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As a valuable tool for representing uncertain information, probabilistic hesitant fuzzy sets (PHFS) have gained considerable
recognition and in-depth discussion in recent years to increase the flexibility and manifest hesitant information in decision-
making problems. However, decision-makers (DMs) cannot express all preferences only through a few probabilistic terms in
actual decision-making. Much critical information is hidden behind the original information provided by the DMs. Keeping that
in mind, we are interested in mining deeper uncertain information from the original probabilistic hesitant fuzzy evaluation data.
To achieve the target, we put forward a novel representation tool called the normal wiggly probabilistic hesitant fuzzy set
(NWPHFS) to extract deeper uncertain preferences from original probabilistic information. NWPHFS retains the original
evaluation information and carries and assesses the potential uncertain details for increasing the rationality of decision-making
outcomes. Herein, we propose some fundamental concepts of NWPHFS, for instance, some elementary operational laws, distance
measures between two NWPHFSs, and score function. We also suggest two new aggregation operators, that is, the normal wiggly
probabilistic hesitant fuzzy weighted averaging (NWPHFWA) and normal wiggly probabilistic hesitant fuzzy weighted geometric
(NWPHFWG). A novel mechanism is proposed here to work out multiattribute decision-making (MADM) in solving normal
wiggly probabilistic decision-making problems. )rough a practical example of environmental quality assessment, the specific
calculation steps of this method are epitomized. Finally, we have demonstrated the feasibility and advancement of the proposed
approach via a comprehensive comparative study.

1. Introduction

MADM problems are everywhere in our daily lives, and
most people frequently face uncertain decision-making in all
aspects of their lives, for example, which city to travel during
a short holiday, which bag is suitable for shopping today,
which mobile phone brand is more suitable for my needs,
which kind of fruits to buy, and which clothes to wear today.
While these common decision-making issues are easy to
handle, no matter how many final choices are made, no
errors can be significantly highlighted in MADM applica-
tions. However, no mistake can be tolerated in significant
decision-making issues. )e best or optimal decisions must

be made for applications, including market analysis, quality
assessment, and investment strategy. To address these
problems, many effective representational models have been
proposed and widely implemented, especially for MADM
[1, 2]. Almost all decisions take several steps to reach the
final destination, and some of them can be confusing in
nature. Suppose that the data is analyzed without handling
the uncertainty. In that case, their decision outcomes may be
extremely vague, so it is important to include the DM’s
preference to deal with uncertainty. Fuzzy set (FS) theory [3]
and its extensions, such as intuitionistic fuzzy set (IFS) [4],
type-2 fuzzy sets [5], interval-valued intuitionistic fuzzy set
[6], Pythagorean fuzzy set [7], hesitant fuzzy set (HFS) [8],
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probabilistic HFS (PHFS) [9], and proportional HFS
(PrHFS) [10], are the most effective tools to deal with the
impreciseness and uncertainties in the decision-making.)e
purpose of the above-mentioned different types of fuzzy sets
is to more effectively express information on the uncertain
and complex diagnosis of DM. In recent decades, these
generalizations of fuzzy sets have been widely recognized in
various academic studies, and considerable achievements
have been made to adapt to different application environ-
ments. In FS, DMs only evaluate the objects by stating the
degree of membership (preferences), or they can only
provide their assessment in a crisp value. However, for DMs,
the key issue in dealing with a real complex problem is
determining the crisp value based on a given standard to
reflect their given uncertainty and opacity. For example,
suppose that the DM cannot determine which specific
number to give for object/alternative under a particular
attribute. In that case, he may give several numbers instead
of the specific number to represent his assessment infor-
mation. Keeping this fact in mind, among these extensions,
the most famous generalization of the FS is HFS [11], in
which membership of a particular element is allowed to
represent a set possessing many possible values between
[0, 1]. )erefore, HFS has a wider range of applications and
more practical significance and is a handy tool for expressing
people’s hesitation in everyday life compared to other ex-
tensions. As it leads to expressing uncertainty, it has
attracted the attention of researchers. For instance, Zhang
[12] proposed different aggregation operators and several
useful properties and discussed the relationship between
them. Li et al. [13] developed a variety of novel similarities
and distance measures between HFSs, in which both the
values and the number of values of HFE are taken into
account. Liu et al. [14] elucidated the correlation and dis-
tance measures for hesitant fuzzy information and analyzed
their properties to measure the strength of the relationship
between HFSs.

Since its initiation, several researchers have proposed a
lot of research to support HFS theory [15–17]. In numerous
decision-making problems, information is mainly vague or
ambiguous because of the inaccurate/incomplete data, lack
of time, partial attention, and the information processing
skills of the decision-makers. )erefore, it is difficult for
DMs to express their opinions in some specific numerical
values. For instance, suppose that a consumer wants to buy a
car. He mainly focuses on car safety features and asks an
expert for advice. If the total is 100 points, the expert is 80%
sure that the car’s safety could be 60, and he is 20% sure that
the score could be 70. )e HFS 0.6, 0.7{ } cannot represents
the preferences that 0.7 is more suitable than 0.6. To cope
with the situation, Zhu [9] merged the probability into the
HFS and proposed PHFS, which can cover the expert’s
hesitations and retain more information than HFS. For
example, PHFS for the above case can be written as
0.6(0.8), 0.7(0.2){ }, where 0.8 and 0.2 are the probabilities to
the original HFE values, which can be employed to char-
acterize DMs preferences. Zhang et al. [18] proposed the
novel aggregation operators and continuous form for the
improved PHFS and PHFE. Li et al. [19] proposed the

MADM method with PHF information based on the
dominance degree of probabilistic hesitant fuzzy elements
(PHFE) and the best-worst method. Wang and Li [20]
studied PHFS operations to explore MADM problems and
introduced an approach based on correlation coefficients
that utilize probabilistic hesitant fuzzy information.

)e development of various extension forms of PHFS
supports DMs to articulate their assessment information
about alternatives comprehensively. For instance, the in-
terval-valued probabilistic hesitant fuzzy set (IVPHFS)
presented by Krishankumar et al. [21] permits DMs to allot
the probable values in interval forms. Also, Krishankumar
et al. [22] discussed the IVPHFS under context when the
weights of the attributes and DMs are unknown.)e weights
of the attributes are calculated using the interval-valued
probabilistic hesitant deviation method. In contrast, the
Bayesian approximation method is used to find the weights
of the DMs under the environment of IVPHFS. IVPHFS is
more likely to ask DMs to provide cognitive information
through probabilistic hesitant fuzzy information and then
ask them to further improve uncertainty assessments in
various extension forms. Recently Noor et al. [23] proposed
a newMADMmethod (tail decision-making) to find the best
alternative by using the minimal information of the prob-
abilistic interval-valued HFS. Chen et al. [24] proposed
ordered weighted averaging operators generation algorithm
for MADM problems. Xiong et al. [25] presented an ex-
tended power average operators for decision-making
problems. However, these extensions become more com-
plicated, which will increase the time cost and psychological
burden of DM. It becomes difficult for us to evaluate the
DMs’ values, which they want to elaborate. )us, obtaining
more thorough investigation information to ensure the
validity of the final decision results has become a hot topic
for research. Recently Ren et al. [26] presented the normal
wiggly hesitant fuzzy set (NWHFS) as an extension of HFS to
explore the potential information hidden behind the original
data.)ey assume that DMs’ uncertainty can be considered a
general fluctuation range based on HFE diagnostic values.
Liu et al. [27] developed the normal wiggly hesitant fuzzy
power Muirhead means to fully exert the strength by
combining power average and Muirhead mean operators on
the distance measure of the NWHFE.

