduction model. In addition, synchroniza-
tion, as one of the basic nonlinear phenomena, has received
extensive attention in the field of basic theory and engi-
neering applications [33]. In the nonmemristor-coupled
system, the state initials have significant effect on the syn-
chronization characteristics [34-36]. Based on the above
dimensionality reduction methods, in the study of the
synchronization on the memristor-coupled system [37], the
synchronization effect of the state initial-related system
parameters can be studied quantitatively after the state
initials are expressed explicitly in the state equation.

The incremental flux-charge analysis method and the
incremental integral transformation method realize the
mapping transformation of the state variable domain by
means of integral transformation and describe and analyze
the multistability of the original memristive circuit and
system based on the transformed state variable domain,
which provides theoretical basis for the precise prediction,
quantitative analysis, and physical control of such special
phenomena. In this paper, the dimensionality reduction
modeling and multistability reconstruction of the mem-
ristive circuit and system are summarized to help researchers
fully understand the state initial-dependent multistability
dimensionality reduction reconstruction strategy of the
memristive circuit and system. Then, the reconstruction
strategy is applied to the synchronization research of the
memristor-coupled system to quantitatively study the in-
fluence of state initials on synchronization.

2. Multistability of Memristive Circuit in the
Voltage-Current Domain

2.1. Multistability and Coexisting Multiple Attractors.
Multistability [13, 38-41] is an inherent phenomenon of the
nonlinear dynamical system, in which multiple attractors
coexist with the change of state initials under the fixed
system parameters. The term “multistability” first appeared
in the study of visual perception [42]. Arecchi also found the
coexistence attractors’ phenomenon in electronic circuits
[43] and gas lasers [44]. Later, a large number of theoretical
and experimental studies have explored this special phe-
nomenon in different systems [45-55]. In addition, in some
special coupled systems [56, 57], the phenomenon of
coexisting infinitely many attractors, i.e., extreme multi-
stability [58-61], can also be observed.

In recent years, the hidden attractor [62-76], as a special
class of newly defined attractor, has attracted extensive at-
tention from researchers. The attractor that we usually say is
also called the self-excited attractor, which is caused by the
unstable equilibrium. Unlike the self-excited attractor
[67, 77], the attraction basin with the hidden attractor does
not intersect any equilibrium [78], and its existence increases
the uncertainty of the system. When the system has a stable
equilibrium [5] or no equilibrium [3, 79, 80], the induced
multistability is called hidden multistability. Note that when
the system has a stable equilibrium [5] and can produce
dynamical behavior other than the point attractor, it can be
confirmed that the system has hidden multistability.
However, if the system has no equilibrium and can produce
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only one stable oscillation behavior, the system is a hidden
system, but it does not have multistability [81].

It has been shown that the hidden attractor is sensitive to
the state initial of the system. In the domain of stable
equilibrium, the system trajectory will converge to the stable
point, but under the special state initial, the system trajectory
can form the stable chaotic attractor or periodic limit cycle.
Figures 1(a) and 1(b), respectively, show the self-excited and
hidden attractors generated by a novel Chua’s circuit [67].
Figures 1(c) and 1(d), respectively, show the local plane
projection of Figures 1(a) and 1(b), where the red dots are a
pair of nonzero equilibria. According to the orbit of the
attractor and the position relationship of the equilibrium in
the figure, it can be seen that the attraction basin of the self-
excited attractor must cover the unstable equilibrium, while
the attraction basin of the hidden attractor with the
neighborhood of the stable equilibrium does not overlap.
Therefore, the self-excited attractor and hidden attractor can
be clearly distinguished according to the intersection rela-
tionship between the attraction basin and the equilibrium
neighborhood in phase space.

In general, coexisting infinitely many attractors can be
classified into the following four types:

(a) Different attractor types: hyperchaotic attractor,
chaotic attractor, quasi-periodic limit cycle, periodic
limit cycle, and stable point

(b) Different attractor topologies: the same type of
attractor has completely different topologies, such as
spiral and double-scroll attractors, scroll complete
and incomplete attractors, and attractors with dif-
ferent dynamic amplitude

(c) Different number of limit cycles: limit cycles with
different number of periods

(d) Different attractor positions: attractors are located in
different phase space.

2.2. The Difference between Multistability and Chaotic Initial
Sensitivity. Since Chua put forward the generalized concept
of the memristive system [82], the circuit and system
constructed by the memristor have received great attention.
In the early memristive circuit [83-87], scholars found that
the stability of the equilibrium was closely related to the state
initial of the memristor, which meant that the coexistence of
multiple attractors was easy to occur in the memristive
circuit. Then, in the memristive circuit, Bao found that the
state initial-dependent dynamical behavior was a special
kind of multistability phenomenon, i.e., extreme multi-
stability. And, in [88], Bao et al. explicitly proposed the
extreme multistability in the memristive circuit for the first
time, that is, in the memristive circuit with line equilibrium,
there was a peculiar coexistence infinitely many attractor
phenomenon, which relied on the internal state initial of the
memristor. In particular, Jafari et al. [89] pointed out the
difference between the state initial-dependent dynamical
behavior (extreme multistability) of the memristive system
and the chaotic initial sensitivity of the general nonlinear
dynamical system. That is, for the general nonlinear

dynamical system, the initial sensitivity of system trajectory
was only a quantitative change, and the trajectories of the
system starting from the different state initials would tra-
versal in the corresponding attraction region along different
trajectories, without changing the dynamical properties of
the system. However, the extreme multistability of the
memristive system was a qualitative change; the change of
state initial could cause the trajectory of the memristive
system to jump between the attraction domains of different
dynamical behaviors. Therefore, the state initial-dependent
multistability in the memristive circuit and the chaotic initial
sensitivity in the general chaotic circuit are two completely
different concepts.

