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(e finite-time admissibility analysis and controller design issues for extended T-S fuzzy stochastic singular systems (FSSSs) with
distinct differential term matrices and Brownian parameter perturbations are discussed. When differential term matrices are
allowed to be distinct in fuzzy rules, such fuzzy models can describe a wide class of nonlinear stochastic systems. Using fuzzy
Lyapunov function (FLF), a new and relaxed sufficient condition is proposed via strict linear matrix inequalities (LMIs). Different
from the existing stability conditions by FLF, the derivative bounds of fuzzy membership functions are not required in this
condition. Based on admissibility analysis results, a design method for parallel distribution compensation (PDC) controller of
FSSSs is given to guarantee the finite-time admissibility of the closed-loop system. Finally, the feasibility and effectiveness of the
proposed methods in this article are illustrated with three examples.

1. Introduction

T-S fuzzy systems have gained a lot of attentions in the
recent years mostly due to fuzzy systems being the om-
nipotent simulator of nonlinear systems [1]. Meanwhile, the
related domestic and foreign research achievements of the
T-S fuzzy system are abundant and creative [2–4]. Stability is
the fundamental characteristic of the system, which is the
precondition to make sure the control system can run
normally. Based on the common Lyapunov function (CLF),
the stability conditions of such systems are proposed via
LMIs in [5]. (en, considering the conservatism of the CLF
in the stability analysis, a fuzzy Lyapunov function is given in
[6] to study this kind of systems. Singular systems are a class
of more general dynamic systems with extensive application
background and hence have attracted much attention [7, 8].
So, T-S fuzzy singular systems with distinct derivative term

matrices [9] are generalized from normal systems, which can
describe the actual system accurately. Afterwards, consid-
ering the system with time delay, the PDC controller design
method of these systems is given without all the subsystems
which are regular and impulse-free in [10]. In [11], PDC and
proportional-derivative state feedback controller for fuzzy
singular systems with different derivative matrices are
designed. In [12], the dissipativity analysis and controller
design for a class of fuzzy descriptor systems with different
derivative matrices are studied. In [13], under the presence
of uncertainties, the novel fuzzy sliding-mode controller is
given tomaintain the system states onto the predefined fuzzy
manifold.

In practical systems, randomness and nonlinearity are
inevitable [14–16]. In this situation, it is necessary to study
the stability of nonlinear stochastic singular systems. Con-
sidering the complexity of nonlinear stochastic singular
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systems, an effective method to use the fuzzy model as the
approximators of the original system has achieved the
analysis and control of such systems. (e issues of robust
stabilization for fuzzy stochastic singular systems are studied
by using integral sliding-mode controller [17]. In [18], the
sliding-mode controller design method of fuzzy stochastic
singular systems with different local input matrices is given
and it still has strong anti-interference. In [19], based on
augmented singular sliding-mode observer, fault tolerant
control for T-S fuzzy stochastic singular systems is discussed.
In [20], using the suitable singular stochastic Lyapunov
function, the sufficient conditions are firstly given to ensure
the stochastically admissibility and dissipativity of the
considered system. In [21], the integral sliding-mode con-
troller is given for fuzzy singularly perturbed descriptor
systems under nonlinear perturbation.

Different from Lyapunov asymptotic stability concept,
finite-time stability issues focus on the behavior of the
systems in a finite-time horizon. During the actual system
operation, when the system is asymptotically stable, it may
be useless because of the bad system instantaneous per-
formance. So, related research studies on finite-time stability
have received a lot of attention. In [22], the finite-time H∞
controller design method is given for the nonlinear delay
system presented by a fuzzy model. (e reliable finite-time
H∞ control issues of singular nonlinear delay markov
systems with bounded transition probabilities are consid-
ered in [23]. For the case of time-varying and unknown
transition probabilities, finite-time H∞ filtering T-S fuzzy
nonhomogeneous Markov systems are addressed in [24].
Sufficient conditions are given to ensure that the closed-loop
system is finite-time bounded with the H∞ performance in
[25]. In [26], considering unknown nonlinearities and
random interference terms, a novel adaptive control method
for the finite-time stability of nonlinear stochastic systems is
proposed. In [27], the sufficient conditions of finite-time
stability are given for the stochastic singular biological
economic systems based on CLF. At present, the research on
finite-time stability of fuzzy singular stochastic systems with
Brownian motion is not sufficient, especially distinct dif-
ferential term matrices in fuzzy rules.