To more accurately describe uncertain information, Liu
et al. [28] proposed the new representation mechanism with
the combination of linguistic terms set and NWHFS which
resulted in a useful representation tool named normal wiggly
hesitant fuzzy linguistic term set (NWHFLTS). Considering
the advantages of NWHFS and TODIM, Liu and Zhang [31]
defined the new distance measure of two NWHFEs and put
forward an extended NWHF-TODIM method to handle the
MADM problems under normal wiggly information, con-
sidering that if only membership functions represent a
certain degree of the attributes, the importance of uncer-
tainty becomes ignored. Based on the idea of Pythagorean
hesitant fuzzy set, Yang et al. [29] proposed a normal wiggly
Pythagorean hesitant fuzzy set (NWPaHFS) that took into
account both membership and nonmembership aspects.
Besides, Narayanamoorthy et al. [30] presented a normal
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wiggly dual hesitant fuzzy set (NWDHFS) as an extension of
NWHFS and defined a new score function for the new fuzzy
set. It can express the profound ideas of membership and
nonmembership information. Liu and Zhang [32] combined
the MABAC (multiattributive border approximation area
comparison) with prospect theory, which considers DMs
psychological behavior and proposes a new method under a
normal wiggly environment for handling the complex and
uncertain decision-making problems.

To facilitate a better understanding, we summarize the
features and differences discussed above, which are listed in
Table 1.

However, due to the increasing complexity of the fun-
damental issues and the uncertainty of decision-makers
perception, in many circumstances, there are some diffi-
culties for the DMs to quantify their preferences by several
possible values or the behaviors of the DMs cannot be
characterized by using crisp values. As HFS has a severe
deficiency of information, this loss has also converted to
NWHFS, leading to extreme data loss, and it should be
addressed. To overcome the issue, PHFS has been used
instead of HFS to minimize information loss. )erefore,
according to the analysis discussed above and for the sake of
overcoming the weaknesses, we shall propose a set named
normal wiggly probabilistic hesitant fuzzy set (NWPHFS).
)e significant excellence of NWPHFS is that it could depict
different attributes of a target in a single framework: possible
hesitant fuzzy set, its corresponding probability, and the
extracted hidden information from the original PHFS.
Moreover, we propose some elementary operational laws
and aggregation operators of NWPHFS to aggregate the
wiggly probabilistic data. Furthermore, we establish an ef-
ficient and authentic approach to deal with MADM prob-
lems under a probabilistic environment. Finally, we apply
the proposed method to the research of the environmental
quality assessment. An illustrative example shows our
proposed method’s implementation process and demon-
strates that our approach is more reliable and logical.

Here is a summary of the main contributions of this
article:

(1) Considering the uncertain preferences hidden be-
hind the original probabilistic hesitant information,
we propose the normal wiggly probabilistic hesitant
fuzzy set, a new extension of HFS

(2) Two new aggregation operators, the normal wiggly
probabilistic hesitant fuzzy weighted averaging and
the normal wiggly hesitant fuzzy weighted geomet-
ric, are put forward to conclude the rankings results
of alternatives in decision-making problems

(3) We proposed a new MADM method to streamline
the normal wiggly probabilistic hesitant information
based onNWPHFWA andNWPHFWGoperators to
obtain the best alternatives

Comprehensively, the paper framework is designed in
the following way: Section 2 describes the essential concepts
consisting of HFS, PHFS, and NWHFS. Section 3 elaborates
the NWPHFS, a new form of PHF information, the score
function, operational rules, and the comparison rule of
NWPHFEs. Section 4 describes the new methodology to
develop the MADM problems when attributes values are
expressed in NWPHFS. Section 5 explains the application
stages in comparing other theories to demonstrate the
feasibility and validity of the discussed method.

2. Preliminaries

In this section, we mainly review some basic concepts of
HFS, PHFS, and NWHFS such as the operational laws, the
score function, and the comparison method. Moreover, we
give some examples to explain the given theories.

Definition 1 (see [8]). For a given nonempty set S, HFS H on
S is a function of hS(x) which when applied to S returns to a
finite subset of [0, 1]. Mathematically,

H � 〈x, hS(x)〉|x ∈ S􏼈 􏼉, (1)

where hS(x) is the discrete set of values from [0, 1] repre-
senting the possible membership degrees of the element
x ∈ S, also called HFE, and for simplicity, we use hS(x) � h.
Subsequently, the score function, deviation function, and
comparison rules were proposed and investigated as the
basis for their calculation and application for HFEs [33].

Example 1. For any set S � x1, x2, x3􏼈 􏼉, let
h(x1) � 0.3, 0.4, 0.5{ }, h(x2) � 0.2, 0.3, 0.5{ }, and h(x3) �

0.1, 0.2{ } be three HFEs. )en the set H is called HFS and
denoted as

H � 〈x1, (0.3, 0.4, 0.5)〉, 〈x2, (0.2, 0.3, 0.5)〉, 〈x3, (0.1, 0.2)〉􏼈 􏼉. (2)

To enhance the preferences in decision-making prob-
lems, Zhu [9] extended the HFS to PHFS, defined as follows.

Definition 2. Let S be any universe of discourse; then a PHFS
on S can be expressed by an expression

Hp � 〈x, hp(x)〉|x ∈ S􏽮 􏽯, (3)

where hp(x) � ci(pi), representing the membership degree
of the element x ∈ S and ci, pi ∈ [0, 1]. For simplicity, we
denote

hp(x) � hp � ci pi( 􏼁|i � 1, 2, 3, . . . , #h􏼈 􏼉, (4)

where #h is the number of possible elements in hp, pi is the
hesitant probability of ci, and 􏽐

#h
i�1pi � 1.
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2.1. Normalization of PHFEs. Usually, for the PHFS, we
always hope that all the elements have complete probabilistic
information. If given, then the calculation of the PHFEs will
be more straightforward, and the outcome of this set-based
decision-making will be more accurate. Unfortunately, the
probabilistic information is not always complete. To over-
come this issue, Zhang et al. [18] estimate the missing
probabilistic details based on the following principle.

Definition 3. For any PHFE hp, if 􏽐
#h
i�1pi < 1, then its as-

sociated PHFE 􏽢hp is defined as
􏽢hp � ci

􏽢pi( 􏼁|i � 1, 2, 3, . . . , #hp􏽮 􏽯, (5)

where 􏽢pi � (pi/􏽐
#h
i�1pi).

To study further deeply the probable uncertainty con-
cealed behind the assessments of DMs, Ren et al. [26]
presented the concept of NWHFS.

Definition 4. For a given HFE h � c1, c2, c3, . . . , c#h􏼈 􏼉, the
mean value and the deviation function of all values in h can
be defined as

h �
1
#h

􏽘

#h

i�1
ci, σh �

�������������

1
#h

􏽘

#h

i�1
ci − h􏼐 􏼑

2

􏽶
􏽴

, (6)

respectively.)emapping 􏽥f from h to [o, σh], which satisfies
the relation,

􏽥f ci( 􏼁 � σh · e
− ci− h( 􏼁

2
/2σ2

h
􏼐 􏼑

, (7)

is said to be the normal wiggly range of ci.