2.3. Multistability in Memristive Circuit and System. Since
physical accessibility of memristors has been reported [90],
lots of investigations were carried out for various memristor-
based application circuits and systems, including cellular
nonlinear/neural network [91], spiking and bursting neuron
circuit [92], active band-pass filter-based oscillating circuit
[93], FitzHugh-Nagumo neuron circuit [94], recurrent
neural network [95], hypogenetic jerk chaotic system
[21, 96, 97], and hyperchaotic autonomous system [98], from
which rich dynamical behaviors have been manifested by
theoretical studies, numerical simulations, and experimental
measurements. The results showed that the stabilities of the
memristive circuit and system, especially the ideal mem-
ristor-based nonlinear circuit and system, had a great re-
lationship with the state initial of the memristor [88, 99].
Therefore, the coexisting infinitely many attractors appeared
in such memristive circuit and system [12, 20, 100]. Under
the fixed system parameters, the solution trajectories of the
system can be represented by diverse stable states with the
varied state initials, such as point, period, quasi-period,
chaos, and hyperchaos [7, 98, 101, 102]. Such a special
phenomenon is mostly relevant to no equilibrium [103, 104],
limited number equilibria [105], or even infinitely many
equilibria [6, 106]. Particularly, when the number of
coexisting attractors tends to infinite, the phenomenon is
called extreme multistability [39, 56, 89, 107-109].

In principle, the coexisting infinitely many attractors
caused by extreme multistability generally has a complete
smooth bifurcation route with respect to the state initial, and
the bifurcation trajectories are gradual [110], such as period-
doubling bifurcation and Hopf bifurcation, as shown in
Figure 2. It is important to emphasize that extreme multi-
stability is not the same as coexisting infinitely many
attractors. The aforesaid coexisting infinitely many attractors
are commonly triggered in the memristive circuit and
system with line or plane equilibrium set, entirely different
from those generated from the offset-boostable flow by
introducing an extra periodic signal [111-113] and also
different from those generated from the attractor position
offset caused by the state initial [114].

According to the definition of memristor
[1, 82, 115, 116], researchers have proposed a variety of
physical realizable memristor simulators with the charac-
teristics of memristor ports [117], which can be mainly
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FIGURE 1: The generated attractors from a novel Chua’s circuit (the red points are the nonzero equilibria): (a) self-excited attractor;
(b) hidden attractor; (c) local plane projection of a; (d) local plane projection of b.
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FIGURE 2: Extreme multistability: (a) with the variation of memristive initial x,4(0); (b) with the variation of memristive initial x5(0).

divided into two categories: one is the ideal memristor or
nonideal memristor based on the equivalent realization of
operational amplifier and analog multiplier
[62, 101, 118, 119]; the other is the generalized memristor
with diode bridge cascade RC, RL, or LC filters [120-124].
From the essential definition of the ideal memristor [116], it
can be seen that the memristor is derived from the rela-
tionship between flux and charge [115]. The ideal memristor
is usually divided into the charge-controlled memristor and
flux-controlled memristor. Its voltage-current relation curve
has the characteristic of typical italic “8” type pinched
hysteresis loop, and the main characteristics are zero
crossing [82, 116, 125], double value [115], singular

symmetry, tapering [116, 126], self-crossing type [127], and
stability [128].

The nonideal memristor-based nonlinear circuit or
system usually has certain equilibria [129], and their stability
is not affected by the state initials. However, under the fixed
system parameters, with the varied state initials, the system
will produce the coexistence steady-state mode [2], namely,
multistability. And, when a memristive circuit or system has
a stable equilibrium or no equilibrium [3, 5], the system will
produce hidden multistability.

The ideal memristor-based nonlinear circuit or system
usually has infinitely many equilibria, and their positions
and stabilities are related to the internal state initials of
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memristors, which indicates the extreme multistability of the
memristive circuit or system. Bao et al. [88] proposed an
ideal flux-controlled memristor-based Chua’s circuit with
line equilibrium set and revealed the state initial-dependent
extreme multistability phenomenon of the memristive cir-
cuit. In [93], the ideal flux-controlled memristor was used to
replace Chua’s diode, and a memristive circuit with line
equilibrium set was obtained, and the extreme multistability
phenomenon of the circuit was studied. By introducing two
ideal memristors into Chua’s circuit, a memristive circuit
with a plane equilibrium set was obtained in [130] and
further revealed the extreme multistability phenomenon. By
introducing an ideal flux-controlled memristor into a three-
dimensional hypogenertic jerk system, the paper [96]
constructed a memristive system with four line equilibria
sets, which could produce the extreme multistability phe-
nomenon dependent on the state initial of the memristor
and other state initials. Yuan et al. [107] designed a mem-
ristor-based multiscroll hyperchaotic system by introducing
an ideal flux-controlled memristor and revealed its extreme
multistability phenomenon. By introducing a micro-
perturbation into the memristive circuit, a memristive cir-
cuit with no equilibrium was constructed, which could
produce the phenomenon of hidden extreme multistability
[131].