Based on the above analysis, in this paper, the finite-time
admissibility issues of T-S fuzzy singular stochastic systems
with distinct differential term matrices and Brownian pa-
rameter perturbations are discussed via FLF. Firstly, the
innovative sufficient condition is proposed to ensure that
these systems are finite-time admissible via strict LMIs.
(en, a novel design approach of fuzzy PDC controller is
given, which avoids solving bilinear matrix inequalities.
Finally, the effectiveness and feasibility of the improved
method are verified by three examples. (e contributions of
this article are summarized as follows:

(i) (e finite-time admissibility analysis and controller
design for T-S fuzzy singular stochastic systems with
distinct differential term matrices and Brownian
parameter perturbations are studied. And this kind
of systems can describe a wide range of nonlinear

singular stochastic systems, and many actual systems
are described more simply and naturally by such
systems. Unlike existing methods, a relaxed finite-
time admissibility condition is given based on FLF.
Meanwhile, considering it is hard to obtain the
bounds of derivatives for fuzzy membership func-
tions, fuzzy Lyapunov matrices are redesigned to
eliminate the derivatives of membership functions
appearing in the admissibility condition.

(ii) Fuzzy PDC controller is further investigated to
guarantee closed-loop finite-time admissibility. Us-
ing FLF to analyze stability, it is unavoidable to solve
the bilinear matrix problem in the design process of
PDC controller. Under the proposed approach, the
controller design becomes simple and effective in
form of strict LMIs.

2. Notations

Det(A): determinant of the matrix A

Rn: n-dimensional real Euclidean space
Rm×n: m × n matrices with real elements
Deg: degree of the polynomial
A+: Moore–Penrose pseudo inverse of A
Q≽ 0(Q≺ 0): positive (negative) semidefinite matrix
Q≼ 0(Q< 0): positive (negative) matrix
Rank(A): rank of the matrix A

(e off-diagonal blocks of the symmetric matrix can be
abbreviated as ∗ , i.e.,

W1 W2

W
T
2 W3

􏼢 􏼣 �
W1 W2

∗ W3
􏼢 􏼣 �

W1 ∗

W
T
2 W3

􏼢 􏼣. (1)

3. Preliminaries

Consider the following fuzzy singular models with distinct
derivative matrices and Brownian parameter perturbations:

Rι: If ς1(t) isM1ι, ς2(t) isM2ι, . . . ,AN D ςκ(t) isMκι,

THEN

􏽢Eιdx(t) � 􏽢Aι􏽢x(t) + 􏽢Bιu(t)􏼐 􏼑dt + 􏽢Jιx(t)dϖ(t),

z(t) � 􏽢Cι􏽢x(t) + 􏽢Dιu(t), ι � 1, 2, . . . , Nr,
(2)

where 􏽢x(t) ∈ Rn denotes state vectors, u(t) ∈ Rm and
z(t) ∈ Rl denote input/output vectors, and 􏽢Eι, 􏽢Aι, 􏽢Bι, 􏽢Cι,
and 􏽢Dι are known matrices, and

rank Eι( 􏼁 � nq ≤ n, (3)

Mκι, κ � 1, 2, . . . , p, are fuzzy sets, and ς1(t), ς2(t), . . . , ςp(t)

denote premise variables which may be the functions of
system states.