Definition 5 (see [26]). Let h � c1, c2, c3, . . . , c#h􏼈 􏼉 be an
HFE. )e normalized HFE can be calculated by the
expression

􏽥h �
c1

sum ci( 􏼁
,

c2

sum ci( 􏼁
,

c3

sum ci( 􏼁
, . . . ,

c#h

sum ci( 􏼁
􏼨 􏼩,

􏽥h � 􏽥c1, 􏽥c2, 􏽥c3, . . . , 􏽥c#h􏼈 􏼉,

(8)

where sum(ci) � 􏽐
#h
i�1ci. From the normalized set 􏽥h, the real

preference degree of DMs can be computed as follows:

rpd(􏽥h) �

􏽘
#h

i�1
􏽥ci

#􏽥h − i

#􏽥h − 1
􏼠 􏼡, if h< 0.5,

1 − 􏽘
#h

i�1
􏽥ci

#􏽥h − i

#􏽥h − 1
􏼠 􏼡, if h> 0.5,

0.5, if h � 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

which is measured based on the orness, proposed by Yager
[34].

Definition 6 (see [26]). For any nonempty set S, consider an
HFE, h(x) � c1, c2, c3, . . . , c#h􏼈 􏼉, in an HFS,
H � 〈x, hS(x)〉|x ∈ S􏼈 􏼉. )e NWHFS can be stated as

NW � 〈x, hS(x),ψ hS(x)( 􏼁〉|x ∈ S􏼈 􏼉, (10)

where ψ(hS(x)) � 􏽢c1, 􏽢c2, 􏽢c2, . . . , 􏽢c#h(x)􏽮 􏽯 and

􏽢ci � τL
i , τM

i , τU
i􏽮 􏽯, (11)

where τL
i � max(ci − 􏽥f(ci), 0), τM

i � (2 · rpd(􏽥h(x)) − 1)
􏽥f(ci) + ci, and τU

i � min ci + 􏽥f(ci), 1. ci is one of the ele-
ments in HFE, 􏽥f(ci) is the wiggly parameter, and rpd(􏽥h(x))

is the real preference degree which can be found using (9).
Furthermore, ψ(h(x)) is an NWE. For simplicity,
(h(x),ψ(h(x))) can be labeled as (h,ψ(h)), which is
NWHFE.

For a better understanding, we give a simple numerical
example of NWHFS.

Table 1: A summary on the normal wiggly hesitant fuzzy set and its extensions.

Studies Different
models Characteristic of the elements Extract

information
Probabilistic
information

[8] HFS A set of possible membership values No No
[10] PrHFS A set of possible membership values and their associated proportion No No
[9] PHFS A probabilistic distribution of several membership values No Yes
[26] NWHFS A set of possible membership values Yes No
[28] NWHFLTS A set of several ordered and continuous linguistic terms Yes No

[29] NWPaHFS A set of membership and nonmembership values such that the sum of square
of membership and nonmembership values is less than one Yes No

[30] NWDHFS A set of various membership and nonmembership values Yes No
Proposed NWPHFS A probabilistic distribution of several membership values Yes Yes
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Example 2. Let S � x1, x2,x3􏽮 􏽯 and consider the HFS set H

to be

H � 〈x1, (0.3, 0.4, 0.5)〉, 〈x2, (0.2, 0.3, 0.5)〉, 〈x3, (0.1, 0.2)〉􏼈 􏼉. (12)

NWHFS can be obtained according to Definitions 5 and
6:

NWH �

x1 (0.2614, 0.2936, 0.3386) (0.3184, 0.3864, 0.4816) (0.4614, 0.4936, 0.5386)

x2 (0.1296, 0.1789, 0.2704) (0.1797, 0.2639, 0.4203) (0.4489, 0.4847, 0.5511)

x3 (0.0184, 0.1272, 0.1816) (0.1614, 0.2129, 0.2386)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (13)

Some properties and operational laws for the compar-
ison of two NWHFEs are defined as follows.

Definition 7 (see [26]). For the two NWHFEs (h1,ψ(h1))

and (h2,ψ(h2)), the score values can be calculated by the
expression

SNW h1,ψ h1( 􏼁( 􏼁 � λ h − σh􏼐 􏼑 +(1 − λ)
1
#h

􏽘

#h

i�1
􏽢ci − τ􏽢ci

􏼒 􏼓⎛⎝ ⎞⎠,

(14)

where 􏽢ci � ((τL
i + τM

i + τU
i )/3) and τ􏽢ci

�
�������������������������������������

(τL
i )2 + (τM

i )2 + (τU
i )2 − τL

i τM
i − τM

i τU
i − τL

i τU
i

􏽱

and pa-
rameter λ ∈ (0, 1) is the confidence level of the DMs which
can be selected according to the information given by them.

)e assessment of any two NWHFEs (h1,ψ(h1)) and
(h2,ψ(h2)) based on Definition 7 can be defined as follows:

(1) If SNW(h1,ψ(h1))> SNW(h2,ψ(h2)), then
(h1,ψ(h1)) is preferable to (h2,ψ(h2)) and is de-
scribed as (h1,ψ(h1))≻(h2,ψ(h2))

(2) If SNW(h1,ψ(h1))< SNW(h2,ψ(h2)), then
(h2,ψ(h2)) is preferable to (h1,ψ(h1)) and is de-
scribed as (h1,ψ(h1))≺(h2,ψ(h2))

(3) If SNW(h1,ψ(h1)) � SNW(h2,ψ(h2)), then both
(h1,ψ(h1)) and (h2,ψ(h2)) are equivalent and are
described as (h1,ψ(h1)) ∼ (h2,ψ(h2))

Definition 8 (see [26]). For any two NWHFEs (h1,ψ(h1))

and (h2,ψ(h2)) and κ> 0, we have

(1) (h1,ψ(h1))􏽢⊕(h2,ψ(h2)) � (∪ c1∈h1 ,c2∈h2c1+

c2 − c1c2, ∪􏽢c1∈ψ(h1),􏽢c2∈ψ(h2)
􏽢c1⊕􏽢c2)

(2) (h1,ψ(h1))􏽣⊗ (h2,ψ(h2)) � (∪ c1∈h1 ,c2∈h2
c1c2

, ∪􏽢c1∈ψ(h1),􏽢c2∈ψ(h2)
􏽢c1 ⊗ 􏽢c2)

(3) (h1,ψ(h1))
κ � (∪ c1∈h1

cκ
1, ∪􏽢c1∈ψ(h1)

􏽢cκ
1)

(4) κ(h1,ψ(h1)) � (∪ c1∈h11 − (1 − c1)
κ, ∪􏽢c1∈ψ(h1)

κ􏽢c1)

3. Normal Wiggly Probabilistic Hesitant
Fuzzy Set

Recently, Ren et al. [26] proposed the NWHFS to ensure the
validity of evaluation results, which developed a method-
ology to dig the secret consent of DMs from the actual
evaluation information. In this part, we put forward the
concepts of normal wiggly parameter and real preference
degree to mine the uncertain preferences hidden behind the
original PHFS. Based on this, we present the NWPHFS with
its operational laws and comparison method.