3. Multistability Control Strategy

3.1. Multistability Generic Control Strategy. Multistability
has been reported in different scientific fields such as physics,
chemistry, biology, and economy [13]. Because of its sen-
sitive dependence on state initial, the multistability phe-
nomenon can induce the system to switch between different
coexisting states under the fixed system parameters, which
provides great flexibility for the engineering application of
the multistable system [8, 9, 13, 105, 132-134]. But, at the
same time, it is easy to lead the application systems to
abnormal working states, which puts forward a severe test to
the multistable mode control strategy. For example, in the
design of equipment with certain characteristics, it is nec-
essary to avoid multistable or to stabilize it in the desired
state, which will cause a lot of inconvenience in practical
application. Therefore, it is necessary to control the multi-
stable through appropriate control strategy.

In order to convert a multistable system to a mono-stable
system, nonfeedback control strategy was usually adopted.
In other words, by adding external disturbance to the sys-
tem, such as the introduction of short pulse [13], a specific
attractor could be selected in a multistable system to achieve
multistability control. By introducing pseudoperiodic
driving [14, 15] or harmonic disturbance [16, 17], the un-
desirable attractor types could be eliminated, and then, the
system could be controlled in a certain stable state. In order
to stabilize the system in a certain desired state, feedback
control strategy was usually adopted [18], such as periodic
driving [19] and time-delay feedback [13]. Yet these control
strategies cannot achieve the multistable control. However,
via the special constitutive relation of the memristor, some
scholars have proposed appropriate multistability

dimensionality reduction reconstitution strategies for spe-
cific types of the memristive circuit and system and realized
the control of multistable modes. A brief introduction is
given below.

3.2. Multistability Dimensionality Reduction Reconstitution
Strategy. The multistability of the memristive circuit/system
can provide more flexibility for the memristive circuit/
system to be applied in engineering application fields of
image processing, signal encryption, and so on
[8, 9, 105, 132-137]. However, due to the sensitive depen-
dence of the multistability on the state initial, there are two
main problems when the traditional analysis method is used
to analyze the multistable mode of the memristive circuit/
system. On the one hand, the dynamical behaviors of the
multistable circuit/system are highly dependent on the state
initials, but the state initials cannot be expressed explicitly in
the state equation of the multistable circuit/system, which
makes it impossible to quantitatively analyze the state initial-
dependent dynamical behavior of the memristive circuit/
system. On the other hand, since the memristive circuit/
system usually has line equilibrium set, plane equilibrium
set, space equilibrium set, or no equilibrium, when we use
the traditional analysis method to analyze the dynamical
behavior, it is very difficult to correctly judge whether the
equilibrium of the system is stable or not, or cannot analyze
the system equilibrium, which makes it impossible to
quantitatively describe the internal mechanism of multi-
stability. These problems make it difficult to accurately
predict, quantitatively analyze, and physically control the
state initial-dependent dynamical behaviors.

Therefore, in the process of analyzing the multistability
of the memristive circuit and system, in order to solve these
problems, researchers proposed different dimensionality
reduction modeling schemes based on the memristive circuit
[20] and memristive system [21]. In fact, a prototype of
dimensionality reduction modeling had been developed in
the earlier literature [22-24]. In [22], the concept of di-
mensionality reduction modeling was proposed, which
modeled the memristive circuits with two physical quantities
of flux and charge as main state variables, and the dimension
of the obtained flux-charge model was lower than that of the
traditional voltage-current model. Bao et al. [23] built the
reduce-ordered flux-charge model of a two-memristor-
based memristive circuit and analyzed its dynamical char-
acteristics via the voltage-current and flux-charge models.
Bao et al. [24] qualitatively pointed out that the flux-charge
model of the memristive circuit could be equivalent to re-
alize its dynamical behavior in the voltage-current model.
However, in these early studies, the state initials of the
memristive circuits were not explicitly expressed in the
dimensionality reduction model [25], resulting in the in-
formation loss of state initials of the memristive circuit.
Therefore, the established dimensionality reduction model
could not reflect the original multistability of the memristive
circuits and systems.