Consider the derivative matrices which met the basic
assumptions.
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Assumption 1 (see [10, 20]).
􏽢EιV � Ε1ι, 0􏼂 􏼃,

Rank 􏽢Eι,
􏽢Jι􏼐 􏼑 � Rank 􏽢Eι􏼐 􏼑, ι � 1, 2, . . . , nr,

(4)

whereE1ι ∈ R
n×nq are full column rank matrices and V is an

invertible matrix.
Using Assumption 1, we can find two invertible matrices

Uι, ι � 1, 2, . . . , nr and V , such that

Uι
􏽢EιV �

Inq
0

0 0
􏼢 􏼣≐E. (5)

(en, considering x(t) � V− 1􏽢x(t), the fuzzy rules are
transformed as Rι: IF ς1(t) isM1ι, ς2(t) isM2ι, . . .AND ςκ(t)

is Mκι, THEN

Edx(t) � Aιx(t) + Bιu(t)( 􏼁dt + Jιx(t)dϖ(t),

z(t) � Cιx(t) + Dιu(t),
(6)

where E is the same as (5) and

Aι � Uι
􏽢AιV ≐

Aι11 Aι12

Aι21 Aι22
􏼢 􏼣,

Bι � Uι
􏽢Bι,

Jι � Uι
􏽢JιV ≐

Jι1 Jι2

0 0
􏼢 􏼣,

Cι � 􏽢CιV ,

Dι � 􏽢Dι.

(7)

(en, the overall fuzzy model can be given as follows:

Edx(t) � 􏽘

nr

ι�1
hι(ς(t)) Aιx(t) + Bιu(t)( 􏼁dt + Jιx(t)dϖ(t)􏼂 􏼃,

z(t) � 􏽘

nr

ι�1
hι(ς(t)) Cιx(t) + Dιu(t)􏼂 􏼃,

(8)

where hι(ς(t)) � ((􏽑
p
κ�1 Mκι(ςκ(t)))/(􏽐

nr

ι�1 􏽑
p
κ�1 Mκι

(ςκ(t)))), and we can directly find

hι(ς(t)) ≥ 0, ι � 1, 2, . . . , nr, 􏽘

nr

ι�1
hι(ς(t)) � 1. (9)

Assumption 2. 0≤ hι(ς(t))hκ(ς(t))≤ αικ, where αικ are the
known constant.

Remark 1. By the shape of membership functions, the
boundary αικ can be obtained accurately. In general case,

αικ �
1, ι � κ
0.25, ι≠ κ􏼨 .

For simplicity, system (7) is rewritten by

Edt � Aςx(t)dt + Bςu(t)dt + Jςx(t)dϖ(t),

z(t) � Cςx(t) + Dςu(t).

⎧⎨

⎩ (10)

(e definition for unforced systems is given as follows:

Edt � Aςx(t)dt + Jςx(t)dϖ(t). (11)

Definition 1

(i) System (11) is regular at 0 T􏼂 􏼃 if ∃s0 ∈ C satisfies

Det s0E − Aς􏼐 􏼑≠ 0, ∀t ∈ 0 T􏼂 􏼃. (12)

(ii) System (11) is impulse-free at 0 T􏼂 􏼃 when

Deg Det sE − Aς􏼐 􏼑􏽨 􏽩 � rank(E), ∀t ∈ 0 T􏼂 􏼃.

(13)

(iii) System (11) is stochastic finite-time stable (FTS)
with respect to (c1, c2, T,R), where R> 0,
0< c1 < c2, if

E x
T
(0)E

T
REx(0)􏽮 􏽯≤ c1⟹E x

T
(t)E

T
REx(t)􏽮 􏽯≤ c2, ∀∈ [0, T].

(14)

(iv) System (11) is stochastic finite-time admissible if the
system is regular, impulse-free, and stochastic finite-
time stable.

Lemma 1 (see [28]). Given the piecewise continuous matrix
A(t) ∈ Rn×n; if there exist the norm-bounded time-varying
matrix P(t) ∈ Rn×n and a scalar α> 0 such that

A(t)
T
P(t) + P(t)

T
A(t)≤ − αI, ∀t ∈ [0,∞), (15)

then the following holds:

(i) A(t) is invertible
(ii) A− 1(t) is bounded

Lemma 2 (see [29]). Given a matrix Φij ∈ R
n×n, then

􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς)hκ(ς)ςικ < 0, (16)

is fulfilled if the following conditions are hold:

Φιι < 0, ι � 1, 2, . . . , nr,

2
nr − 1
Φιι +Φικ +Φκι < 0, 1≤ ι≠ κ≤ nr.