Definition 9. Let hp � c1(p1), c2(p2), c3(p3), . . . , c#h􏼈

(p#h)} be a PHFE. )en mean and deviation of all values in
hp are defined as

hp �
􏽐
#h
i�1cipi􏼒 􏼓

􏽐
#h
i�1pi

,

σhp
�

􏽐
#h
i�1pi ci − hp􏼐 􏼑

2

􏽐
#h
i�1pi

,

(15)

and the mapping 􏽥g: hp⟶ [0, σhp
] is defined as

􏽥g ci pi( 􏼁( 􏼁 � σhp
e

− 0.5 pi ci − hp( 􏼁
2
/ σhp
􏼐 􏼑

2
􏼒 􏼓

.
(16)

)en, the interval [ci − 􏽥g(ci(pi)), ci + 􏽥g(ci(pi))] with
the associated probabilistic element is called normal wiggly
range of the element ci(pi).

For further clarity, an example is given in the following.

Example 3. Consider hp � 0.2(0.1), 0.3(0.2), 0.6(0.3){ }. )e
mean, deviation, and wiggle range value using Definition 9
can be calculated as

Complexity 5



hp �
0.2(0.1) + 0.3(0.2) + 0.6(0.3)

0.1 + 0.2 + 0.3
� 0.4333,

σhp
�
0.1(0.2 − 0.4333)

2
+ 0.2(0.3 − 0.4333)

2
+ 0.3(0.6 − 0.4333)

2

0.1 + 0.2 + 0.3
� 0.02889,

(17)

and wiggle range corresponding to the probabilistic ele-
ments using (16) is

0.2(0.1)⟶ [0.01889, 0.02111],

0.3(0.2)⟶ [0.05657, 0.06343],

0.6(0.3)⟶ [0.1798, 0.1802].

⎧⎪⎪⎨

⎪⎪⎩
(18)

Real preference degree measured and defined by Ren
et al. [26] is applicable for the HFE. For the PHFE, we extend
the preference degree as follows.

Definition 10. )e real preference degree of the DM in a
PHFE can be calculated based on the degree of orness [34]
which can be defined as

rpd 􏽢hp􏼐 􏼑 �

􏽘
#h

i�1
ci

#􏽢hp − i

#􏽢hp − 1
⎛⎝ ⎞⎠􏽢pi, if hp < 0.5,

1 − 􏽘
#h

i�1
ci

#􏽢hp − i

#􏽢hp − 1
⎛⎝ ⎞⎠􏽢pi, if hp > 0.5,

0.5, if hp � 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where 􏽢hp is the normalized set of hp calculated as

􏽢hp � c1 􏽢p1( 􏼁, c2 p2( 􏼁, 􏽢c3 p3( 􏼁, . . . , 􏽢c#hp
p#hp

􏼒 􏼓􏼚 􏼛, (20)

and 􏽢pi � (pi/􏽐
#h
i�1pi), (i � 1, 2, 3, . . . , #hp).

Example 4. Consider a PHFE
hp � 0.2(0.1), 0.3(0.2), 0.6(0.3){ }. First the normalized set
for the determination of real preference degree can be
calculated. After the normalization, real preference degree
can be find using equation (19) as

􏽢hp � 0.2(0.1667), 0.3(0.3333), 0.6(0.5){ }. (21)

)en,

rpd 􏽢hp􏼐 􏼑 � 0.08333. (22)

Definition 11. Let S � 〈x, hp(x)〉|x ∈ S􏽮 􏽯 be a PHFS. )e
NWPHFS on S is denoted as

NWP � 〈x, hp(x), ξ hp(x)􏼐 􏼑|􏽢p〉􏽮 􏽯, (23)

where hp(x) is the PHFE, and

ξ hp(x)􏼐 􏼑|􏽢p � 􏽢c1 􏽢p1( 􏼁, 􏽢c2 􏽢p2( 􏼁, 􏽢c3, . . . , 􏽢c#hp
􏽢p#h( 􏼁􏼚 􏼛,

􏽢ci � δL
i , δM

i , δU
i􏽮 􏽯,

δL
i � max ci − 􏽥g ci pi( 􏼁( 􏼁, 0( 􏼁,

δM
i � 2rpd 􏽢hp(x)􏼐 􏼑 − 1􏼐 􏼑􏽥g ci pi( 􏼁( 􏼁 + ci · pi,

δU
i � min ci + 􏽥g ci pi( 􏼁( 􏼁, 1( 􏼁,

(24)

where ci � 1, 2, 3, . . . , #hp. )e pair 〈hp(x), ξ (hp(x))|􏽢p〉 is
called NWHPHFE; for simplicity, we symbolize it as
〈hp, ξ (hp)〉.

For further understanding, an example is given below:

NWPHp
�

x1,

0.01889,

0.01908,

0.02111

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.1667,

0.05657,

0.05714,

0.06343

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.3333,

0.17980,

0.17984,

0.18020

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.5,

x2,

0.05672,

0.06000,

0.06328

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.2,

0.19162,

0.20000,

0.20838

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.5,

0.23999,

0.24000,

0.24001

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.3,

x3,

0.12000,

0.12000,

0.12000

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.3333,

0.23841,

0.24074,

0.24159

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.4444,

0.14000,

0.14000,

0.14000

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
0.2222.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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Example 5. For a PHFS Hp � 〈x1, (0.2(0.1), 0.3(0.2),􏼈

0.6(0.3))〉, 〈x2, (0.3(0.2), 0.4(0.5), 0.8(0.3))〉, 〈x3, (0.4
(0.3), 0.6(0.4), 0.7(0.2))〉}. )en, using Definition 11, we get
an NWPHFS:

For the evaluation of NWPHF information, the score
function defined below can simplify the probabilistic in-
formation into crisp values that can rationalize real-time
information. As NWPHFS is in the form of the triangular
fuzzy number [35, 36], some operations of the triangular
fuzzy number are involved in finding the score of the
NWPHFE.

Definition 12. Let 〈hp, ξ(hp)〉 be an NWPHFE; hp and σhp

are the mean value and deviation values of hp.)en the score
function of 〈hp, ξ(hp)〉 is calculated as follows:

SNWP 〈hp, ξ hp􏼐 􏼑〉􏼐 􏼑 � λ hp − σhp
􏼒 􏼓 +(1 − λ) 􏽘

#h

i�1
􏽢ci − τ􏽢ci

􏼒 􏼓
2
􏽢pi

⎛⎝ ⎞⎠,

(26)

where

􏽢ci �
δL

i + δM
i + δU

i􏼐 􏼑

3
· 􏽢pi,

τ􏽢ci
�

�������������������������������������������

δL
i􏼐 􏼑

2
+ δM

i􏼐 􏼑
2

+ δU
i􏼐 􏼑

2
− δL

i · δM
i − δM

i · δU
i − δU

i · δL
i􏼒 􏼓

􏽲

· 􏽢pi.

(27)

Here, λ indicates the attitude and risk-bearing of the
decision-makers.

