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To achieve the high-performance control of the surface-mounted permanent magnet synchronous motor (SPMSM) speed control
system, this paper proposes a high-order sliding mode control strategy based on a new super twisting algorithm (NSTA). +is
strategy introduces an adaptive term in its proportional term based on the original super twisting algorithm, which solves low
reaching speed and poor antidisturbance ability due to the square root calculation of proportional term in the original super
twisting algorithm.+e simulation results show that the proposed strategy can effectively improve the system’s response speed and
antidisturbance and greatly suppress the chattering phenomenon of traditional sliding mode control.

1. Introduction

Surface-mounted permanent magnet synchronous motors
are widely used in aerospace, numerical control systems,
wind power generation, and new energy electric vehicle
drive systems due to their high efficiency and small size
[1, 2]. However, it is a nonlinear, strong coupling, multi-
variable complex object. Although a traditional PI controller
can meet the control requirements within a certain range, it
cannot meet the requirements of high-performance control
when system parameters change or are affected by external
uncertainties.

To solve the problems caused by traditional PI control,
scholars from all over the world have conducted much
research, and some modern control theory achievements
have been successfully applied to the speed control system of
SPMSM, such as adaptive control, fuzzy control, neural
network, active disturbance rejection control, and sliding
mode control. Among them, sliding mode control is widely
used because of its robustness, fast dynamic response, and
easy implementation [3]. Although the traditional sliding
mode control improves the robustness of the system, when
the sliding mode control is applied to the actual system, due
to the time delay and space lag of the switch, the error of the
state detection, and other factors, it is easy to cause the

system chattering phenomenon and reduce the dynamic
quality of the system [4]. +erefore, how to suppress
chattering is the key to the application of sliding mode
control.

Chinese scholar Gao proposed a sliding mode control
strategy based on the reaching law in 1996, which effectively
improved the system’s dynamic quality and reduced the
sliding mode chattering to a certain extent [5]. +e authors
in literature [6] proposed a sliding mode control strategy
based on exponential reaching law and Sigmoid function,
which effectively suppressed sliding mode chattering.
However, due to the introduction of the Sigmoid function,
the convergence speed and stability of the system are re-
duced to a certain extent, and the exponential reaching law
has contradictory problems between slidingmode chattering
and reaching speed and robustness. +e authors in literature
[7, 8] designed a sliding mode control strategy based on
integral sliding mode surface, which introduces the inte-
gration of state variables into the conventional sliding mode
surface, which can effectively eliminate the steady-state error
of speed and torque and accelerate the system response
speed and at the same time it has strong robustness to load
disturbance. However, the introduction of integral sliding
mode surface is easy to produce integral saturation, which
leads to large overshoot, which affects the quality of system
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control. +e authors in literature [9–12] proposed a terminal
sliding mode control strategy that improves the convergence
of the system so that the system state converges to a given
trajectory within finite time, but there is a singularity
problem. +erefore, nonsingular terminal sliding mode
control is proposed. It directly avoids controlling the sin-
gular area from the sliding mode design and retains the
finite-time convergence characteristics of the terminal
sliding mode. However, when the system state is far from the
equilibrium point, its convergence time is relatively long and
the dynamic characteristics worsen [13–15]. +e author in
literature [16] proposed a second-order sliding mode con-
trol: a super twisting algorithm composed of an integral and
proportional term. +e proportional term plays a role in
reaching speed. When the moving point reaches the sliding
mode surface, the integral term makes the system trajectory
move around the origin to ensure the continuity of the
output control signal and thus reduce the chattering phe-
nomenon in the sliding mode control. In literature [17], the
super twisting algorithm was applied to the SPMSM speed
regulation system and compared with the sliding mode
control based on exponential reaching law. It was found that
the algorithm effectively solved the problem of the con-
tradiction between chattering, reaching speed, and anti-
disturbance ability in the traditional sliding mode control
under the premise of suppressing sliding mode chattering.
However, the determination of the gain of this algorithm
requires that the disturbance term is differentiable and
bounded. In practical applications, this bound is difficult to
determine. In order to ensure the convergence of the system,
an excessively large gain value is often selected, which may
cause serious system chattering—even crash. +erefore, the
authors in literature [18] proposed a PMSM speed control
system based on the adaptive super spiral algorithm, which
effectively solved the problem of overestimating the gain of
the existing algorithm and improved the system’s stability.
However, none of the above strategies consider insufficient
reaching speed and poor antidisturbance ability of the super
twisting algorithm because its proportional term is the
square root calculation [19, 20].