(17)

Lemma 3. When E �
Inr

0
0 0􏼢 􏼣, the following statements

are true:

(i) Matrix X satisfies

EX � X
T
E

T ≥ 0, (18)

if and only if

X �
X1 0

X2 X3
􏼢 􏼣, (19)
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where X1 ≥ 0 ∈ R
nr×nr . Meanwhile, if X is the in-

vertible matrix, we can obtain that X1 > 0 and
Det(X3)≠ 0.

(ii) Now, X satisfying (18) is given as

X � PE
T

+ SY, (20)

where P � diag X1,Θ􏼈 􏼉, Y � X2 X3􏼂 􏼃, S �
0
I

􏼢 􏼣,
and Θ is an arbitrary matrix.

(iii) If X is invertible, matrices Q and R are two positive
definite matrices, X and E satisfy (18), and P is a
diagonal matrix, and the following equality holds:

E
T
X

−1
� E

T
R
1/2

QR
1/2
E � E

T
P

−1
E. (21)

(en, the positive definite matrix Q � R−1/2P−1R−1/2 is a
solution of (21).

Proof. (e proof of this lemma is similar to the proof
process in literature [30], which is omitted here. □

Lemma 4 (Gronwall inequality (see [31])). If nonnegative
function v(t) satisfies

v(t) ≤ α + β􏽚
t

0
v(s)ds, 0≤ t≤T, (22)

where constants α, β≥ 0, we have

v(t)≤ αe
bt

, 0≤ t≤T. (23)

4. Main Result

4.1. Admissibility Analysis. (e admissibility theorem for
systems (11) is given as follows.

Theorem 1. System (11) is stochastic finite-time admissibility
if there exist symmetric matrices 0<P ∈ Rnq×nq ,
Θ ∈ R(n−nq)×(n−nq), 0<Qικ ∈ R

2n×2n, and Yι ∈ R
(n−n1)×n,

such that

Θιι < 0, ι � 1, 2, . . . , nr, (24)

2
nr − 1
Θιι + Θικ + Θκι < 0, 1≤ ι≠ κ≤ nr, (25)

λmin(Q)I≤Q≤ λmax(Q)I, (26)

λmax(Q)c
2
1e

aT
− c

2
2λminQ< 0, (27)

where

Θικ � Δικ + Ψ − Qικ,

Δικ �
X

T
κA

T
ι + AιXκ − αEXκ ∗

EE
+
JιXκ −X

⎡⎣ ⎤⎦,

Xι � XE
T

+ SYι,

Ψ � 􏽘

nr

ι�1
􏽘

nr

κ�1
αικQικ,

X � diag P,Θ{ },

Q � R
− 1/2

X
−1

R
−1/2

,

S �
0

I
􏼢 􏼣.

(28)

Proof. Using Lemma 2 and (24) and (25), we have

􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς(t))hκ(ς(t))Θικ < 0. (29)

(en,

􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς(t))hκ(ς(t))Θικ � 􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς(t))hκ(ς(t))Δικ + Ψ + 􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς(t))hκ(ς(t))Qικ < 0. (30)

Further, by hι(ς(t))hκ(ς(t))≤ αικ and Qικ > 0, we get

􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς(t))hκ(ς(t))Δικ �

X
T
ςA

T
ς + AςXς − αEXς ∗

EE
+
JςXς −X

⎡⎢⎢⎣ ⎤⎥⎥⎦< 0,

(31)

where Xς � 􏽐
nr

i�1 hι(ς(t))Xι.
(en, we have

A
T
ςXς + X

T
ςAς − αEXς < 0. (32)

Next, based on Lemma 3, Xι can be constructed as

Xι �
P 0

X2ι X2ι
􏼢 􏼣. (33)

So, we get

Xς �

P 0

􏽘

nr

ι�1
hι(ς(t))X2ι 􏽘

nr

ι�1
hι(ς(t))X3ι

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

�
P 0

X2ς X3ς

⎡⎣ ⎤⎦.