(1) If the value of λ is greater than 0.5, then he is a risk
averter

(2) If the value of λ is less than 0.5, then he is risk-averse
(3) If the value of λ is 0.5, then he is not taking any risk

)e following conclusions can easily be obtained based
on Definition 12.

For any two different NWPHFEs 〈h1
p, ξ(h1

p)〉 and
〈h2

p, ξ(h2
p)〉, their corresponding score values are

SNWP〈h1
p, ξ(h1

p)〉 and SNWP〈h2
p, ξ(h2

p)〉, respectively:

(1) If SNWP〈h1
p, ξ(h1

p)〉> SNWP〈h2
p, ξ(h2

p)〉, then
〈h1

p, ξ(h1
p)〉 is preferable to 〈h2

p, ξ(h2
p)〉 and is de-

scribed as 〈h1
p, ξ(h1

p)〉≻〈h2
p, ξ(h2

p)〉

(2) If SNWP〈h1
p, ξ(h1

p)〉< SNWP〈h2
p, ξ(h2

p)〉, then
〈h2

p, ξ(h2
p)〉 is preferable to 〈h1

p, ξ(h1
p)〉 and is de-

scribed as 〈h1
p, ξ(h1

p)〉≺〈h2
p, ξ(h2

p)〉

(3) If SNWP〈h1
p, ξ(h1

p)〉 � SNWP〈h2
p, ξ(h2

p)〉, then both
〈h2

p, ξ(h2
p)〉 and 〈h1

p, ξ(h1
p)〉 are equivalent and are

described as 〈h1
p, ξ(h1

p)〉 ∼ 〈h2
p, ξ(h2

p)〉

For better understanding, an example is given in the
following.

Example 6. )e NWPHFS is taken from Example 5. )en
the score value and the other values which are used to find
the score are shown in Table 2. )e parameter (λ � (1/2)) is
taken just for the simplicity which means that the DMs are
neutral.

According to Definition 12, the ranking is

NWPHFEx3
≻NWPHFEx2

≻NWPHFEx1
. (28)

3.1. Basic Operations for the NWPHFEs. Like the opera-
tional rule of HFEs [33] and NWHFEs, the following are
basic rules for the operation of NWPHFEs.

(1) (〈h1
p, ξ(h1

p)〉)λ � [∪ c1i
∈h1

p
cλ
1i

(􏽢p1i
)􏽮 􏽯, ∪􏽢c1i

∈h1
p

􏽢cλ
1i

􏽮

(􏽢p1i
)}]

(2) λ (〈h1
p, ξ(h1

p)〉) � [∪ c1i
∈h1

p
[1 − (1 − c1i)

l](􏽢p1i
)􏽮 􏽯,

∪􏽢c1i
∈h1

p
λ􏽢c1i

(􏽢p1i
)􏽮 􏽯]

(3) 〈h1
p, ξ(h1

p)〉􏽢⊕〈h2
p, ξ(h2

p)〉 � [∪ c1i
∈h1p,c2j
∈h2

p
[c1i

+ c2j
􏼚

− c1i
c2j

](􏽢p1i
􏽢p2j

)}, ∪􏽢c1i
∈h1p,􏽢c2j
∈ h2

p [􏽢c1⊕􏽢c2](􏽢p1i
􏽢p2j

)􏼚 􏼛]

(4) 〈h1
p, ξ(h1

p)〉􏽢⊕〈h2
p, ξ(h2

p)〉􏽣⊗ � [∪ c1i
∈h1

p,c2j
∈h2

p

[c1i
c2j

](􏽢p1i
􏽢p2j

)􏼚 􏼛, ∪􏽢c1i
∈h1

p,􏽢c2j
∈h2

p
[􏽢c1i
⊗ 􏽢c2j

](􏽢p1i
􏽢p2j

)􏼚 􏼛]

Definition 13. Let 〈h1
p, ξ(h1

p)〉 and 〈h2
p, ξ(h2

p)〉 be two
NWPHFEs and λ> 0; then

From the operational rules proposed above, we can see
that the results are also NWPHFEs.

Theorem 1. Let 〈h1
p, ξ(h1

p)〉 ,〈h2
p, ξ(h2

p)〉, and 〈h3
p, ξ(h3

p)〉

be three NWPHFEs; λ> 0, λ1 > 0, λ2 > 0, and then

(1) 〈h1
p, ξ(h1

p)〉􏽢⊕〈h2
p, ξ(h2

p)〉 � (〈h2
p, ξ(h2

p)〉)􏽢⊕
(〈h1

p, ξ(h1
p)〉)

(2) 〈h1
p, ξ(h1

p)〉􏽢⊕(〈h2
p, ξ(h2

p)〉 􏽢⊕〈h3
p, ξ(h3

p)〉) � (〈h1
p,

ξ(h1
p)〉􏽢⊕ 〈h2

p, ξ(h2
p)〉)􏽢⊕〈h3

p, ξ(h3
p)〉

(3) λ(〈h1
p, ξ(h1

p)〉􏽢⊕〈h2
p, ξ(h2

p)〉) � λ 〈h1
p, ξ(h1

p)〉􏽢⊕λ〈h2
p,

ξ(h2
p)〉

(4) (〈h1
p, ξ(h1

p)〉􏽢⊕〈h2
p, ξ(h2

p)〉)λ � (〈h1
p, ξ(h1

p)〉)λ􏽣⊗
(〈h2

p, ξ(h2
p)〉)λ

(5) ((〈h1
p, ξ(h1

p)〉)λ1)λ2 � (〈h1
p, ξ(h1

p)〉)λ1λ2

Complexity 7



Proof

(1) 〈h1
p, ξ(h1

p)〉􏽢⊕〈h2
p, ξ(h2

p)〉 � [∪ c1i
∈h1

p,c2j
∈ h2

p [c1i
􏽮

+c2j
− c1i

c2j
](p1i

p2j
/􏽐

n
i�1 p1i

􏽐
n
i�1 p2j

)},

∪􏽢c1i
∈h1

p,􏽢c2j
∈h2

p
[􏽢c1⊕􏽢c2](p1i

p2j
/􏼚 􏽐

n
i�1 p1i

􏽐
n
i�1 p2j

)}]

� [∪ c1i
∈h1

p,c2j
∈h2

p
[c2i

+􏽮 c1j
− c2i

c1j
] (􏽢p1i

􏽢p2j
)},

∪􏽢c1i
∈h1

p,􏽢c2j
∈h2

p
[􏽢c2⊕􏽢c1](􏽢p1i

􏽢p2j
)􏼚 􏼛] � 〈h2

p, ξ(h2
p)〉􏽢⊕

〈h1
p, ξ(h1

p)〉

(2) Obvious as (1)
(3) λ(〈h1

p, ξ(h1
p)〉􏽢⊕〈h2

p, ξ(h2
p)〉) � λ[∪ c1i

∈h1p,c2j
∈h2

p
[c1i

􏽮

+c2j
− c1i

c2j
](􏽢p1i

􏽢p2j
)}, ∪􏽢c1i

∈h1
p,􏽢c2j
∈h2

p

[􏽢c1⊕􏽢c2](􏽢p1i
􏽢p2j

)􏼚 􏼛] � [∪ c1i
∈h1

p,c2j
∈h2

p
(1 − (1−{

(c1i
+ c2j

− c1i
c2j

)λ))(􏽢p1i
􏽢p2j

)}, ∪􏽢c1i
∈h1

p,􏽢c2j
∈h2

p

λ(􏽢c1⊕􏽢c2)(􏽢p1i
􏽢p2j

)􏼚 􏼛] � [∪ c1i
∈h1

p,c2j
∈h2

p
[1 − (1−{

(1 − (1 − c1i
)(1 − c2j

))