In recent years, Corinto proposed an incremental flux-
charge analysis method [26], the method was based on the



Kirchhoff flux and charge law and the constitutive relation of
the circuit element under the incremental flux and incre-
mental charge. Compared with the circuit equation in the
voltage-current domain, the circuit equation in the flux-
charge domain established by this method had a simpler
equation structure, which could simplify the complexity of
dynamical analysis and clearly understand the influence of
state initial. To further demonstrate the effectiveness of the
method, Corinto applied the method to the analysis of Hopf
bifurcation and period-doubling cascade induced by state
initial [27]. Subsequently, more scholars applied it to the
study of complex memristive circuits such as memristor-
based cellular neural network [28] and memristor-based
oscillator array [29]. Then, Chen clearly proposed that this
method could represent the state initials of all dynamical
elements in the circuit as standalone state initial-related
system parameters [12], which was conducive to the analysis
and measurement of the state initial-dependent dynamical
behaviors in the memristive circuit. Moreover, this method
was applied to the reconstruction and analysis of extreme
multistability for the ideal memristor-based circuit
[12, 20, 30, 31]. And, on this basis, the incremental integral
transformation method for the memristive system was
proposed [21, 32], forming a complete set of dimensionality
reduction reconstruction theory for ideal memristor-based
circuits and systems. That is, firstly, the integral transfor-
mations on all state variables of the original memristive
circuit/system are carried out (note that all terms in the
system equation must be integrable). Then, the dimen-
sionality reduction modeling is implemented by using the
nondynamic property [22] of the memristor in the flux-
charge domain. Then, based on the dimensionality reduction
model, the state initial-dependent dynamical behaviors of
the original memristive circuit/system are reconstructed and
analyzed.

4. Flux-Charge Constitutive
Relation of Memristor

In the 1970s, Chua proposed the fourth basic circuit element,
memristor, to characterize the relationship between flux and
charge [115] and deduced the existence the memristor from
the symmetry of circuit variables and the characteristics of
the electromagnetic field, as shown in Figure 3. As can be
seen from Figure 3, there are four basic physical quantities in
the circuit: current 7, voltage v, charge g, and flux ¢. There are
six mathematical relations among them; among which the
relations between current and charge and voltage and flux
are as follows:

t
q(t) = j i(E)dE, (1a)

t
o= | v (1b)
—00

Equations (la) and (1b), respectively, represent that
charge is the integral of current with respect to time and flux
is the integral of voltage with respect to time. According to
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FiGgure 3: Circuit basic variables and four basic elements.

the incremental flux-charge analysis method, Corinto and
Forti [26] gave the definition of incremental charge and
incrementa} flux for any ttz ty (—oo<ty<o0), ie.,
q(t;tg) = [, i(§)d, p(t:t) = [, v(§)dE, and equation (1)

can be further written as

a=[ ied=[" i©d | i(©d=ak) )
(2a)

o= voa=|"

—00

v(&)dE + Ji v(§)dE = o(ty) + @ (t; 1)
(2b)

It is well known that charge and flux are internal state
variables of the memristor in the voltage-current domain,
and the internal state initial represents the memory property
of the memristor. However, its state initial cannot appear
explicitly in the state equation, so it is naturally impossible to
assign its value accurately. Therefore, the memory of the
memristor cannot be simulated effectively in the voltage-
current domain. Compared with the two basic physical
quantities of voltage and current, flux and charge can better
represent the basic physical properties of circuit elements
[138], which provide a theoretical basis for exploring the
intrinsic properties of circuit elements. To this end, it is
assumed that the voltage v(f) and the current i(f) on the
memristor adopt the associated reference direction, and two
different types of memristors are selected to build their flux-
charge constitutive relation.

4.1. Flux-Charge Constitutive Relation of Charge-Controlled
Memristor. For the charge-controlled memristor in
Figure 4(a), the voltage-current relationship between the
current i(t) flowing through it and the voltage v(¢) at both
ends of it in the voltage-current domain can be described as

v(t) = M (qp)i(0), (3)

where the memristive function M (g,,) is the nonlinear
function about charge g,(f) and has the same dimension as
resistance; the unit is ohms (Q). In this voltage-current
model, ga(t) is the internal state variable of the memristor,
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FIGURE 4: Charge-controlled memristor. The constitutive relation transformation from the voltage-current domain to the flux-charge
domain: (a) voltage-current constitutive relation; (b) flux-charge constitutive relation.

and its state initial g,,(#,) represents the memory property of
the memristor.

Compared with the voltage-current domain, we take
charge and flux as state variables in the flux-charge domain;
take the integral from —oo to t for both sides of equation (3),
and combine with equation (1) to obtain the flux-charge
constitutive relation of the charge-controlled memristor in
the flux-charge domain as follows:

o= | v©& = M(@u)i = (g ©),
)

where the function h(e) is the nonlinear function about
qum(?).

According to equations (2a) and (2b), equation (4) can
be further rewritten as

Pu (tito) = h(qu (t5t0) + daro) = Pavros (5)

where @0 = @(to) and qaso = qui(to); equation (5) describes
the memristor as a special nonlinear element whose memory
is explicitly shown by the internal state initial gaz [27], i.e.,
the internal state initial of the memristor can be explicitly
expressed in the flux-charge domain, which is conducive to
the quantitative analysis of state initial-dependent dynamical
behavior. By comparing equation (5) with equation (3), it is
not difficult to conclude that the state variable in the flux-
charge domain is expressed by the incremental integral of
the state variable in the voltage-current domain, and its state
initial is zero, i.e., when t=t,, @un(to; to) =qmlte; to) =0.
Figure 4 visually shows the transformation of the charge-
controlled memristor from voltage-current constitutive
relation to flux-charge constitutive relation.

4.2. Flux-Charge Constitutive Relation of Flux-Controlled
Memristor. For  the flux-controlled memristor in
Figure 5(a), the voltage-current relationship between the
current flowing through it and the voltage at both ends of it
in the voltage-current domain can be described as

i(t) =W (pw)v(®), (6)

where @y is the internal state variable of the memristor and
W(¢w) is the memductance function.