(34)

(en, according to (32) and (34), we have

⋆ ⋆

⋆ X
T
3ς(t)A22ς + A

T
22ςX3ς

⎡⎣ ⎤⎦< 0, (35)

where ⋆ means that it will not affect the proof.
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Considering

X3ς
����

����≤ 􏽘

nr

ι�1
X3ι

����
����, (36)

it can be deduced that A22ς and X3ς are nonsingular based
on Lemma 1. So, system (11) is regular and impulse-free.

(en, let us choose the candidate Lyapunov function as

V(x(t)) � x
T
(t)E

T
􏽘

nr

ι�1
hι(ς(t))Xι

⎛⎝ ⎞⎠

− 1

x(t) � x
T
(t)E

T
X

−1
ς x(t). (37)

Since P> 0 and X3ς are nonsingular, we can get Xς �

P 0
X2ς X3ς

􏼢 􏼣 is nonsingular.

(en,

E
T
X

−1
ς � X

−1
ς E≥ 0. (38)

By the It􏽢o formula, the stochastic derivative of along the
trajectory of system (11) can be obtained as

dV(x(t)) � LV(x(t))dt + 2x
T
(t)X

−T
ς Jςx(t)dϖ(t),

(39)

where

LV(x(t)) � x
T
(t)E

TdX
−1
ς

dt
x(t) +

dx
T
(t)

dt
E

T
X

−1
ς x(t) + x

T
(t)E

T
X

−1
ς
dx(t)

dt
. (40)

By XςX
−1
ς � I, we get (d/dt)[XςX

−1
ς ] � 0. Next,

dX−1
ς

dt
� −X

−1
ς
d
dt

􏽘

nr

ι�1
hι(ς(t))XιX

−1
ς � −X

−1
ς 􏽘

nr

ι�1

_hι(ς(t))XιX
−1
ς . (41)

So,

LV(x(t)) � −x
T
(t)E

T
X

−1
ς 􏽘

nr

ι�1
hι(ς(t))XιX

−1
ς x(t) +

dx
T
(t)

dt
E

T
X

−1
ς x(t) + x

T
(t)E

T
X

−1
ς
dx(t)

dt

� −x
T
(t)X

−T
ς E􏽘

nr

ι�1
hι(ς(t))XιX

−1
ς x(t) +

dx
T
(t)

dt
E

T
X

−1
ς x(t) + x

T
(t)X

−T
ς E

dx(t)

dt

� −x
T
(t)X

−T
ς E􏽘

nr

ι�1
hι(ς(t))XιX

−1
ς x(t) + x

T
(t) A

T
ς X

−1
ς + X

−T
ς Aς + J

T
ς E

+
( 􏼁

T
E

T
X

−1
ς E

+
Jς􏽮 􏽯x(t).

(42)

Further, we can obtain

LV(x(t)) − αV(x(t)) � −X
−T
ς E􏽘

nr

ι�1
hι(ς(t))XιX

−1
ς + A

T
ς X

−1
ς + X

−T
ς Aς + J

T
ς E

+
( 􏼁

T
E

T
X

−1
ς E

+
Jς − αET

X
−1
ς . (43)
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When 􏽐
nr

ι�1 hι(ς(t)) � 1, we have

􏽘

nr

ι�1

_hι(ς(t)) � 0. (44)

(en, one has

􏽘

nr

ι�1

_hι(ς(t))EXι � 􏽘

nr

ι�1

_hι(ς(t))EPE
T

� 0. (45)

So, LV(x(t)) − αV(x(t))< 0 holds if and only if the
following inequality holds:

A
T
ς X

−1
ς + X

−T
ς Aς + J

T
ς E

+
( 􏼁

T
E

T
X

−1
ς E

+
Jς − αET

X
−1
ς < 0.

(46)

Multiplying inequality (46) on the left by XT
ς and right

Xς, respectively, one has

X
T
ς A

T
ς + AςXς + X

T
ς J

T
ς E

+
( 􏼁

T
E

T
X

−1
ς E

+
JςXς − αEXς < 0.

(47)

According to Lemma 3, we obtain ETX−1
ς � ETX− 1E.