In order to solve the above problems, this paper proposes
a sliding mode control strategy based on a new super
twisting algorithm. +is strategy introduces an adaptive
term in its proportional term based on the original super
twisting algorithm, which solves low reaching speed and
poor antidisturbance ability due to the square root calcu-
lation of proportional term in the original super twisting
algorithm. On the premise of ensuring that the system
chattering is not increased, the dynamic quality of the
SPMSM speed control system is improved.

2. The Motor Motion Equation of SPMSM

In this paper, the SPMSM is taken as the research object, and
its motion equation can be expressed as follows [1]:

dω
dt

�
3pnψf

2
iq −

β
J
ω −

TL

J
, (1)

where pn is the pole pairs; ψf is the rotor flux linkage; ω is
the speed; β is the viscosity friction coefficient; J is the
moment of inertia; TL is the load torque; and iq is the q-axis
current.

3. Sliding Mode Speed Controller Design

3.1. Sliding Mode Controller Based on Exponential Reaching
Law. +e linear sliding surface is as follows:

s � cx1 + x2, (2)

where ω∗ is the reference speed of the motor; x1 � ω∗ − ω;
and x2 � _x1 � − _ω.

In recent years, the sliding mode algorithm based on the
reaching law has been widely used in SPMSM speed con-
troller design because it can guarantee the dynamic quality
of the reaching motion.

+e exponential reaching law is as follows [13]:

_s � − εsign(s) − qs, (3)

where s is the sliding mode variable and ε and q are the
sliding mode control switching gain.

Derivation of equation (2) is obtained, and combining
with equation (1), we obtain the following:

_s � c _x1 + _x2 � cx2 + _x2
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Combined with equations (3) and (4), we obtain the
following:

c −
β
J

􏼠 􏼡x2 −
3pnψf

2J
_iq � − εsign(s) − qs. (5)

+us, the design control law can be obtained as follows:

_iq �
2J

3pnψf

c −
β
J

􏼠 􏼡x2 + εsign(s) + qs􏼠 􏼡. (6)

+us, the reference current of the q axis can be obtained
as follows:

i
∗
q �

2J

3pnψf

􏽚
t

0
c −

β
J

􏼠 􏼡x2 + εsign(s) + qs􏼠 􏼡dτ. (7)

As shown in equation (7), chattering will occur in the
system due to a discontinuous term εsign(s) in the reference
current. Secondly, the reaching speed, chattering, and ro-
bustness of the system are all related to the value of ε and q.
+e larger ε and q are, the stronger the robustness and the
faster the reaching are, but the chattering will also be more
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significant. +erefore, there is a contradiction between
system chattering and reaching speed and robustness.

+e Lyapunov function is defined as follows:

V �
1
2
s
2
. (8)

+e derivative of V can be obtained as follows:
_V � s _s. (9)

Combined with equations (1), (4), and (6), we can get

_V � s _s � s c −
B

J
􏼠 􏼡x2 −

3pnψf

2J
_iq􏼠 􏼡

� s(− εsign(s) − qs)

� − εsign(s)s + qs
2

􏼐 􏼑,

(10)

where both are normal numbers and εsign(s)s + qs2 is al-
ways greater than 0, so _V< 0. According to the Lyapunov
stability criterion, the SMC speed controller based on the
exponential reaching law is stable.