Similar to the charge-controlled memristor, charge and
flux are used as state variables in the flux-charge domain.
The integral of both sides of equation (6) from —co to ¢ is
taken, and the flux-charge constitutive relation of the flux-
controlled memristor in the flux-charge domain is obtained
by combining with equation (1) as follows:

aw(®= | i©dE= | Wipw)r®E = 1 (0w )
)

where the function f(e) is the nonlinear function about
@w(t).Further, equation (7) can be written as

qw (t:to) = f (ow (t:t0) + Pwo) = Gwos (8)

where @wo=@wl(to) and qwo=qwlty). Similarly, the flux-
controlled memristor can also be expressed as a special
nonlinear element in the flux-charge domain, and its
memory is reflected by the internal state initial ¢y0; and,
when = to, @y (to; to) = quwlto; to) = 0. Figure 5(b) shows the
flux-charge constitutive relation of the flux-controlled
memristor.

5. Incremental Flux-Charge Analysis
Method for Memristive Circuit

Bao etal. [22] pointed out that, in the voltage-current model,
the memristor was a dynamic element, resulting in an in-
crease in the order of the circuit equation. In the flux-charge
model, the memristor was a nondynamic element, so the
order of the circuit remains the same. Therefore, for the
memristive circuit, when flux and charge are taken as state
variables rather than voltage and current [25, 139], the
memristor is described as a nondynamic element, which can
reduce the dimension of the established mathematical model
[12, 20, 30], from which the term “dimensionality reduction”
is derived. It should be noted that the flux-charge model and
the voltage-current model are different from each other in
their algebraic equations, but they are equivalent repre-
sentations in nonlinear dynamical behaviors. And, the
implicit state initials of all dynamic components in the
voltage-current model can be expressed as the explicit ini-
tial-related system parameters in the flux-charge model,
which is convenient to realize the mechanism explanation of
state initial-dependent dynamical behavior in the



i) =W(pw)v (1)

(a)

Complexity

'''''''' Pwo ! qw(tt)
C i
|
i

Gwo = f(‘Pwo)‘ fw (5 1o

aw () =f (9 (1))
qw ( to) = f (pw (& to) +9’wo) dwo
(b)

FIGURE 5: Flux-controlled memristor: the constitutive relation transformation from the voltage-current domain to the flux-charge domain;
(a) voltage-current constitutive relation; (b) flux-charge constitutive relation.

memristive circuit, namely, to realize the multistability re-
constitution [30]. In addition, dimensionality reduction
modeling can reduce the complexity of quantitative analysis
and numerical simulation, which has certain theoretical
significance and engineering application value.

Bao et al. [130] proposed a two-memristor-based Chua’s
circuit, as shown in Figure 6, and revealed its state initial-
dependent extreme multistability phenomenon. Based on
the memristive circuit, Chen adopted the incremental flux-
charge analysis method [31] and obtained the dimension-
ality reduction model in the flux-charge domain, which not
only solved the special dynamic characteristics problem of

dv 1
TR ViV
dt ~ RC,

dv, k

=2._ = 1%
dt RCZ( 1 2)+
dvy  k+1

dt | RG, (Vi-Vy)+
v, 1,

dt ~ RrRC, "V

av, 1

dt ~ RCs ?

Its dimensionality reduction model [31] in the flux-
charge domain was

k
R, (1-g,V2)V, -

) (1 - gzvé)vz -

the circuit which could not be quantitatively explained in the
voltage-current domain but also made the system model
simpler and more conducive to the analysis of its dynamical
formation mechanism.

To be specific, this article mainly solved the following five
problems:

(a) The 5-order dynamic circuit of the original system
was described by a 3-dimensional system model, and
the dimensionality reduction modeling was realized.

The two-memristor-based Chua’s circuit [130] in the
voltage-current domain was

2k +1
(k+1)R,C, °

2
— V.,
XAl (9)

do, (t;¢
(20 E0) L (g, (1) g (1:10) - (1:00) + LV, (1)
d £t
1 G %c(lt 0) (‘ﬁ"l (tito) + @y (t:)) +kas (t;t,) — (k )R ————05(t;ty) + C,V, (ty), (10)
d ; k
Cs% = %1 (=1 (t:t9) + @y (t:t0)) + (k+ 1)gs (5 1)) — Ril% (t;to) + C3V5 (ko)
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(a) (b)

FIGURE 6: Two-memristor-based Chua’s circuit: (a) circuit schematic of active BPF-based memristive Chua’s circuit; (b) equivalent circuit
for the memristors W, and W.

where

2
¢, (t;ty) RAGOIIAED) [ 2 91V (to) ]
tit,) = 1- - g, Vi (t,) + 222 () |,
94 (t;to) R, |: 3(R3C4)2 R, 91V (to) RC, ¢, (t5to)
(11)
¢, (t;ty) 929"% (t;to)| 92 (t:to) [ 2 9,V (to) ]
tit,) = 1- + —g,VE(t,) + 222%0 (£:¢,) |.
g5 (t;to) R, [ 3(RCC5)2 R, 92 5(0) R.C, ¢, (t51))

(b) Converted the plane equilibrium set of the original initial-related system parameter of dimensionality
memristive circuit to three or five determined reduction model (10) was fine-tuned from 107 to
equilibria. ~107%), and the dynamical behavior changed greatly.