(en, inequality (47) is rewritten as

X
T
ς A

T
ς + AςXς + X

T
ς J

T
ς E

+
( 􏼁

T
E

T
X

− 1
EE

+
JςXς − αEXς < 0.

(48)

Using Schur complement Lemma with (31), we have

LV(x(t)) − αV(x(t))< 0. (49)

Integrating (49) and then taking the mathematical ex-
pectation, we get

E(V(x(t))) <V(x(0)) + α􏽚
t

0
E(V(x(s)))ds. (50)

By Lemma 4, we have

E(V(x(t)))<V(x(0))e
αt

. (51)

Because

E(V(x(t))) � E x
T
(t)E

T
X

−1
ς x(t)􏼐 􏼑,

� E x
T
(t)E

T
R
1/2

Q
− 1

R
1/2
Ex(t)􏼐 􏼑

≥ λmin(Q)E x
T
(t)E

T
REx(t)􏼐 􏼑.

E(V(x(0)))e
αt

� E x
T
(0)E

T
R
1/2

Q
− 1

R
1/2
Ex(0)􏼐 􏼑e

αt
,

≤ λmax(Q)E x
T
(t)E

T
REx(t)􏼐 􏼑e

αt

≤ λmax(Q)c
2
1e

αT
,

(52)

the following inequality can be obtained:

E x
T

(t)E
T
REx(t)􏼐 􏼑≤

λmax(Q)

λmin(Q)
c
2
1e

αT
. (53)

(en, by (27), we have

E x
T
(t)E

T
REx(t)􏼐 􏼑≤ c22. (54)

So, this system is stochastic finite-time stable. (e proof
is completed. □

Remark 3. Based on FLF and It􏽢o stochastic system theory,
the complete proof of the finite-time admissibility for fuzzy
stochastic singular systems is firstly discussed, which pro-
vides a good base for the analysis and control of this kind of
systems. Since the membership function is also related to the
state of the system, it is difficult to obtain the boundary
information of the membership function. In order to
overcome this difficulty, in (eorem 1, through redesigning
Xι � XET + SYι, we get

􏽘

nr

ι�1

_hι(ς(t))EXι � 􏽘

nr

ι�1

_hι(ς(t))EPE
T

� 0. (55)

4.2. Controller Design. Fuzzy PDC controller for the T-S
FSSs (11) is designed as follows. Rι: IF ς1(t) is M1ι, ς2(t) is
M2ι, . . .AND ςκ(t) is Mκι, THEN

u(t) � −Fιx(t), ι � 1, 2, . . . , nr, (56)

where Fι is the feedback gain matrix. (en, the over fuzzy
PDC controller is given as

u(t) � − 􏽘

nr

ι�1
hι(ς(t))Fιx(t) � −Fςx(t). (57)

(e closed-loop system is

Ed(t) � Aς(t) − BςFς􏽨 􏽩x(t)dt + Jςx(t)dϖ(t). (58)

Theorem 2. System (11) is stochastic finite-time admissibile
if there exist symmetric matrices 0<P ∈ Rnq×nq , Θ ∈
R(n− nq)×(n− nq), and 0<Qικ ∈ R

3n×3n and matrices Yι ∈
R(n− n1)×n, M ∈ Rn×n, and Sι ∈ R

m×n, such that

Θιι < 0, ι � 1, 2, . . . , nr, (59)

2
nr − 1
Θιι + Θικ + Θκι < 0, 1≤ ι≠ κ≤ nr, (60)

λmin(Q)I≤Q≤ λmax(Q)I, (61)

λmax(Q)c
2
1e

aT
− c

2
2λminQ< 0, (62)

where
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Θικ � Δικ + Ψ − Qικ,

Δικ �

−Υ − ΥT
− αEXι ∗ ∗

Xι − μΥ + M μ M
T

+ M􏼐 􏼑 ∗

EE
+
JιXκ 0 −X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Υ � MA
T
ι + S

T
κB

T
ι ,

Xι � XE
T

+ SYι,

Ψ � 􏽘

nr

ι�1
􏽘

nr

κ�1
αικQικ,

X � diag P,Θ{ },

Q � R
−1/2

X
−1

R
−1/2

,

S �

0

I

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(63)

Furthermore, the feedback gains are given by
Fι � SιM

−T , κ � 1, 2, . . . , r.