3.2. Speed Controller Design Based onNSTA-SMC. +e high-
order sliding mode algorithm provides a solution for the
contradiction between system chattering and reaching
speed. Unlike other high-order sliding mode algorithms, the
super twisting algorithm does not need to derive the sliding
mode surface so that the sliding mode surface and its de-
rivative can be stabilized to zero simultaneously, avoiding
that the introduction of noise control law design is simple.
So, its general expression is as follows [14]:

u � − α|s|
1/2sign(s) + u1,

_u1 � − βsign(s) + _φ,
(11)

where s is the sliding mode variable; φ is the disturbance
term; α and β are sliding mode gain coefficients; and sign() is
the switching function.

From equation (11), it can be seen that the proportional
term α|s|1/2sign(s) plays a role in improving the reaching
speed of the algorithm, but its sliding mode surface is cal-
culated by square root, and the gain of the scale term directly
affects the reaching speed and antidisturbance ability of the
algorithm. In order to improve the antidisturbance ability
and reaching speed of the algorithm, a new super twisting
algorithm is proposed in this paper, namely:

u � − α|s|
1/2sign(s) − ks + u1,

_u1 � − βsign(s) + _φ,
(12)

where ks is a linear term and k> 0.
+e sliding surface is selected as follows:

s � x � ω∗ − ω. (13)

Derivation of equation (13) gives

_s � _x � − _ω. (14)

Combined with equations (1) and (14), the output of the
controller is as follows:

_s � − _ω � −
3pnψf

2J
iq +

B

J
ω +
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J
. (15)

Combined with equations (12) and (15), the output of the
controller is as follows:
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J
􏼠 􏼡 + α|s|

1/2sign(s) + ks + 􏽚 βsign(s)dt􏼠 􏼡.

(16)

3.3. System Stability Analysis

Lemma 1 (see [21]). For equation (11), if | _φ|≤ δ and δ > 0,
then α and β satisfy the following values:

α> 2,

β>
α3 +(4α − 8)δ2

α(4α − 8)
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

+en, equation (11) can converge to the origin in finite
time.

Theorem 1. For equation (16), if 2| _φ|≤ δ and δ > 0, then α, β,
and k satisfy the following values:
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(18)

+en, equation (16) can converge to the origin in finite
time.

Let be ((B/J)ω + (TL/J)) � φ, use variable substitution:

z1 � s,

z2 � − 􏽚 βsign z1( 􏼁dt + φ.

⎧⎪⎨

⎪⎩
(19)

+us, equation (19) can be rewritten as follows:

_z1 � − α|z1|
1/2sign z1( 􏼁 − kz1 + z2,

_z2 � − βsign z1( 􏼁 + _φ.

⎧⎨

⎩ (20)

For equation (16), the quasi-quadratic Lyapunov func-
tion [22] is selected as follows:

V z1, z2( 􏼁 � ζTΠζ , (21)

where ζT
� [ζ1, ζ2] � [|z1|

1/2sign(z1), z2]; Π is a real sym-
metric positive definite matrix; take
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. (22)

According to equation (19), V(z1, z2) is a radially un-
bounded continuous positive definite function and V(z1, z2)

is differentiable everywhere except for the set z1 � 0􏼈 􏼉. +e
derivative of V(z1, z2) along the system trajectory can be
obtained as follows:

_V z1, z2( 􏼁 � _ξ
T
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where A �
− (α + k|z1|

1/2
) 1

− 2β 0
􏼢 􏼣, B �

0
1􏼢 􏼣, ρ � 2|z1|

1/2, and
􏽥_φ � 2|ξ1| _φ.

Obviously, ρ � 2|z1|
1/2 and 􏽥_φ � 2|ξ1| _φ are scalars, and it

can be seen from the expansion calculation of BTΠξ and
ξTΠB that BTΠξ and ξTΠB are also scalars, and according to
equation (22), Π � ΠT can be seen, so

B
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T
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Let be m � BTΠξ � ξTΠB and m2 � ξTΠBBTΠξ
according to the inequality

(m − ρ)
2
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2
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From equation (25), we can know
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According to +eorem 1, suppose the perturbation term
φ is Lipschitz continuous, and 2| _φ|≤ δ, δ > 0.