This phenomenon could not be reasonably explained

in the voltage-current domain, but after dimen-

sionality reduction modeling, it could be explained
in the flux-charge domain according to the sym-

metry of dimensionality reduction model (10).

Original memristive circuit (9) had a plane equi-
librium set P={(V;, V, Vi Vg, V3
Vi=V,=V3=0V, V,=uV, Vs=1V}, which led to
two critical stable zero eigenvalues at the equilibrium
set. Therefore, it was impossible to accurately de-
termine the stability of equilibrium set, resulting in
local inconsistency between the stability interval
divided by the nonzero eigenvalues and the actual
observed dynamical behavior. In flux-charge di-

(d) Extreme multistability ~ reconstitution  was
implemented.
The implicit state initial Vi(¢,) of system (9) was
explicitly expressed in dimensionality reduction

mensionality reduction model (10), the plane equi-
librium set was transformed into three or five
determinate equilibria which were related to the
initial-related system parameter Vi(to) (i=1, 2, 3, 4,
and 5), which eliminated the ill-posed zero eigen-
values of the original memristive circuit. According
to the evolution characteristics of the determined
equilibria with Vi(t), the theoretical explanation of
the inconsistency between the stability interval of the
equilibrium set and the dynamical behavior of the
original memristive circuit was given, and the state
initial-dependent dynamical mechanism of the
original memristive circuit was quantitatively
expounded.

model (10) as the initial-related system parameter.
When the state initial of system (10) was set as (0, 0,
0), the kinetic map shown in [31] had the same
dynamical behavior as the attraction basin shown in
[130], intuitively illustrated dimensionality reduc-
tion model (10), perfectly reconstructed the state
initial-dependent dynamical behavior of original
memristive circuit (9), and realized the extreme
multistability reconstitution.

(e) In the hardware circuit of the flux-charge model, the

multistable mode control of the memristive circuit
was realized by changing the initial-related system
parameters.

(c) Reasonable reasons for the significant change of
dynamical behavior under the change of small state
initial were expounded.

6. Incremental Integral Transformation
Method for Memristive System

The state initial V(%) of original memristive circuit On the basis of the incremental flux-charge analysis method,
(9) was fine-tuned from 107 to —107° (that is, the for the ideal memristor-based system, the incremental
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integral transformation method was proposed in [21] to
obtain an equivalent dimensionality reduction model. From
the new state variable domain, the state initial-dependent
extreme multistability of the original memristive system was
studied quantitatively, so as to realize the reconstitution of
the extreme multistability, and then, the theoretical basis of
the dimensionality reduction reconstitution of the mem-
ristive system was given [110]. However, it should be noted
that this method only applies to the simple ideal memristor-
based system with only memristor nonlinear terms. But for
the complex memristive system with other nonlinear terms
besides the memristor nonlinear term [32], because it is
difficult to obtain an explicit expression of the time integral
of complex nonlinear terms, it is necessary to find appro-
priate intermediate variables and variable substitution to
achieve the purpose of equivalent dimensionality reduction
modeling. For this reason, the hybrid incremental integral
transformation method was proposed in [32].

6.1. Incremental Integral Transformation Method for Simple
Memristive System. For the simple ideal memristor-based
system with only the memristor nonlinear term, the incremental
integral transformation method is used to realize dimensionality
reduction modeling and multistability reconstitution. Taking the
memristive hyperjerk system as an example, the system has only
one memristor nonlinear term with smooth hyperbolic tangent
memductance [140], and its mathematical model is

X =Xy,
X, = X3,
) (12)
X3 = Xy

x4 = tanh (x;)x, — x5 — 0.5x,.

According to the incremental integral transformation
method [21], the dimensionality reduction model can be
obtained as

X, = X5+ 8,
X, =X, +0,,
X, =-X;-05X,+In cosh(X,+8,)~In cosh(s,)+3,.

(13)

The corresponding equilibrium is transformed from the
line equilibrium set to two determined equilibria, and the state
variables between the dimensionality reduction model and the
original system have the following corresponding relationship:

x; =X, +6,,

x, = X5+ 6, (14)
x; =X, + 65,

X, = X,

It should be noted that the system parameter §; (i=1, 2,
3, and 4) of the dimensionality reduction model represents
the state initial x;(0) (i=1, 2, 3, and 4) of the original
memristive system. Similar to the above incremental flux-
charge analysis method, when the initial is set to (0, 0, 0),
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based on the dimensionality reduction model, the state
initial-dependent extreme multistability reconstitution of
the original memristive system can be realized.

6.2. Hybrid Incremental Integral Transformation Method for
Complex Memristive System. For the ideal memristor-based
system with other nonlinear terms besides the memristor
nonlinear term, the hybrid incremental integral transfor-
mation method was proposed in [32], which successfully
solved the dimensionality reduction modeling and multi-
stability reconstitution problems of the memristive system
with complex nonmemristor cubic nonlinear terms.