Proof. Similar as the proof method of (eorem 1, we can
obtain

􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς)hκ(ς)Δικ �

−Σ − ΣT − αEXς ∗ ∗

ςς − μΣ + M
T μ M

T
+ M􏼐 􏼑 ∗

EE
+
JςXς 0 −X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(64)

where Σ � M(Aς − BςFς)
T.

(en, pre- and postmultiplying (62) by
I Aς − FςBς 0
0 0 I

􏼢 􏼣 and its transpose matrix, we have

􏽘

nr

ι�1
􏽘

nr

κ�1
hι(ς)hκ(ς)Δικ �

−Ξ − ΞT − αEXς ∗

EE
+
JςXς −X

⎡⎢⎣ ⎤⎥⎦< 0, (65)

where Σ � (Aς − BςFς)Xς. Based on (eorem 1, system
(58) is admissible. (is completes the proof. □

5. Illustrative Examples

Example 1. Consider the following fuzzy stochastic singular
model:

Edx(t) � 􏽘
2

ι�1
hι(ς(t)) Aιx(t)dt + Jιx(t)dϖ(t)( 􏼁, (66)

where

E �

1 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A1 �

−10 2 1

2 −5 1 − b

1 −a −4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

−1 1 0

4 −3 2

1 − 0.5b −1 −a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J1 �

0.1 0.2 −0.1

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J2 �

0.5 0.4 0.1

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

h1(ς(t)) � 1 − sin2 x1( 􏼁,

h2(ς(t)) � 1 + sin2 x1( 􏼁.

(67)

Choosing the parameter α � 0.5, T � 5, c1 � 1, and
c2 � 100, the finite-time admissibility of this model is
checked by comparing (eorem 1 and (eorem 10 in [27],
for the pairs (a, b), where a ∈ [−5, 4] and b ∈ [1, 10]. (e
feasible region is depicted in Figure 1. From Figure 1, it can
be directly seen that (eorem 1 provides the larger feasible
region.

Example 2. (e 2-rule FSSSs with distinct differential term
matrices Eι are given as

􏽘

2

ι�1
hι(ς(t))Eιdx(t) � 􏽘

2

ι�1
hι(ς(t)) Aιx(t) + Bιu(t)( 􏼁dt + Jιx(t)dϖ(t)􏼂 􏼃, (68)

Complexity 7



where

E1 �

1 1 0

0 1 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

E2 �

1 0 0

1 1 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A1 �

1.2 1.6 1.5

0.2 1 1

2 0.5 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

−0.5 0.2 0.6

−0.1 0.7 1.1

0.2 0.5 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J1 �

0.9 0 0.1

0.1 −0.2 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J2 �

0.5 0.2 0.4

0.7 0.7 0.4

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B1 �

1

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B2 �

1

2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

h1(ς(t)) � 1 − cos2 x1( 􏼁,

h2(ς(t)) � 1 + cos2 x1( 􏼁.

(69)

Choosing the parameter α � 0.1, T � 5, c1 � 1, c2 � 8,

and μ � 1, the PDC controller is solved by (eorem 2, and
the obtained controller gains are

F1 � 1.9158 1.8431 0.7171􏼂 􏼃,

F2 � 0.3489 1.1485 0.6251􏼂 􏼃.
(70)

Selecting the initial state x1(0) � 0.9 and x2(0) � −0.4 to
verify the effectiveness of the proposed controller, the dy-
namic corresponding diagram of the open-loop system and
closed-loop system is shown in Figures 2 and 3, respectively.
From Figure 3, we can find that the system under the
proposed controller is finite-time stable.

Example 3. Consider the DC motor actuated pendulum
system in [17].