λ)](􏽢p1i
􏽢p2j

)}, ∪􏽢c1i
∈h1

p,􏽢c2j
∈h2

p
(λ􏽢c1⊕λ􏽢c2)(􏽢p1i

􏽢p2j
)􏼚 􏼛] �

[∪ c1i
∈h1

p,c2j
∈h2p [1 − (1 − c1i

)λ + 1 − (1 − c2j
)λ􏼚 − (1 −

(1 − c1i
)λ)(1 − (1 − c2j

)λ)](􏽢p1i
􏽢p2j

)},

∪􏽢c1i
∈h1

p,􏽢c2j
∈h2p

(λ􏽢c1⊕λ􏽢c2)(􏽢p1i
􏽢p2j

)􏼚 􏼛] � λ 〈h1
p,

ξ (h1
p)〉􏽢⊕λ 〈h2

p, ξ (h2
p)〉

(4) (〈h1
p, ξ (h1

p)〉􏽣⊗ 〈h2
p, ξ(h2

p)〉)λ �

[∪ c1i
∈h1p,c2j
∈h2

p
c1i

c2j
(􏽢p1i

􏽢p2j
)􏼚 􏼛, ∪􏽢c1i

∈h1
p,􏽢c2j
∈h2

p
􏽢cλ
1i

􏽮

􏽢cλ
2j

(􏽢p1i
􏽢p2j

)}] � [∪ c1i
∈h1

p,c2j
∈h2

p
cλ
1i

􏽮

cλ
2j

(􏽢p1i
􏽢p2j

)}, ∪􏽢c1i
∈h1

p,􏽢c2j
∈h2

p
􏽢cλ
1i

􏽢cλ
2j

(􏽢p1i
􏽢p2j

)􏼚 􏼛] �

(〈h1
p, ξ(h1

p)〉)λ􏽣⊗ (〈h2
p, ξ(h2

p)〉)λ

(5) ((〈h1
p, ξ (h1

p)〉)λ1)λ2 �

[∪ c1i
∈ h1

p
c
λ1
1i

(􏽢p1i
)􏽮 􏽯, ∪􏽢c1i

∈ h1
p

􏽢c
λ1
1i

(􏽢p1i
)􏽮 􏽯]

λ2 � [∪ c1i
∈h1p c

λ1λ2
1i

(􏽢p1i
)􏽮 􏽯,

∪􏽢c1i
∈h1

p
􏽢c
λ1λ2
1i

(􏽢p1i
)􏽮 􏽯] � (〈h1

p, ξ(h1
p)〉)λ1λ2 □

3.2. Aggregation Operators for the NWPHFEs.
Aggregation operators for the NWPHFS depend upon the
properties given in Section 3.1. )ese operators are very
suitable and significant to handle the MADM problems with
NWPHF information.

NWPHFWA 〈hi
p, ξ h

i
p􏼐 􏼑〉|i � 1, 2, 3, . . . , n􏽮 􏽯􏼐 􏼑 � 􏽢⊕ni�1 ωi 〈h

i
p, ξ h

i
p􏼐 􏼑〉􏼐 􏼑

� ∪
ci∈hi

p

1 − 􏽙
n

i�1
1 − ci( 􏼁

ωi )
􏽑

n
i�1 pi

􏽑
n
i�1 􏽐

n
i�1 pi( 􏼁

􏼠 􏼡, ∪
􏽢ci∈hi

p

⊕
n

i�1
ωi 􏽢ci( 􏼁􏼒 􏼓

􏽑
n
i�1 pi

􏽑
n
i�1 􏽐

n
i�1 pi( 􏼁

􏼠 􏼡⎛⎝
⎫⎬

⎭.
⎧⎨

⎩

(29)

Definition 14. Consider any NWPHFS,
NWP � 〈hi

p, ξ (hi
p)〉|i � 1, 2, 3, . . . , n􏽮 􏽯, a collection of

NWPHFEs and let ω � (ω1,ω2,ω3, . . . ,ωn) be the weight
vectors of 〈hi

p, ξ (hi
p)〉 with ωi ∈ [0, 1] and 􏽐

n
i�1 ωi � 1.)en,

an NWPHF weighted averaging (NWPHFWA) operator is
defined as follows:

If ω � ((1/n), (1/n), (1/n), . . . , (1/n)), then (29) reduces
to NWPHFA operator. )e NWPHFWA operator helps
solve MADM problems, and its practical application is
shown in Section 5.

NWPHFWG 〈hi
p, ξ h

i
p􏼐 􏼑〉|i � 1, 2, 3, . . . , n􏽮 􏽯􏼐 􏼑 � 􏽣⊗ n

i�1 〈h
i
p, ξ h

i
p􏼐 􏼑〉􏼐 􏼑

ωi

� ∪ ci∈hi
p

􏽙

n

i�1
c
ωi

i )
􏽑

n
i�1 pi

􏽑
n
i�1 􏽐

n
i�1 pi( 􏼁

􏼠 􏼡, ∪􏽢ci∈hi
p
⊗
n

i�1
􏽢ci( 􏼁

ωi􏼒 􏼓
􏽑

n
i�1 pi

􏽑
n
i�1 􏽐

n
i�1 pi( 􏼁

􏼠 􏼡⎛⎝
⎫⎬

⎭.
⎧⎨

⎩

(30)

Table 2: Mean value and deviation value of PHFEs.

hp σhp
􏽢ci τ􏽢ci

SNWP

x1 0.4333 0.02889 0.00328 0.01968 0.0900 0.0004 0.0022 0.0002 0.2043
x2 0.5 0.04 0.01200 0.10000 0.0720 0.0011 0.0073 0.0000 0.2329
x3 0.5556 0.01358 0.04 0.10678 0.0311 0.0000 0.0013 0.0000 0.2738
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Definition 15. Consider any NWPHFS,
NWP � 〈hi

p, ξ (hi
p)〉|i � 1, 2, 3, . . . , n􏽮 􏽯, a collection of

NWPHFEs and let ω � (ω1,ω2,ω3, . . . ,ωn) be the weight
vectors of 〈hi

p, ξ (hi
p)〉 with ωi ∈ [0, 1] and 􏽐

n
i�1 ωi � 1.)en,

an NWPHF weighted geometric (NWPHFWG) operator is
defined as follows:

If ω � ((1/n), (1/n), (1/n), . . . , (1/n)), then (30) reduces
to NWPHFG operator.

Note that, in the definition above, the weight vectors
must satisfy the condition 􏽐

n
i�1 ωi � 1. )is is per our habits

and makes it easy for aggregation operators to be used. But
this does not happen in most practical applications; most of
the time, the situation is not in our favour, and 􏽐

n
i�1 ωi < 1,

which is not reasonable. )e issue needs to be resolved, but,
fortunately, it is not a major issue. We can normalize the
weight vector, and then the new weight vector satisfies the
property in which it holds most of the original information.