Combining ρ � 2|z1|
1/2 and 􏽥_φ � 2|ξ1| _φ, we obtain
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Let be C � 1 0􏼂 􏼃, we obtain
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Combining equations (23) to (28), it can be concluded
that
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where Q � − [ATΠ + ΠA + δ2CTC + ΠBBTΠ].
Obviously, for equation (29), when Q is a positive

definite matrix, we obtain
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+us, the Lyapunov function V(z) of the system shown
in equation (16) satisfies the stability conditions in the
Lyapunov stability theory of V> 0, which is radially un-
bounded and _V< 0.

By further expanding and calculating Q, we can get
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If Q> 0, then _V< 0; according to Schur’s complement
lemma [23], it can be deduced that a sufficient
and necessary condition for Q to be a positive definite
matrix is
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Since k> 0, and in the existing system, there must be
|ω∗ − ω|1/2max ≥ |z1|

1/2 ≥ 0, and equation (32) can be trans-
formed into the following:
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+e proof is completed.
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3.4.?e Influence of LinearTermon the Stability andReaching
Speed of the System. According to the above proof process,
the linear term ks is introduced into the proportional term of
the super twisting algorithm, so long as k> 0 is guaranteed,
the system’s stability will not be affected. At the same time,
when the system state of the linear term ks is close to the
sliding mode surface, that is, s< 1, ks reaches 0, the pro-
portional term becomes the square root reaching law
α|s|1/2sign(s), and there is still the problem of low reaching
speed. In order to solve this problem, the adaptive term
k|s|b·sign(|s|− 1)s is introduced in this paper, and equation (16)
becomes

i
∗
q �

2J

3pnψf

B

J
ω +

TL

J
􏼠 􏼡 + α|s|

1/2sign(s) + k|s|
b·sign(|s|− 1)

s􏼠

+ 􏽚 βsign(s)dt􏼓,

(34)

where k|s|b·sign(|s|− 1)s is the adaptive term, k> 0, 0< b< 1.
When the system state is close to the sliding mode

surface, i.e., s< 1, then sign(|s| − 1) � − 1 and the propor-
tional term becomes α|s|1/2sign(s) + k|s|− bs, which is obvi-
ously α|s|1/2sign(s) + k|s|− bs≫ α|s|1/2sign(s) from the
perspective of reaching speed. When the system state is far

away from the slidingmode surface, i.e., s> 1, then sign(|s| −

1) � 1 and the proportional term becomes α|s|1/2sign(s) +

k|s|bs, which is obviously α|s|1/2sign(s) + k|s|bs≫ α
|s|1/2sign(s) from the perspective of reaching speed.

4. Simulation Research

In order to verify the antidisturbance ability and chattering
suppression ability of the strategy proposed in this paper, a
simulation model was built in Matlab/Simulink according to
Figure 1. SPMSM parameters used for simulation are shown
in Table 1.

In order to prove the effectiveness of the proposed new
super twisting algorithm, NSTA-SMC, STA-SMC, the
sliding mode control based on the exponential reaching law
(SMC), and PI control performance are compared and
simulated. +e premise is that the above four methods of
current loop using PI controller and the parameters are the
same. +e simulation results are shown in Figure 2. Among
them, NSTA-SMC parameters designed in this paper are
α � 1500, β � 60000, k � 600, and b � 0.5; PI parameter is
kp � 0.1 and ki � 3; SMC1 parameter is ε � 500000, c � 60,
and q � 300; SMC2 parameter is ε � 800000, c � 60, and
q � 300; STA-SMC parameter is α � 1500 and β � 60000.