To be specific, this article mainly solved the following
three problems:

(a) By introducing a new intermediate variable, the
problem that the nonmemristor cubic nonlinear
integral term could not be expressed by a simple
relation was eliminated.

The mathematical model of a four-dimensional
complex memristive system with a nonmemristor
cubic nonlinear term [32] is described as

X, =Xy,

Xy = (1 - x4)x3,

) 3 (15)
X3 = x; —ax, — x3 — bxj,

Xy = —X3.

Incremental integral transformation method [21] was
adopted to carry out integral transformation on the
system. By introducing an intermediate variable
W=>b jf) x3dr, the problem that this integral term
could not be expressed as a simple relational expression
was eliminated, and a four-dimensional intermediate
transformation system with the same dimension as the
original system was obtained, that is,

X, =X, +06,

X, = 0.5X5 + (1 - 8,) X5 + &y,
X;=X,-aX, - X;-W+6,,
W=b(X,+6,).

(16)

(b) The variable substitution method was used to
eliminate the divergence of state variables in the
intermediate transformation system, and then, the
dimensionality reduction modeling was realized.

Through variable substitution Y;=X; - W, Y,=X,,
and Y3;=X;, the divergence problem of state vari-
ables X; and W was eliminated, and the equivalent
three-dimensional dimensionality reduction model
of the system was obtained, i.e.,

Y, =Y, +8, -b(Y,+6,)%,

Y, =0.5Y:+(1-8,)Y;+0,, (17)

Y,;=Y,-aY,-Y,;+9d,.
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(c) The extreme multistability reconstitution of the
memristive system with other nonlinear terms be-
sides memristor nonlinear terms was realized.

The three line equilibria sets of the original system
were transformed into six determinated equilibria,
and the ill zero eigenvalue of the original system was
eliminated. And, the state initial x;(¢,) (i=1, 2, 3, and
4), as the initial-related system parameter §; (i=1, 2,
3, and 4), was explicitly expressed in the dimen-
sionality reduction model. When Y;(0), Y,(0), and
Y5(0) were set to 0, dimensionality reduction system
(17) could reconstruct the extreme multistability of
original system (15).

6.3. Hidden Extreme Multistability — Reconstitution.
Different from the memristive system mentioned above, the
nonautonomous FitzHugh-Nagumo (FHN) neuronal cir-
cuit was used to solve the problem of critical stability (i.e.,
hidden attractors) of the system [141]. By using dimen-
sionality reduction modeling, it was proved that the
attractors generated by the system were indeed hidden
[70, 141]. This article mainly solved the following four
problems:

{ X, =X, +0.5X, +0.5In cosh(X, —8;) + 1.8 sin(r) + &, — 0.5 In cosh(d;),

X, =-X, - X, +96,

(c) The critical stability of the original system was
transformed into the deterministic stability of the
dimensionality reduction model.

The original system contained the nonautonomous
term, which caused the system’s equilibrium to
change alternately between stable line equilibrium
set and no equilibrium with time. The attractor
generated by no equilibrium was hidden. However,
due to the existence of zero eigenvalue, the line
equilibrium set had critical stability, so it was im-
possible to determine whether the system produced
hidden attractor. After dimensionality reduction
modeling, no equilibrium and zero eigenvalue were
eliminated, and the dimensionality reduction model
only had certain equilibria which changed with time
and were always stable, thus the equilibria had
certain stability; it was proved that the attractors
generated by the original system were indeed hidden.

(d) The hidden extreme multistability reconstitution of
the nonautonomous memristive system was realized.

7. Synchronization Application of Memristor-
Coupled System

Because of the nano-sized property, memristors are used to
mimic biological neuronal synapses [142-145], which play
important roles in the process of information transmission
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(a) It made up for the gap that the nonautonomous
memristive circuit produced extreme multistability.

A memristor with a smooth hyperbolic tangent
nonlinear memductance was used to replace the
nonsmooth piecewise linear memductance in the
FHN neuron circuit in [94]; a nonautonomous
memristive FHN neuron model that could produce
extreme multistability was obtained.

(b) By using the incremental integral transformation
method, the original 3-dimensional system was
transformed into 2-dimensional dimensionality re-
duction. The nonautonomous memristive FHN
neuron model is described as

Xy = x, +0.5(1 — tanh x;)x; + 1.8 cos (1),

Xy = —X; — Xy, (18)

X3 = —X.

After the incremental integral transformation, the
model of dimensionality reduction was obtained:

(19)

among the coupled neurons [146-149]. And, various
memristor-coupled systems are studied, such as memristor-
coupled Hindmarsh-Rose neurons [150] and memristor-
coupled Hopfield neural network [151, 152].

It is all known that abundant collective behaviors appear
in the actual neural system due to the interactions in neurons
[153, 154]; among them, synchronization is the outstanding
collective features in neuroscience [155-157], which is
regarded as one of the mechanisms to propagate and to code
information in brain [158, 159]. However, there are different
kinds of brain disorder diseases, such as Alzheimer’s, epi-
lepsy, Parkinson’s, and schizophrenia, which are involved
with the abnormal activities of synchronization [160].
Therefore, neuron synchrony is a fundamental topic in
neuroscience.