J + ml
2

􏼐 􏼑€d(t) � kmi(t) + mgl sin(d(t)) − kc
_d(t),

Li(t) � uc(t),

u(t) � Ri(t) + kf
_d(t) + uc(t),

(71)

where d(t) is the angular displacement of the pendulum; B
_d(t) is the angular velocity of the pendulum; uc(t), i(t), and
u(t) are the inductance voltage, electric current, and ar-
mature circuit applied voltage, respectively; parameter J �

0.126 × 10− 3kg · m2 is the rotor mechanical inertia; l � 0.2m
and m � 0.1 kg are the pendulum length and mass, re-
spectively; g � 9.8m/s2 is the gravity constant;
km � 0.0446NM/A is the motor torque constant; L � 92mH
is the armature circuit inductance; R � 0.1Ω is the armature
circuit resistance; kf � 0.076V · s/rad is the back electro-
motive force constant; and kc � 1 × 10− 3 N · m · s/rad is the
viscous friction coefficient.

Considering the influence of random factors on the
system, we assume that the viscous friction coefficient is
affected by the white noise. Let

x(t) � d(t) _d(t) i(t) uc(t)􏽨 􏽩. (72)

(is system is rewritten as

dx1(t) � x2(t)dt,

dx2(t) �
kmx3(t) + mgl sin x1(t) − kcx2(t)

J + ml
2

−
kcx2(t)

J + ml
2 dϖ(t),

dx3(t) �
x4(t)

Ldt
,

0 � Rx3(t) + kfx2 t + x4(t) − u(t)( 􏼁.

(73)

(en, based on sector nonlinearity approach, the pa-
rameters of the fuzzy stochastic singular system can be
obtained as

−5 −4 −3 −2 −1 0 1 2 3 4
1

2

3

4

5

6

7

8

9

10

a

b

Figure 1: Feasible region of (eorem 1 (□) and [27] (∗ ).
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Edx(t) � 􏽘
2

ι�1
hι(ς(t)) Aιx(t) + Bιu(t)( 􏼁dt + Jιx(t)dϖ(t)􏼂 􏼃,

(74)

where

E �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 �

0 1 0 0

−47.5521 −0.2424 10.8095 0

0 0 0 0.0109

0 0.0760 0.10007 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 �

0 1 0 0

−33.5393 −0.2424 10.8095 0

0 0 0 0.0109

0 0.0760 0.1000 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J1 � J2 �

0 0 0 0

0 −0.12 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B1 � B2 �

0

0

0

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2 �

1

2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

h1 �
sin x1(t)( 􏼁 − 0.7053x1(t)

0.2947x1(t)
,

h2 � 1 − h1.

(75)

According to (eorem 2, choosing α � 0.1, T � 10, c1 �

1, c2 � 10, and μ � 1, the controller gains F1 and F2 are given
by
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Figure 2: State response curve (open-loop system).
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Figure 3: State response curve (closed-loop system).
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F1 � 954.8922 −86.4795 −375.2858 −2.2567􏼂 􏼃,

F2 � 560.3136 −67.8014 −343.4330 −2.2135􏼂 􏼃.
(76)

Choosing the initial states x0 � π/3 0 0 −0.79􏼂 􏼃, the
resultant stochastic state responses (30 tests) and mean of
the closed-loop system under PDC controller are shown in
Figures 4–7 . So, this system under PDC controller is finite-
time stable.

6. Conclusions

(is paper studies finite-time admissibility analysis and
controller design issues for FSSSs with distinct differential
termmatrices and Brownian parameter perturbations. Based
on FLF approach and It􏽢o-type stochastic system theory, the
finite-time admissibility criterion of T-S fuzzy stochastic
singular systems is proposed. (e boundary information of
derivative of fuzzy membership function is not needed in
this admissibility condition. Furthermore, the PDC con-
troller design method is given to ensure finite-time
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Figure 4: State x1 (closed-loop system).
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Figure 5: State x2 (closed-loop system).
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admissibility of the closed-loop system. Finally, simulation
examples are used to test the feasibility and practicability of
the proposed results.

It is important to point out that the other control
problems of T-S FSSSs with distinct differential term ma-
trices and Brownian parameter perturbations can also follow
the proposed method in this paper, e.g., observer design,
output feedback controller design, robust controller design,
and so on. Meanwhile, if the differential term matrices do
not satisfy the assumption condition, the corresponding
problems will become very difficult and full of challenging.
(ese topics are for future study.
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