Figure 2 shows the system adopts no-load start mode,
and the given speed is 1000 rpm. From Figure 3 and Table 2,
compared with PI, SMC1, SMC2, and STA-SMC, NSTA-
SMC has the smallest starting overshoot, shortest regulation
time, and fastest response speed. At 0.2 s, the load changes to
10N·m. Figure 4 and Table 2 show that when the load
changes suddenly, the PI speed drop is the largest and the
regulation time is the longest. Compared with PI, the speed
drop of SMC1 and SMC2 is smaller, and their size is closely
related to the size of controller parameters ε and q. Com-
pared with STA-SMC, the speed drop of NSTA-SMC with
the introduction of the adaptive term is 51.9% less than that
of STA-SMC and it can quickly recover to a given speed,
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Figure 1: SPMSM speed regulation system based on NSTA-SMC.

Table 1: SPMSM parameters.

Parameters Values
Stator resistance Rs 2.875Ω
Pole-pairs number 4
Magnetic flux ψf 0.175Wb
D-axis induction Ld 8.5e − 3H
Q-axis induction Lq 8.5e − 3H
Damping factor B 0
DC bus voltage V 311V
Rotational inertia J 0.003 kg·m2

Complexity 5
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Table 2: SPMSM system performance.

Result PI SMC1 SMC2 STA-SMC NSTA-SMC Unit
Response time 0.18 0.1215 0.1215 0.0225 0.01175 s
Regulation time 1 0.18 0.1 0.1 0.06 0.06 s
Regulation time 2 0.18 0.095 0.095 0.03 0.03 s
Regulation time 3 0.18 0.09 0.09 0.057 0.057 s
Start overshoot 127.5 132.55 33.65 1 0.75 rpm
Load overshoot 92 61.75 48.82 44.7 21.5 rpm
Speed change overshoot 33.5 0 0 2.6 1.76 rpm
Unload overshoot 82 52 40.6 39.4 17.4 rpm
Speed tracking error 0.63 0.28 0.44 0.235 0.135 rpm
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which effectively solves the problem of low reaching speed of
the original super twisting algorithm and further improves
the antidisturbance ability of the system. At 0.4 s, the speed
suddenly rises to 1200 rpm. From Figure 5 and Table 2, when
the speed changes suddenly, the PI overshoot is the largest
and the regulation time is the longest; although SMC1 and
SMC2 have no overshoot, the regulation time is much longer
than that of STA-SMC and NSTA-SMC. At 0.6 s, the load of
10N·m is removed. From Figure 6 and Table 2, compared
with PI, SMC1, SMC2, and STA-SMC, NSTA-SMC has the
slightest change in speed and quickly recovers to a given
speed, with good antidisturbance ability. From Figure 7 and
Table 2, when the speed is 1200 rpm, the steady-state error of
PI speed is the largest, and the control quality is poor. +e

system chattering of SMC1 and SMC2 is closely related to
the size of the controller parameters ε and q. Compared with
SMC, NSTA-SMC effectively suppresses sliding mode
chattering and effectively solves the contradiction between
the reaching speed of SMC and system chattering. Com-
pared with STA-SMC, NSTA-SMC improves the system’s
response speed and antidisturbance ability without in-
creasing the system chattering and further improving the
system’s dynamic quality.

From Figures 8 and 9, compared with PI, SMC1,
SMC2, and STA-SMC, the control strategy proposed in
this paper has the fastest torque response speed and
smaller torque fluctuation. When dealing with external
disturbance, it takes the least time to restore to the
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original torque and has the best dynamic response
performance.

5. Conclusion

(1) Compared with STA-SMC, NSTA-SMC with
adaptive term effectively solves the problem of low
reaching speed and poor antidisturbance ability
caused by the square root calculation of proportional
term in the original super twisting algorithm without
increasing system chattering and improves the dy-
namic following performance of the system.

(2) Compared with the SMC based on the exponential
reaching law, the NSTA-SMC effectively solves the
contradictory problems between sliding mode
chattering and reaching speed and antidisturbance
ability under the premise of suppressing chattering
and further improving the system control quality.

(3) Compared with PI, NSTA-SMC effectively improves
the PI control excessive overshoot and poor anti-
disturbance ability and improves the dynamic and
static quality of the system.

(4) At the same time, how to ensure the optimal sliding
mode gain of the new super twisting algorithm has
become the research focus to further improve the
system performance.
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