Different from the traditional nonlinear elements, the
memristor is a special nonlinear element with internal state
variables [1]. Therefore, using the memristor to couple the
nonlinear system can easily generate special synchronization
behaviors that depend on the initials of the memristor,
which is completely different from the general nonlinear
coupling system [161, 162]. In the general nonlinear coupled
system, as long as the coupling strength is large enough, the
master system and slave system starting from any state
initials will always asymptotically achieve complete syn-
chronization [163]. Naturally, in the nonmemristor-coupled
system, some scholars have analyzed the initial influence on
synchronization from the qualitative point of view and
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FIGURE 7: Periodic synchronizations with parallel offsets between the master system and slave system.

found that the synchronization stability depended on the
state initial setting to some extent [35]. For memristor-
coupled systems, various synchronization research studies
have attracted important attention, and different influencing
factors on synchronization were proposed. For examples, in
[164], the effect of coupling strength on synchronization
transition was investigated. In [165], the influence of cou-
pling intensity and induction coefficient on phase syn-
chronization was discussed. In [166], the effect of
electromagnetic parameters on synchronization was studied.
In [94], the effect of the coupling memristor parameter on
synchronization was given. In [147, 167, 168], the robust
analysis approach to asymptotic finite-time synchronization
and interval matrix method of global exponential syn-
chronization were proposed for investigations of the delayed
memristive neural networks.

However, the dynamical effects of the state initials on
synchronization in the memristor-coupled systems were
rarely concerned in the published literatures [37, 169, 170].
The first reason is that the state initials are implicit pa-
rameters and cannot be expressed explicitly in the state
equations. Secondly, such a result makes many researchers
question it, because according to our previous under-
standing of synchronization, state initials are irrelevant to
synchronization behavior [161, 162, 171]; however, now, it is
said that state initials have influence on synchronization
behavior, and their influence cannot be ignored; most
scholars are doubtful about this conclusion. At the same
time, if the conclusion is presented only by numerical
analysis and other qualitative means, its credibility is un-
doubtedly not enough.

Interestingly, these problems can be solved by simpli-
fying the mathematical models via using appropriate state
variables or applying reasonable approximation and sim-
plification [21, 37, 172, 173]. In [173], the initial effects on
synchronization for the memristor-coupled system were
quantitatively analyzed by the incremental flux-charge
analysis method. Due to the inherent state initial mis-
matches between the two identical coupling systems, the two
systems could not achieve complete synchronization under a
large coupling strength [173], but synchronous motion with
parallel offset could be realized, as shown in Figure 7. Based
on the above dimensionality reduction reconstitution

method, in the study of the synchronization of the mem-
ristor-coupled system, the inherent state initial mismatches
between two identically coupled systems can be expressed as
the initials-related parameter mismatches between two
nonidentically coupled dimensionality reduction systems,
and then, the quantitative theoretical research on the in-
fluence of the state initial on synchronization can be easily
realized.

8. Summary and Prospect

The inherent memory property of the memristor makes the
memristor-based circuit and system easy to produce the
state initial-dependent dynamical behavior. Especially, the
state initial-dependent extreme multistability phenomenon
has been paid more and more attention by scholars, and
abundant results have been obtained. Most of the existing
literatures verify this special phenomenon through nu-
merical simulation or circuit simulation, or capture different
attractors randomly by closing and disconnecting the power
supply in hardware experiments. The dimensionality re-
duction analysis method proposed in the literature theo-
retically realizes the precise prediction, quantitative analysis,
and physical control of extreme multistability. For the ideal
memristor-based circuit and system, the incremental flux-
charge analysis method and incremental integral transfor-
mation method can effectively realize dimensionality re-
duction modeling and extreme multistability reconstitution
of memristive circuits and systems, and then, physical
control and mechanism exposition of extreme multistability
can be realized through quantitative analysis. It can be seen
from the existing research contents and results that although
great progress has been made in the study of the state initial-
dependent dynamical behavior of memristive circuits and
systems, there are still many problems to be studied, mainly
focusing on the following seven aspects: (a) prediction and
control of the nonideal memristor-based circuit and system
by state initial; (b) how to model the dimensionality re-
duction of the memristive circuit and system with high order
or complex nonlinear terms; (c) study on the influence of
state initial on the dynamical behavior of the memristor-
coupled circuit and system and neural electrical networks;
(d) for different types of complex memristive systems (such
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as time-delay memristive system and fractional-order
memristive system), how to carry out equivalent transfor-
mation and dimensionality reduction modeling, so as to
realize the reconstitution of its state initial-dependent dy-
namical behaviors; (e) the multistability of the original
memristive circuit and system can be reconstructed from the
dimensionality reduction model constructed by the incre-
mental flux-charge analysis method and incremental inte-
gral transformation method, only when the state initial is set
as the origin. However, the dimensionality reduction model
is usually a nonlinear system, and its state initial will have a
great influence on the system. Therefore, when the state
initial is set to nonzero, how to predict and control the
multistability of the original memristive circuit and system;
(f) at present, the dimensionality reduction methods are
used to study continuous memristive systems, so how to
study the multistability of discrete memristive systems is an
urgent scientific problem to be solved; (g) it is also a scientific
problem to be solved whether the extreme multistability
system can be built with real memristor devices and tested
experimentally to make the research method more practical.
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