4. MADM Process with the NWPHFS

In this section, we shall propose a novel approach to MADM
problems with the normal wiggly probabilistic hesitant fuzzy
numbers based on the NWPHFWA and NWPHFWG
operators.

4.1. Proposed Methodology under the Normal Wiggly Proba-
bilistic Hesitant Fuzzy Environment. Consider a problem
having m alternatives, denoted by A � A1, A2, A3, . . . , Am􏼈 􏼉.
Each alternative is assessed based on n attribute, shown by
C � C1, C2, C3, . . . , Cn􏼈 􏼉, which are weighted according to
the attribute weight vector w � w1,w2,w3, . . . , wn􏽮 􏽯 and
weights should satisfy the conditions wi ∈ [0, 1] and
􏽐

n
i�1 ωi � 1. Finally, for the evaluation of alternatives, some

experts/DMs are invited to provide the data in the form of
PHFEs.

In the following, the proposed method under wiggly
probabilistic environment is applied to solve such MADM
problems. )e steps are as follows:

Step 1. Construct a decision matrix by using PHF in-
formation given by the DMs as shown in Table 3
Step 2. According to Definition 11, another decision
matrix is obtained based on NWPHFS given in Table 4
Step 3. Utilize (29) or (30) to calculate the unified
assessment value of each alternative
Step 4. For the collective results, use Definition 12 to
find the scores of the alternatives by simple calculation
and arrange the alternatives according to assessment
values with the given comparison method

To demonstrate the process of the proposed method
based on NWPHF information, a flowchart is drawn as
shown in Figure 1.

We have developed the concept of NWPHFS to link
probabilistic information to NWHFS to minimize infor-
mation loss. NWPHFS can better deal with practical
problems when DMs provide their preference values based
on a random variable. To address the real issues of MADM,

we have come up with an appropriate approach based on
NWPHF weighted aggregation operators. It can improve the
diagnostic results and handle the complex information
under the wiggly probabilistic environment. In addition, this
technique will be applied to environmental quality testing in
the next section.

5. Application to the Environmental
Quality Evaluation

)e quality of the environment plays a significant role in
human life and directly impacts human health. So people
are always worried about environmental degradation and
make efforts to alleviate the quality of the environment.
Numerous firms plan ecological projects, specifically for
the chemical industry. )erefore, environmental quality
assessment has a direct impact on economic and social
development. It is unbearable to disregard all businesses
that can contaminate the atmosphere. For sustainable
development, we must find a stable point. One possible
way is to assess the ecological superiority of some diverse
locations and develop environmental standards for the
worst spots. After that, we can have an overall ecological
standard. )erefore, the real problem is to identify an area
that has a bad atmosphere between different places. A
comprehensive approach is proposed for the decision-
making process as follows.

)e quality of the environment depends upon the region
according to certain standards and assessment procedures.
On the contrary, suppose that the department of environ-
mental protection’s survey shows the four areas that need to
be amended. Keeping in mind the time and cost, it is
beneficial to focus all the resources in a single area.)emain
problem is to select one of the four areas that need to be
considered first. )ese four areas can be described as
A1, A2, A3, and A4. )ere are many characteristics in en-
vironmental structure, but, for illustration, we consider only
four of them in this article: atmospheric environment (C1),
water environment (C2), noise (C3), and waste material
(C4). We provide a detailed explanation of these four at-
tributes in Table 5. According to many environmentalists,
the weight of the four attribute is given as W � (0.3, 0.25, 0.2,
0.25) and consists of several attributes. But, in this article,
DM holistically considers each criterion to demonstrate the
preferred information for each alternative in the form of
PHFS. )e combined information of the DMs based on
PHFEs is shown in Table 6. As stated in Definition 9, we use
the NWPHFS to drive all PHF information; Tables [6–9] can
then be created for the NWPHF decision matrix.

Below is a summary of the concrete decision-making
process:

Step 1. Identify the problem, a combination of each
alternative (A1, A2, A3, A4), set of attributes
(C1, C2, C3, C4), and their weight vectors
w � (0.3, 0.25, 0.2, 0.25).
Step 2. Unite experts to evaluate the alternatives under
attribute, and build a PHF decision matrix as shown in
Table 6.

Complexity 9



Step 3. NWPHF decision matrix according to Defini-
tion 9 shown in Table 7.
Step 4. Compute the combined evaluation values of
each alternative by using the operators NWPHFWG
and NWPHFWA, given in Definitions 14 and 15.
Calculate the score values according to Definition 12,

and rate all the alternatives according to their scores.
)e scores for the alternatives and final ranking are
shown in Table 8.

However, if we seize the probabilities, the PHFEs in
Table 6 will convert to HFEs. )en, using the NWHFS

Table 3: Probabilistic hesitant fuzzy decision matrix given by the experts.

C1 C2 C3 · · · Cn

A1 h11(p11) h12(p12) h13(p13) · · · h1n(p1n)

A2 h21(p21) h22(p22) h23(p23) · · · h2n(p2n)

A3 h31(p31) h32(p32) h33(p33) · · · h3n(p3n)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Am hm1(pm1) hm2(pm2) hm3(pm3) · · · hmn(pmn)

Table 4: Normal probabilistic hesitant fuzzy decision matrix.

C1 C2 C3 · · · Cn

A1 〈h11
p , ξ (h11

p )〉 〈h12
p , ξ (h12

p )〉 〈h13
p , ξ (h13

p )〉 · · · 〈hn1
p , ξ (hn1

p )〉

A2 〈h21
p , ξ (h21

p )〉 〈h22
p , ξ (h22

p )〉 〈h23
p , ξ (h23

p )〉 · · · 〈hn2
p , ξ (hn2

p )〉

A3 〈h31
p , ξ (h31

p )〉 〈h32
p , ξ (h32

p )〉 〈h33
p , ξ (h33

p )〉 · · · 〈hn3
p , ξ (hn3

p )〉

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Am 〈hm1

p , ξ (hm1
p )〉 〈hm2

p , ξ (hm2
p )〉 〈hm3

p , ξ (hm3
p )〉 · · · 〈hmn

p , ξ (hmn
p )〉

Set of Experts

Set of Alternatives A = {A1, A2,…, Am}PHFEs hp = {γi (pi)}

Decision Matrix M = (hij (pij))m×n

AggregationNWPHFWA

D
ec

isi
on

 M
ak

in
g 

M
od

el
 w

ith
 N

W
PH

F 
In

fo
rm

at
io

n

Use 
Equation 3

NWPHFWG

Ranking of 
Alternatives

Ranking of 
Alternatives

End End

Use 
Equation 2

Normalized PHFEs hp = {γi (pi)}

Normal Wiggly Probabilistic Hesitant Fuzzy 
Set NWP = {⟨x,hp (x),ξ (hp (x)) | p⟩}

Real preference
Degree rpd (hp)

Wiggle Elements [γi – g (γi (pi)),γi + g (γi (pi))]~ ~

Figure 1: )e schema of the whole decision-making steps using the normal wiggly probabilistic hesitant fuzzy information.
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aggregation operators to calculate the score values of the
alternatives, the score and raking can be found in Table 9.

)e final ranking can be seen in Tables 8 and 9 which are
different; these operators present different results, which will
be discussed in the following subsection. Table 8 provides the
results of NWPHFWG and NWPHFWA operators, and the
result obtained by the method is given in [26] and can be
obtained in Table 9. )e results in Table 9 are not consistent
because there is a severe loss of information. Uncertain
information is dug to get more analytical results, but ex-
ploring the PHF information will provide more accurate and
consistent results.

5.1. Comparative Analysis. Ren at al. [26] presented a
MADM method based on two operators, namely, the
NWHFWA and the NWHFWG, and applied them to
evaluate alternatives under the normal wiggly hesitant fuzzy
environment. In this section, we compare the proposed
method with this approach to categorize the alternatives by
calculating the final scores. NWPHFS can be seen as an
extension of PHFS, which develops a technique for digging
up potential information. In PHFSs, the DMs provide their
assessment by a finite set of values along with their respective
probabilities, which can better articulate their hesitation.
)erefore, it is essential to compare the results of their
classification. )e original PHF information values are
presented in Table 6. As NWHFS has a special case of
NWPHFS, where their probabilities of each membership
degrees are equal to one, the formNWPHFS is more general,
which can help DMs express evaluation information. Since
no such other procedure has been developed for NWPHFS,
we compare our proposed procedure with the special case of
NWPHFS, which is NWHFS. HFS can be obtained by seizing
the probability in PHFS from Table 6. By using the method
based on NWHFWA and NWHFWG operators, we cal-
culate the ranking outcomes in Table 9. Table 9 indicates that
the results of Ren et al. [26] based on NWHFWA and
NWHFWG are not consistent, when compared to the results
of our method given in Table 8. From Table 9, it can easily be

seen that A3 is the best choice and A2 is the worst choice;
however, A4 is the more appropriate alternative, and A2 is
the worst by NWPHFWG operator, and the ranking order of
the remaining options is also different. Moreover, by uti-
lizing the NWHFWA operator, we see that A4 is the best
choice, and A1 is the worst choice; but A4 is the more
appropriate alternative, and A2 is the worst by NWPHFWA
operator. )e main reason for the differences is that our
method takes both the original hesitant information and
probabilistic information into account. Furthermore, under
the NWHFWA and NWHFWG operators, the rankings are
different from that of our method. NWPHFSs allow DMs to
express their values in membership values along with their
respective probabilities more flexibly. Finally, these basically
consistent ranking results demonstrate the feasibility and
effectiveness of our method. Also, we easily see that if we
cease the probabilities, then the proposed method and the
method defined by Ren et al. [26] are the same. )is also
guarantees that the proposed method can handle more
complex information and more space in decision-making.

5.2. Advantages of the Proposed Approach. Some advantages
have been pointed out from the proposed studies concerning
the present:

(1) Because the PHF set is an extension of HFS and
contains more information than HFS, the proposed
aggregation operators (NWPHFWA and
NWPHFWG) generalize the NWHFWA and
NWHFWG operators. Hence, these operators can
address the decision-making difficulties more
efficiently.

(2) Tables 8 and 9 show that the final results of our
proposed procedure do not conform to current
practices under the hesitant fuzzy environment. It is
also shown that conventional HFS has a severe loss of
information. )us, a comparative study reveals that
the proposed measure is more appropriate and
practically workable and provides a better way under
the PHF environment.

Table 5: )e description of the attributes under consideration.

Attribute Explanation
C1: atmospheric
environment Controlling air pollution and limiting greenhouse gas emissions

C2: water environment Controlling regional irrigation pollution, guiding the effective use of aquatic resources, maintaining and
improving water quality and the aquatic environment, ensuring the availability of adequate water resources

C3: noise
To control noise and noise level of enclosed enclosures on urban traffic arterials, ensure the sound quality in

sensitive locations, such as residential areas
C4: waste material To improve the construction and nature of solid waste

Table 6: Probabilistic hesitant fuzzy decision matrix given by the experts.

C1 C2 C3 C4

A1 0.15(0.3), 0.35(0.5), 0.65(0.2){ } 0.25(0.4), 0.65(0.6){ } 0.4(0.3), 0.8(0.7){ } 0.1(0.3), 0.4(0.3), 0.6(0.4){ }

A2 0.35(0.5), 0.8(0.5){ } 0.05(0.3), 0.35(0.6), 0.75(0.1){ } 0.25(0.4), 0.7(0.6){ } 0.3(0.4), 0.6(0.3), 0.1(0.3){ }

A3 0.25(0.35), 0.75(0.65){ } 0.25(0.3), 0.65(0.5), 0.8(0.2){ } 0.3(0.55), 0.85(0.45){ } 0.2(0.25), 0.4(0.4), 0.7(0.35){ }

A4 0.75(0.4), 0.55(0.3), 0.1(0.3){ } 0.25(0.4), 0.7(0.6){ } 0.15(0.2), 0.4(0.4), 0.85(0.4){ } 0.65(0.4), 0.75(0.2), 0.85(0.4){ }
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(3) Also, the operators given by [26] (NWHFWA and
NWHFWG) are used in the above example, which
provides different ranking on the same data, which is
not practical. On the other side, the proposed op-
erators (NWPHFWA and NWPHFWG) offer the
same ranking, indicating that the proposed operators
provide us more reliable and consistent results.

6. Conclusions and Future Prospects

In the decision-making process, the representation of un-
certain information is proposed to enable the DMs to dis-
close their cognitive preferences fully. However, the limited
knowledge of DMs leads to the fact that no complex in-
formation representation form can help DMs express all the
preferred information about an alternative. Instead, it sig-
nificantly increases the DMs psychological burden and time
cost. )erefore, the purpose of this article is to obtain more
accurate assessments from simple information.)erefore, to
facilitate the DMs, we leave the dilemma of complex rep-
resentation and try to find the hidden uncertain information
from the original data provided by the DMs. To accomplish
this objective, we propose a new representation tool,
NWPHFS, to automatically find the hidden uncertain in-
formation of the original PHF information. )e proposed
NWPHFS is based on the assumption that human cognitive
uncertainty can be considered a general fluctuation in a
specific range that focuses on a value, the DM’s uncertain
feelings can appear objectively and realistically. In this paper,
the essential theoretical knowledge of NWPHFS has been
explained in detail:

(1) We propose some basic operational rules, score
function, and distance measure between two
NWPHFSs

(2) To aggregate the information, two aggregation op-
erators are proposed, namely, normal wiggly prob-
abilistic hesitant fuzzy weighted averaging and
normal wiggly probabilistic hesitant fuzzy weighted
geometric

(3) Based on NWPHFWA and NWPHFWG, a new
MADM method is proposed to deal with MADM
problems in a normal wiggly probabilistic context

(4) )e effectiveness and feasibility of the proposed
method are tested through an example of environ-
mental quality assessment, and the comparative

analysis revealed that the proposed method could
offer more accurate and precise conclusions than the
existing method

Future research can combine NWPHFS with some
MADM methods considering preference relations, such as
the TDM method and PROMETHEE method. Moreover,
the Maclaurin Symmetric Mean and dual Maclaurin Sym-
metric Mean operators can be extended for the NWPHF
environment. Simultaneously, we can further develop the
MADM to the multiattribute group decision-making
method and use this for different applications such as green
supplier selection, robot selection, and environmental
quality assessment.
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